能源化学(英文) ›› 2016, Vol. 25 ›› Issue (6): 917-926.DOI: 10.1016/j.jechem.2016.11.012
Peng Zhang, Mamoru Fujitsuka, Tetsuro Majima
收稿日期:
2016-08-23
修回日期:
2016-10-13
出版日期:
2016-11-15
发布日期:
2016-11-16
通讯作者:
Tetsuro Majima
基金资助:
We are thankful for the help of the Comprehensive AnalysisCenter of SANKEN,Osaka University.This work has beenpartly supported by a grant-in-aid for Scientific Research (Project25220806 and others) from the Ministry of Education,Culture,Sports,Science and Technology (MEXT) of the Japanese Government.
Peng Zhang, Mamoru Fujitsuka, Tetsuro Majima
Received:
2016-08-23
Revised:
2016-10-13
Online:
2016-11-15
Published:
2016-11-16
Contact:
Tetsuro Majima
Supported by:
We are thankful for the help of the Comprehensive AnalysisCenter of SANKEN,Osaka University.This work has beenpartly supported by a grant-in-aid for Scientific Research (Project25220806 and others) from the Ministry of Education,Culture,Sports,Science and Technology (MEXT) of the Japanese Government.
摘要: Ordered metal oxides superstructures have attracted much more attention in the fields of fuel generation and environmental purification owing to their unique physiochemical characteristics such as large surface area, fine pore structure, efficient electronic mobility, and good stability. Very recently, TiO2 mesocrystals (TMCs) having superstructures self-assembled by TiO2 nanoparticle building blocks, are of considerable interest in current research and application ranging from UV to visible light attributed to their efficient charge separation and superior photocatalytic activity. In this review, we describe the common procedures to prepare unique TMCs and overview of recent developments of TMCs during last 3 years, especially the structure-related or electronic-effected mechanism in photocatalytic reaction. Further, we introduce the characterization and fundamental properties of modified TMCs by the means of single-particle fluorescence microscopy for unraveling the charge transport and photocatalytic properties of individual TMCs and time-resolved diffuse reflectance spectroscopy (TDR) for monitoring the charge transfer dynamics. Finally, various aspects on TMCs are discussed for the future developments of energy and environmental fields.
Peng Zhang, Mamoru Fujitsuka, Tetsuro Majima. Development of tailored TiO2 mesocrystals for solar driven photocatalysis[J]. 能源化学(英文), 2016, 25(6): 917-926.
Peng Zhang, Mamoru Fujitsuka, Tetsuro Majima. Development of tailored TiO2 mesocrystals for solar driven photocatalysis[J]. Journal of Energy Chemistry, 2016, 25(6): 917-926.
