能源化学(英文) ›› 2016, Vol. 25 ›› Issue (6): 967-984.DOI: 10.1016/j.jechem.2016.11.003
Xueqiang Zhang, Xinbing Cheng, Qiang Zhang
收稿日期:
2016-11-02
修回日期:
2016-11-04
出版日期:
2016-11-15
发布日期:
2016-11-15
通讯作者:
Qiang Zhang
基金资助:
This work was supported by the National Key Research and Development Program (no.2016YFA0202500),National Basic ResearchProgram of China (2015CB932500),the Natural Scientific Foundation of China (nos.21306102 and 21422604).We thanks helpfuldiscussion from Jia-Qi Huang,Hong-Jie Peng,Cheng Tang,and BoQuan Li.
Xueqiang Zhang, Xinbing Cheng, Qiang Zhang
Received:
2016-11-02
Revised:
2016-11-04
Online:
2016-11-15
Published:
2016-11-15
Contact:
Qiang Zhang
Supported by:
This work was supported by the National Key Research and Development Program (no.2016YFA0202500),National Basic ResearchProgram of China (2015CB932500),the Natural Scientific Foundation of China (nos.21306102 and 21422604).We thanks helpfuldiscussion from Jia-Qi Huang,Hong-Jie Peng,Cheng Tang,and BoQuan Li.
摘要: Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient and effective energy conversion and storage. The booming development of nanotechnology affords emerging but effective tools in designing advanced energy material. We reviewed the significant progress and dominated nanostructured energy materials in electrochemical energy conversion and storage devices, including lithium ion batteries, lithium-sulfur batteries, lithium-oxygen batteries, lithium metal batteries, and supercapacitors. The use of nanostructured electrocatalyst for effective electrocatalysis in oxygen reduction and oxygen evolution reactions for fuel cells and metal-air batteries was also included. The challenges in the undesirable side reactions between electrolytes and electrode due to high electrode/electrolyte contact area, low volumetric energy density of electrode owing to low tap density, and uniform production of complex energy materials in working devices should be overcome to fully demonstrate the advanced energy nanostructures for electrochemical energy conversion and storage. The energy chemistry at the interfaces of nanostructured electrode/electrolyte is highly expected to guide the rational design and full demonstration of energy materials in a working device.
Xueqiang Zhang, Xinbing Cheng, Qiang Zhang. Nanostructured energy materials for electrochemical energy conversion and storage: A review[J]. 能源化学(英文), 2016, 25(6): 967-984.
Xueqiang Zhang, Xinbing Cheng, Qiang Zhang. Nanostructured energy materials for electrochemical energy conversion and storage: A review[J]. Journal of Energy Chemistry, 2016, 25(6): 967-984.