[1] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95(1995) 69-96.[2] X. Chen, S.S. Mao, Chem. Rev. 107(2007) 2891-2959.[3] X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110(2010) 6503-6570.[4] A. Fujishima, K. Honda, Nature 38(1972) 37-38.[5] G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q. Lu, H.M. Cheng, Chem. Rev. 114(2014) 9559-9612.[6] T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C 111(2007) 5259-5275.[7] H. Cölfen, M. Antonietti, Angew. Chem. Int. Ed. 44(2005) 5576-5591.[8] L. Zhou, P. O'Brien, J. Phys. Chem. Lett. 3(2015) 620-628.[9] F. Caruso, Colloids, Colloid Assemblies Ed., Wiley-VCH, 2003.[10] S. Mann, Nat. Mater. 8(2009) 781-792.[11] Z. Nie, A. Petukhova, E. Kumacheva, Nat. Nanotechnol. 5(2010) 15-25.[12] J.-W. Liu, H.-W. Liang, S.-H. Yu, Chem. Rev. 112(2012) 4770-4799.[13] Z. Bian, T. Tachikawa, T. Majima, J. Phys. Chem. Lett. 3(2012) 1422-1427.[14] Z. Bian, T. Tachikawa, W. Kim, W. Choi, T. Majima, J. Phys. Chem. C 116(2012) 25444-25453.[15] K.C.J. Lee, Y.-H. Chen, H.-Y. Lin, C.-C. Cheng, P.-Y. Chen, T.-Y. Wu, M.-H. Shih, K.-H. Wei, L.-J. Li, C.-W. Chang, Sci. Rep. 5(2015) 16374.[16] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, Appl. Catal. B 125(2012) 331-349.[17] R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Chem. Rev. 114(2014) 9824-9852.[18] P. Zhang, M. Fujitsuka, T. Majima, Appl. Catal. B 185(2016) 181-188.[19] P. Zhang, T. Tachikawa, M. Fujitsuka, T. Majima, ChemSusChem 9(2016) 617-623.[20] H. Cölfen, M. Antonietti, Mesocrystals and Nonclassical Crystallization, Wiley, 2008.[21] L. Zhou, P. O'Brien, Small 4(2008) 1566-1574.[22] R.-Q. Song, H. Cölfen, Adv. Mater. 22(2010) 1301-1330.[23] M. Niederberger, H. Cölfen, Phys. Chem. Chem. Phys. 8(2006) 3271-3287.[24] W. Jiao, L. Wang, G. Liu, G.Q. Lu, H.-M. Cheng, ACS Catal. 2(2012) 1854-1859.[25] J. Fang, B. Ding, H. Gleiter, Chem. Soc. Rev. 40(2011) 5347-5360.[26] L. Zhou, D. Smyth-Boyle, P. O'Brien, J. Am. Chem. Soc. 130(2008) 1309-1320.[27] S.-J. Liu, J.-Y. Gong, B. Hu, S.-H. Yu, Cryst. Growth Des. 9(2009) 203-209.[28] D. Zhang, G. Li, F. Wang, J.C. Yu, CrystEngComm 12(2010) 1759-1763.[29] J.-F. Ye, W. Liu, J.-G. Cai, S. Chen, X.-W. Zhao, H.-H. Zhou, L.-M. Qi, J. Am. Chem. Soc. 133(2011) 933-940.[30] Z. Bian, J. Zhu, J. Wen, F. Cao, Y. Huo, X. Qian, Y. Cao, M. Shen, H. Li, Y. Lu, Angew. Chem. Int. Ed. 50(2011) 1105-1108.[31] P. Tartaj, Chem. Commun. 47(2011) 256-258.[32] H. Yu, B. Tian, J. Zhang, Chem. Eur. J. 17(2011) 5499-5502.[33] J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, L. Qi, Energy Environ. Sci. 5(2012) 7575-7581.[34] Q. Chen, W. Ma, C. Chen, H. Ji, J. Zhao, Chem. Eur. J. 18(2012) 12584-12589.[35] L. Zhou, J. Chen, C. Ji, L. Zhou, P. O'Brien, CrystEngComm 15(2013) 5012-5015.[36] Z. Li, A. Gessner, J.-P. Richters, J. Kalden, T. Voss, C. Kuebel, A. Taubert, Adv. Mater. 20(2008) 1279-1285.[37] Z. Liu, X.D. Wen, X.L. Wu, Y.J. Gao, H.T. Chen, J. Zhu, P.K. Chu, J. Am. Chem. Soc. 131(2009) 9405-9412.[38] X.L. Wu, S.J. Xiong, Z. Liu, J. Chen, J.C. Shen, T.H. Li, P.H. Wu, P.K. Chu, Nat. Nanotechnol. 6(2011) 103-106.[39] M. Distaso, R.N. Klupp Taylor, N. Taccardi, P. Wasserscheid, W. Peukert, Chem. Eur. J. 17(2011) 2923-2930.[40] M. Distaso, D. Segets, R. Wernet, R.K. Taylor, W. Peukert, Nanoscale 4(2012) 864-873.[41] E. Hosono, T. Tokunaga, S. Ueno, Y. Oaki, H. Imai, H. Zhou, S. Fujihara, Cryst. Growth Des. 12(2012) 2923-2931.