[1] A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. van Schalkwijk, Nat. Mater. 4(2005) 366-377.[2] S. Chu, A. Majumdar, Nature 488(2012) 294-303.[3] C. Liu, F. Li, L.P. Ma, H.M. Cheng, Adv. Mater. 22(2010) E28-E62.[4] A. Manthiram, Y. Fu, S.H. Chung, C. Zu, Y.S. Su, Chem. Rev. 114(2014) 11751-11787.[5] W. Lv, Z. Li, Y. Deng, Q.-H. Yang, F. Kang, Energy Storage Mater. 2(2016) 107-138.[6] A. Mahmood, J. Energy Chem. 24(2015) 686-692.[7] G.R. Zhang, B.J.M. Etzold, J. Energy Chem. 25(2016) 199-207.[8] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 4(2011) 3243.[9] L. Grande, E. Paillard, J. Hassoun, J.B. Park, Y.J. Lee, Y.K. Sun, S. Passerini, B. Scrosati, Adv. Mater. 27(2015) 784-800.[10] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Nat. Mater. 11(2012) 19-29.[11] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energy Environ. Sci. 7(2014) 513-537.[12] P. Simon, Y. Gogotsi, Nat. Mater. 7(2008) 845-854.[13] C. Zhang, W. Lv, Y. Tao, Q.-H. Yang, Energy Environ. Sci. 8(2015) 1390-1403.[14] D.S. Su, G. Centi, J. Energy Chem. 22(2013) 151-173.[15] F.L. Lou, D. Chen, J. Energy Chem. 24(2015) 559-586.[16] L. Wei, H.E. Karahan, S.L. Zhai, Y. Yuan, Q.H. Qian, K.L. Goh, A.K. Ng, Y. Chen, J. Energy Chem. 25(2016) 191-198.[17] S. Buller, J. Strunk, J. Energy Chem. 25(2016) 171-190.[18] Y. Sun, N. Liu, Y. Cui, Nat. Energy 1(2016) 16071.[19] J. Christensen, P. Albertus, R.S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, A. Kojic, J. Electrochem. Soc. 159(2012) R1-R30.[20] J.W. Choi, D. Aurbach, Nat. Rev. Mater. 1(2016) 16013.[21] M.S. Whittingham, Chem. Rev. 104(2004) 4271-4302.[22] K. Xu, Chem. Rev. 104(2004) 4303-4417.[23] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Mater. Today 18(2015) 252-264.[24] N. Mahmood, Y.L. Hou, Adv. Sci. 1(2014) 1400012.[25] A. Vijayakumar, R. Rajagopalan, A.S. Sushamakumariamma, J. Joseph, A. Ajay, S.V. Nair, M.S.D. Krishna, A. Balakrishnan, J. Energy Chem. 24(2015) 337-345.[26] M.A. Rahman, X.J. Wang, C. Wen, J. Energy Chem. 24(2015) 157-170.[27] Q.Q. Zhang, R. Li, M.M. Zhang, B.L. Zhang, X.L. Gou, J. Energy Chem. 23(2014) 403-410.[28] O. Gerber, S. Begin-Colin, B.P. Pichon, E. Barraud, S. Lemonnier, C. Pham-Huu, B. Daffos, P. Simon, J. Come, D. Begin, J. Energy Chem. 25(2016) 272-277.[29] R.Z. Hu, W. Sun, M.Q. Zeng, M. Zhu, J. Energy Chem. 23(2014) 338-345.[30] W.W. Wen, M.Z. Zou, Q. Feng, J.X. Li, H. Lai, Z.G. Huang, J. Energy Chem. 25(2016) 445-449.[31] X.Y. Zhou, Z. Geng, C.M. Zhang, J. Wang, D.B. Wang, J. Energy Chem. 24(2015) 529-533.[32] Q. Guo, Z.H. Sun, M. Gao, Z. Tan, B.S. Zhang, D.S. Su, J. Energy Chem. 22(2013) 347-355.[33] S.J. Peng, L.L. Li, M. Srinivasan, J. Energy Chem. 23(2014) 301-307.[34] H.Y. Xu, Y.P. Wang, L. Zheng, X.H. Duan, L.H. Wang, J. Yang, Y.T. Qian, J. Energy Chem. 23(2014) 354-357.[35] Y.D. Liu, L. Ren, X. Qi, L.W. Yang, J. Li, Y. Wang, J.X. Zhong, J. Energy Chem. 23(2014) 207-212.[36] M.Z. Zou, W.W. Wen, J.X. Li, Y.B. Lin, H. Lai, Z.G. Huang, J. Energy Chem. 23(2014) 513-518.[37] C.Z. Wu, H. Wang, X.X. Zhang, Y.W. Zhang, W.Z. Ding, C.H. Sun, J. Energy Chem. 23(2014) 575-581.[38] Y. Wang, L. Ren, Y.D. Liu, X.J. Liu, K. Huang, X.L. Wei, J. Li, X. Qi, J.X. Zhong, J. Energy Chem. 23(2014) 105-110.[39] K.H. Seng, M.-h. Park, Z.P. Guo, H.K. Liu, J. Cho, Nano Lett. 13(2013) 1230-1236.[40] J. Ye, H. Zhang, R. Yang, X. Li, L. Qi, Small 6(2010) 296-306.[41] X.Y. Wu, J. Ma, Y.S. Hu, H. Li, L.Q. Chen, J. Energy Chem. 23(2014) 269-273.[42] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, J. Power Sources 257(2014) 421-443.[43] J.B. Goodenough, K.S. Park, J. Am. Chem. Soc. 135(2013) 1167-1176.[44] M.R. Palacin, Chem. Soc. Rev. 38(2009) 2565-2575.[45] C.-X. Zu, H. Li, Energy Environ. Sci. 4(2011) 2614-2624.[46] K. Xu, Chem. Rev. 114(2014) 11503-11618.[47] M.D. Tikekar, S. Choudhury, Z. Tu, L.A. Archer, Nat. Energy 1(2016) 16114.[48] A. Manthiram, J. Phys. Chem. Lett. 2(2011) 176-184.[49] P.G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed. 47(2008) 2930-2946.[50] R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, J. Mater. Chem. 21(2011) 9938-9954.[51] H. Li, Z. Wang, L. Chen, X. Huang, Adv. Mater. 21(2009) 4593-4607.[52] Q. Wang, H. Li, L. Chen, X. Huang, Carbon 39(2001) 2211-2214.[53] Q. Zhang, J.Q. Huang, W.Z. Qian, Y.Y. Zhang, F. Wei, Small 9(2013) 1237-1265.[54] H.S. Oktaviano, K. Yamada, K. Waki, J. Mater. Chem. 22(2012) 25167.[55] Y. Wu, Y. Wei, J. Wang, K. Jiang, S. Fan, Nano Lett. 13(2013) 818-823.[56] H.J. Hwang, J. Koo, M. Park, N. Park, Y. Kwon, H. Lee, J. Phys. Chem. C 117(2013) 6919-6923.[57] P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, H. Wang, Electrochim. Acta 55(2010) 3909-3914.[58] F.-Y. Su, Y.-B. He, B. Li, X.-C. Chen, C.-H. You, W. Wei, W. Lv, Q.-H. Yang, F. Kang, Nano Energy 1(2012) 429-439.[59] H. Zhou, S. Zhu, M. Hibino, I. Honma, M. Ichihara, Adv. Mater. 15(2003) 2107-2111.[60] M. Endo, Y.A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, M.S. Dresselhaus, Carbon 39(2001) 1287-1297.[61] C. Kim, K.S. Yang, M. Kojima, K. Yoshida, Y.J. Kim, Y.A. Kim, M. Endo, Adv. Funct. Mater. 16(2006) 2393-2397.[62] L. Shen, E. Uchaker, X. Zhang, G. Cao, Adv. Mater. 24(2012) 6502-6506.[63] Y. Du, M. Hou, D. Zhou, Y. Wang, C. Wang, Y. Xia, J. Energy Chem. 23(2014) 315-323.[64] X. Zhao, D. Xia, L. Gu, J. Yue, B. Li, H. Wei, H. Yan, R. Zou, Y. Wang, X. Wang, Z. Zhang, J. Li, J. Energy Chem. 23(2014) 291-300.[65] K. Song, S. Yoo, K. Kang, H. Heo, Y.-M. Kang, M.-H. Jo, J. Power Sources 229(2013) 229-233.[66] C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3(2008) 31-35.[67] Y. Yao, K. Huo, L. Hu, N. Liu, J.J. Cha, M.T. McDowell, P.K. Chu, Y. Cui, ACS Nano 5(2011) 8346-8351.[68] H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Nat. Nanotechnol. 7(2012) 310-315.[69] F.J. Bian, Z.R. Zhang, Y. Yang, J. Energy Chem. 23(2014) 383-390.[70] H.Y. Gao, Z. Hu, K. Zhang, F.Y. Cheng, Z.L. Tao, J. Chen, J. Energy Chem. 23(2014) 274-281.[71] A.V. Potapenko, S.A. Kirillov, J. Energy Chem. 23(2014) 543-558.[72] G. Li, P.C. Wu, C.H. Luo, Q. Cui, G.X. Wang, K.P. Yan, J. Energy Chem. 24(2015) 375-380.[73] G. Wu, R. Ran, B.T. Zhao, Y.J. Sha, C. Su, Y.K. Zhou, Z.P. Shao, J. Energy Chem. 23(2014) 363-375.[74] C.C. Xu, L. Li, F.Y. Qiu, C.H. An, Y.A. Xu, Y. Wang, Y.J. Wang, L.F. Jiao, H.T. Yuan, J. Energy Chem. 23(2014) 397-402.