[42] M.-H. Liu, Y.-H. Tseng, H.F. Greer, W. Zhou, C.-Y. Mou, Chem. Eur. J. 18(2012) 16104-16113.[43] S. Sun, X. Zhang, J. Zhang, X. Song, Z. Yang, Cryst. Growth Des. 12(2012) 2411-2418.[44] F. Waltz, G. Wissmann, J. Lippke, A.M. Schneider, H.-C. Schwarz, A. Feldhoff, S. Eiden, P. Behrens, Cryst. Growth Des. 12(2012) 3066-3075.[45] H. Wang, L. Xin, H. Wang, X. Yu, Y. Liu, X. Zhou, B. Li, RSC Adv. 3(2013) 6538-6544.[46] S.-S. Wang, A.-W. Xu, CrystEngComm 15(2013) 376-381.[47] G.-S. Park, D. Shindo, Y. Waseda, T. Sugimoto, J. Colloid Interface Sci. 177(1996) 198-207.[48] X.-L. Fang, C. Chen, M.-S. Jin, Q. Kuang, Z.-X. Xie, S.-Y. Xie, R.-B. Huang, L.-S. Zheng, J. Mater. Chem. 19(2009) 6154-6160.[49] Z. An, J. Zhang, S. Pan, F. Yu, J. Phys. Chem. C 113(2009) 8092-8096.50.[50] J.S. Chen, T. Zhu, C.M. Li, X.W. Lou, Angew. Chem. Int. Ed. 50(2011) 650-653.[51] J. Ma, J. Teo, L. Mei, Z. Zhong, Q. Li, T. Wang, X. Duan, J. Lian, W. Zheng, J. Mater. Chem. 22(2012) 11694-11700.[52] X. Duan, L. Mei, J. Ma, Q. Li, T. Wang, W. Zheng, Chem. Commun. 48(2012) 12204-12206.[53] A. Ahniyaz, Y. Sakamoto, L. Bergström, Proc. Natl. Acad. Sci. USA 104(2007) 17570-17574.[54] B. Liu, H.C. Zeng, J. Am. Chem. Soc. 126(2004) 8124-8125.[55] W.-T. Yao, S.-H. Yu, Y. Zhou, J. Jiang, Q.-S. Wu, L. Zhang, J. Jiang, J. Phys. Chem. B 109(2005) 14011-14016.[56] M. Xu, F. Wang, B. Ding, X. Song, J. Fang, RSC Adv. 2(2012) 2240-2243.[57] J. Fang, P.M. Leufke, R. Kruk, D. Wang, T. Scherer, H. Hahn, Nano Today (2010) 175-182.[58] A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63(2008) 515-582.[59] M. Anpo, M. Takeuchi, J. Catal. 216(2003) 505-516.[60] H.-K. Lee, S.-W. Lee, Chem. Lett. 44(2015) 604-606.[61] S. Gurdip, P. lnder, K. Jaspreet, P. lnder, Indian J. Eng. Mater. Sci. 7(2007) 229-235.[62] M.W. Kanan, D.G. Nocera, Science 321(2008) 1072-1075.[63] M.W. Kanan, Y. Surendranath, D.G. Nocera, Chem. Soc. Rev. 38(2009) 109-114.[64] E.M.P. Steinmiller, K.-S. Choi, Proc. Natl. Acad. Sci. USA 106(2009) 20633-20636.[65] R.S. Khnayzer, M.W. Mara, J. Huang, M.L. Shelby, L.X. Chen, F.N. Castellano, ACS Catal. 2(2012) 2150-2160.[66] D. Liu, L. Jing, P. Luan, J. Tang, H. Fu, ACS Appl. Mater. Interfaces 5(2013) 4046-4052.[67] B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, T.W. Hamann, J. Am. Chem. Soc. 134(2012) 16693-16700.[68] D.K. Zhong, J. Sun, H. Inumaru, D.R. Gamelin, J. Am. Chem. Soc. 131(2009) 6086-6087.[69] D.K. Zhong, D.R. Gamelin, J. Am. Chem. Soc. 132(2010) 4202-4207.[70] D.K. Zhong, M. Cornuz, K. Sivula, M. Grätzel, D.R. Gamelin, Energy Environ. Sci. 4(2011) 1759-1764.[71] K.J. McDonald, K.-S. Choi, Chem. Mater. 3(2011) 1686-1693.[72] J.A. Seabold, K.-S. Choi, Chem. Mater. 23(2011) 1105-1112.[73] D. Wang, R. Li, J. Zhu, J. Shi, J. Han, X. Zong, C. Li, J. Phys. Chem. C 116(2012) 5082-5089.[74] T. Tachikawa, P. Zhang, Z. Bian, T. Majima, J. Mater. Chem. A 2(2014) 3381-3388.[75] B. Liu, H.C. Zeng, Chem. Mater. 