[75] S.V. Gnedenkov, D.P. Opra, L.A. Zemnukhova, S.L. Sinebryukhov, I.A. Kedrinskii, O.V. Patrusheva, V.I. Sergienko, J. Energy Chem. 24(2015) 346-352.[76] X.-Y. Liu, H.-J. Peng, Q. Zhang, J.-Q. Huang, X.-F. Liu, L. Wang, X. He, W. Zhu, F. Wei, ACS Sustain. Chem. Eng. 2(2014) 200-206.[77] P. Zhao, J.P. Yang, Y.M. Shang, L. Wang, M. Fang, J.L. Wang, X.M. He, J. Energy Chem. 24(2015) 138-144.[78] H. Liu, Z. Dai, J. Xu, B. Guo, X. He, J. Energy Chem. 23(2014) 582-586.[79] A. Manthiram, S.H. Chung, C.X. Zu, Adv. Mater. 27(2015) 1980-2006.[80] X. Ji, L.F. Nazar, J. Mater. Chem. 20(2010) 9821-9826.[81] Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 45(2016) 5605-5634.[82] M. Yu, R. Li, M. Wu, G. Shi, Energy Storage Mater. 1(2015) 51-73.[83] X. Zhuang, Y. Liu, J. Chen, H. Chen, B. Yi, J. Energy Chem. 23(2014) 391-396.[84] J.-j. Chen, Q. Zhang, Y.-n. Shi, L.-l. Qin, Y. Cao, M.-s. Zheng, Q.-f. Dong, Phys. Chem. Chem. Phys. 14(2012) 5376-5382.[85] J. Guo, Y. Xu, C. Wang, Nano Lett. 11(2011) 4288-4294.[86] X.F. Liu, Q. Zhang, J.Q. Huang, S.M. Zhang, H.J. Peng, F. Wei, J. Energy Chem. 22(2013) 341-346.[87] C. Zu, A. Manthiram, Adv. Energy Mater. 3(2013) 1008-1012.[88] C. Tang, B.Q. Li, Q. Zhang, L. Zhu, H.F. Wang, J.L. Shi, F. Wei, Adv. Funct. Mater. 26(2016) 577-585.[89] H.J. Peng, J.Y. Liang, L. Zhu, J.Q. Huang, X.B. Cheng, X.F. Guo, W.P. Ding, W.C. Zhu, Q. Zhang, ACS Nano 8(2014) 11280-11289.[90] G. Zhou, Y. Zhao, A. Manthiram, Adv. Energy Mater. 5(2015) 1402263.[91] Q. Sun, B. He, X.Q. Zhang, A.H. Lu, ACS Nano 9(2015) 8504-8513.[92] L. Zhu, H.J. Peng, J.Y. Liang, J.Q. Huang, C.M. Chen, X.F. Guo, W.C. Zhu, P. Li, Q. Zhang, Nano Energy 11(2015) 746-755.[93] M.Q. Zhao, H.J. Peng, G.L. Tian, Q. Zhang, J.Q. Huang, X.B. Cheng, C. Tang, F. Wei, Adv. Mater. 26(2014) 7051-7058.[94] J.L. Wang, Y.S. He, J. Yang, Adv. Mater. 27(2015) 569-575.[95] X.Y. Zhou, F. Chen, J. Yang, J. Energy Chem. 24(2015) 448-455.[96] G.-C. Li, G.-R. Li, S.-H. Ye, X.-P. Gao, Adv. Energy Mater. 2(2012) 1238-1245.[97] Z. Li, J.T. Zhang, X.W. Lou, Angew. Chem. Int. Ed. 54(2015) 12886-12890.[98] X.Y. Tao, J.G. Wang, Z.G. Ying, Q.X. Cai, G.Y. Zheng, Y.P. Gan, H. Huang, Y. Xia, C. Liang, W.K. Zhang, Y. Cui, Nano Lett. 14(2014) 5288-5294.[99] Z.M. Cui, C.X. Zu, W.D. Zhou, A. Manthiram, J.B. Goodenough, Adv. Mater. 28(2016) 6926-6931.[100] H.-J. Peng, G. Zhang, X. Chen, Z.-W. Zhang, W.-T. Xu, J.-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 55(2016) 12990-12995.[101] X. Liang, A. Garsuch, L.F. Nazar, Angew. Chem. Int. Ed. 54(2015) 3907-3911.[102] T.Z. Hou, X. Chen, H.J. Peng, J.Q. Huang, B.Q. Li, Q. Zhang, B. Li, Small 12(2016) 3283-3291.[103] L. Borchardt, M. Oschatz, S. Kaskel, Chem. Eur. J. 22(2016) 7324-7351.[104] W. Kang, N. Deng, J. Ju, Q. Li, D. Wu, X. Ma, L. Li, M. Naebe, B. Cheng, Nanoscale 8(2016) 16541-16588.[105] X. Ji, K.T. Lee, L.F. Nazar, Nat. Mater. 8(2009) 500-506.[106] Z. Yuan, H.-J. Peng, J.-Q. Huang, X.-Y. Liu, D.-W. Wang, X.