20(2008) 2711-2718.[76] X. Yang, J. Qin, Y. Li, R. Zhang, H. Tang, J. Hazard. Mater. 261(2014) 342-350.[77] P. Zhang, T. Tachikawa, M. Fujitsuka, T. Majima, Chem. Commun. 51(2015) 7187-7190.[78] Y. Yin, A.P. Alivisatos, Nature 437(2005) 664-670.[79] Y.-w. Jun, J.-s. Choi, J. Cheon, Angew. Chem. Int. Ed. 45(2006) 3414-3439.[80] Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem. Int. Ed. 48(2009) 60-103.[81] G. Liu, J.C. Yu, G.Q. Lu, H.-M. Cheng, Chem. Commun. 47(2011) 6763-6783.[82] Q. Kuang, X. Wang, Z. Jiang, Z. Xie, L. Zheng, Acc. Chem. Res. 7(2014) 308-318.[83] U. Diebold, Surf. Sci. Rep. 48(2003) 53-229.[84] T.L. Thompson, J.T. Yates Jr., Chem. Rev. 106(2006) 4428-4453.[85] G.A. Somorjai, H. Frei, J.Y. Park, J. Am. Chem. Soc. 131(2009) 16589-16605.[86] M.A. Henderson, Surf. Sci. Rep. 66(2011) 185-297.[87] J.L. Giocondi, G.S. Rohrer, J. Phys. Chem. B 105(2008) 8275-8277.[88] T. Ohno, K. Sarukawa, M. Matsumura, New J. Chem. 26(2002) 1167-1170.[89] J.L. Giocondi, P.A. Salvador, G.S. Rohrer, Top. Catal. 44(2007) 529-533.[90] H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Nature 453(2008) 638-641.[91] N. Murakami, Y. Kurihara, T. Tsubota, T. Ohno, J. Phys. Chem. C 113(2009) 3062-3069.[92] Z. Zheng, B. Huang, J. Lu, X. Qin, X. Zhang, Y. Dai, Chem. Eur. J. 17(2011) 15032-15038.[93] R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Nat. Commun. 4(2013) 2401-2407.[94] C. Liu, X. Han, S. Xie, Q. Kuang, X. Wang, M. Jin, Z. Xie, L. Zheng, Chem. Asian J. 8(2013) 282-289.[95] M. Lazzeri, A. Vittadini, A. Selloni, Phys. Rev. B Condens. Matter Mater. Phys. 65(2002) 119901.[96] B. Ohtani, Y. Ogawa, S.-i. Nishimoto, J. Phys. Chem. B 101(1997) 3746-3752.[97] H. Lin, C.P. Huang, W. Li, C. Ni, S.I. Shah, Y.-H. Tseng, Appl. Catal. B 68(2006) 1-11.[98] T. Tachikawa, S. Tojo, M. Fujitsuka, T. Sekino, T. Majima, J. Phys. Chem. B 110(2006) 14055-14059.[99] D. Yang, H. Liu, Z. Zheng, Y. Yuan, J.-c. Zhao, E.R. Waclawik, X. Ke, H. Zhu, J. Am. Chem. Soc. 131(2009) 17885-17893.[100] P. Zhang, T. Tachikawa, Z. Bian, T. Majima, Appl. Catal. B 176-177(2015) 678-686.[101] Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, Nat. Commun. 5(2014) 4038.[102] J. Pan, G. Liu, G.Q. Lu, H.-M. Cheng, Angew. Chem. Int. Ed. 50(2011) 2133-2137.[103] T.R. Gordon, M. Cargnello, T. Paik, F. Mangolini, R.T. Weber, P. Fornasiero, C.B. Murray, J. Am. Chem. Soc. 134(2012) 6751-6761.[104] T. Tachikawa, S. Yamashita, T. Majima, J. Am. Chem. Soc. 133(2011) 7197-7204.[105] M. D'Arienzo, J. Carbajo, A. Bahamonde, M. Crippa, S. Polizzi, R. Scotti, L. Wahba, F. Morazzoni, J. Am. Chem. Soc. 133(2011) 17652-17661.[106] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 14(2014) 9919-9986.[107] L. Sang, Y. Zhao, C. Burda, Chem. Rev. 114(2014) 9283-9318.[108] W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, A.R. Mohamed, Nanoscale 6(2014) 1946-2008.[109] Y. Liu, Y. Zhang, H. Tan, J. Wang, Cryst. Growth Des. 11(2011) 2905-2912.[110] Y. Liu, Y. Zhang, H. Li, J. Wang, Cryst. Growth Des. 12(2012) 2625-2633.[111] Y. Liu, Y. Zhang, J. Wang, CrystEngComm 5(2013) 791-801.[112] C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, A.M. Czoska, M.C. Paganini, E. Giamello, Chem. Mater. 20(2008) 3706-3714.[113] W. Wang, C. Lu, Y. Ni, M. Su, W. Huang, Z. Xu, Appl. Surf. Sci. 258(2012) 8696-8703.[114] W. Wang, Y. Ni, C. Lu, Z. Xu, Appl. Surf. Sci. 290(2014) 125-130.[115] B. Hu, L.-H. Wu, Z. Zhao, M. Zhang, S.-F. Chen, S.-J. Liu, H.-Y. Shi, Z.-J. Ding, S.-H. Yu, Nano Res. 3(2010) 395-403.[116] T. Tachikawa, T. Ishigaki, J.-G. Li, M. Fujitsuka, T. Majima, Angew. Chem. Int. Ed. 47(2008) 5348-5352.[117] N.D. Morris, T.E. Mallouk, J. Am. Chem. Soc. 124(2002) 11114-11121.[118] J.B. Gerken, J.Y.C. Chen, R.C. Masse, A.B. Powell, S.S. Stahl, Angew. Chem. Int. Ed. 51(2012) 6676-6680.[119] R.K. Yoshihara, A. Furube, Y. Tamaki, M. Murai, K. Hara, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B 108(2004) 3817-3823.[120] A.J. Cowan, C.J. Barnett, S.R. Pendlebury, M. Barroso, K. Sivula, M. Grätzel, J.R. Durrant, D.R. Klug, J. Am. Chem. Soc. 33(2011) 10134-10140.[121] Y. Park, W. Kim, D. Monllor-Satoca, T. Tachikawa, T. Majima, W. Choi, J. Phys. Chem. Lett. 4(2013) 189-194.[122] N. Lakshminarasimhan, E. Bae, W. Choi, J. Phys. Chem. C 111(2007) 15244-15250.[123] N. Lakshminarasimhan, W. Kim, W. Choi, J. Phys. Chem. C 112(2008) 20451-20457.[124] S.K. Choi, S. Kim, S.K. Lim, H. Park, J. Phys. Chem. C 114(2010) 16475-16480.[125] A.A. Ismail, D.W. Bahnemann, J. Phys. Chem. C 115(2011) 5784-5791.[126] S. Tirosh, T. Dittrich, A. Ofir, L. Grinis, A. Zaban, J. Phys. Chem. B 110(2006) 16165-16168.[127] J.P. Gonzalez-Vazquez, V. Morales-Florez, J.A. Anta, J. Phys. Chem. Lett. 20123(2012) 386-393.[128] H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, G.Q. Lu, J. Am. Chem. Soc. 131(2009) 4078-4083.[129] S.K. Choi, S. Kim, J. Ryu, S.K. Lim, H. Park, Photochem. Photobiol. Sci. 11(2012) 1437-1444.[130] N. Kumar, U. Maitra, V.I. Hegde, U.V. Waghmare, A. Sundaresan, C.N. Rao, Inorg. Chem. 52(2013) 10512-10519.[131] H. Seo, L.R. Baker, A. Hervier, J. Kim, J.L. Whitten, G.A. Somorjai, Nano Lett. 11(2011) 751-756.[132] Y. Tamaki, K. Hara, R. Katoh, M. Tachiya, A. Furube, J. Phys. Chem. C 113(2009) 11741-11746.[133] J.I. Brauer, G. Szulczewski, J. Phys. Chem. B 118(2014) 14188-14195.[134] W. Kim, T. Tachikawa, H. Kim, N. Lakshminarasimhan, P. Murugan, H. Park, T. Majima, W. Choi, Appl. Catal. B 147(2014) 642-650.[135] J. Cheng, J. Chen, W. Lin, Y. Liu, Y. Kong, Appl. Surf. Sci. 332(2015) 573-580.[136] K.-i. Yamanaka, T. Morikawa, J. Phys. Chem. C 116(2012) 1286-1292.[137] H.-C. Wu, Y.-S. Lin, S.-W. Lin, Int. J. Photoenergy 2013(2013) 1-7.[138] J.B. Varley, A. Janotti, C.G. Van de Walle, Adv. Mater. 23(2011) 2343-2347.[139] J.W.J. Hamilton, J.A. Byrne, P.S.M. Dunlop, D.D. Dionysiou, M. Pelaez, K. O'Shea, D. Synnott, S.C. Pillai, J. Phys. Chem. C 118(2014) 12206-12215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||