-B. Cheng, Q. Zhang, Adv. Funct. Mater. 24(2014) 6105-6112.[107] M.Q. Zhao, Q. Zhang, J.Q. Huang, G.L. Tian, J.Q. Nie, H.J. Peng, F. Wei, Nat. Commun. 5(2014) 3410.[108] H.-J. Peng, J.-Q. Huang, M.-Q. Zhao, Q. Zhang, X.-B. Cheng, X.-Y. Liu, W.-Z. Qian, F. Wei, Adv. Funct. Mater. 24(2014) 2772-2781.[109] H.J. Peng, T.Z. Hou, Q. Zhang, J.Q. Huang, X.B. Cheng, M.Q. Guo, Z. Yuan, L.Y. He, F. Wei, Adv. Mater. Interfaces 1(2014) 1400227.[110] C. Tang, Q. Zhang, M.Q. Zhao, J.Q. Huang, X.B. Cheng, G.L. Tian, H.J. Peng, F. Wei, Adv. Mater. 26(2014) 6100-6105.[111] J. Song, M.L. Gordin, T. Xu, S. Chen, Z. Yu, H. Sohn, J. Lu, Y. Ren, Y. Duan, D. Wang, Angew. Chem. Int. Ed. 54(2015) 4325-4329.[112] F. Wu, Y.S. Ye, R.J. Chen, J. Qian, T. Zhao, L. Li, W.H. Li, Nano Lett. 15(2015) 7431-7439.[113] J.H. Liu, W.F. Li, L.M. Duan, X. Li, L. Ji, Z.B. Geng, K.K. Huang, L.H. Lu, L.S. Zhou, Z.R. Liu, W. Chen, L.W. Liu, S.H. Feng, Y.G. Zhang, Nano Lett. 15(2015) 5137-5142.[114] Z. Yuan, H.J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen, D.W. Wang, X.B. Cheng, F. Wei, Q. Zhang, Nano Lett. 16(2016) 519-527.[115] H.-J. Peng, D.-W. Wang, J.-Q. Huang, X.-B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Adv. Sci. 3(2016) 1500268.[116] S.H. Chung, P. Han, R. Singhal, V. Kalra, A. Manthiram, Adv. Energy Mater. 5(2015) 1500738.[117] J.-Q. Huang, Q. Zhang, F. Wei, Energy Storage Mater. 1(2015) 127-145.[118] J.-Q. Huang, Q. Zhang, H.-J. Peng, X.-Y. Liu, W.-Z. Qian, F. Wei, Energy Environ. Sci. 7(2014) 347-353.[119] J.Q. Huang, T.Z. Zhuang, Q. Zhang, H.J. Peng, C.M. Chen, F. Wei, ACS Nano 9(2015) 3002-3011.[120] S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Nat. Energy 1(2016) 16094.[121] T.Z. Zhuang, J.Q. Huang, H.J. Peng, L.Y. He, X.B. Cheng, C.M. Chen, Q. Zhang, Small 12(2016) 381-389.[122] W.T. Xu, H.J. Peng, J.Q. Huang, C.Z. Zhao, X.B. Cheng, Q. Zhang, ChemSusChem 8(2015) 2892-2901.[123] J. Sun, Y. Sun, M. Pasta, G. Zhou, Y. Li, W. Liu, F. Xiong, Y. Cui, Adv. Mater. 28(2016) 9797-9803.[124] A. Débart, A.J. Paterson, J. Bao, P.G. Bruce, Angew. Chem. Int. Ed. 47(2008) 4521-4524.[125] Y. Cui, Z. Wen, Y. Liu, Energy Environ. Sci. 4(2011) 4727-4734.[126] Y.-C. Lu, H.A. Gasteiger, M.C. Parent, V. Chiloyan, Y. Shao-Horn, Electrochem. Solid State Lett. 13(2010) A69-A72.[127] H. Ju, J. Lee, J. Energy Chem. 24(2015) 614-619.[128] Y. Li, X. Wang, S. Dong, X. Chen, G. Cui, Adv. Energy Mater. 6(2016) 1600751.[129] D. Aurbach, B.D. McCloskey, L.F. Nazar, P.G. Bruce, Nat. Energy 1(2016) 16128.[130] N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Angew. Chem. Int. Ed. 51(2012) 9994-10024.[131] N. Feng, P. He, H. Zhou, Adv. Energy Mater. 6(2016) 1502303.[132] R.R. Mitchell, B.M. Gallant, C.V. Thompson, Y. Shao-Horn, Energy Environ. Sci. 4(2011) 2952-2958.[133] J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G.L. Graff, W.D. Bennett, Z. Nie, L.V. Saraf, I.A. Aksay, J. Liu, J.-G. Zhang, Nano Lett. 11(2011) 5071-5078.[134] Z. Guo, D. Zhou, X. Dong, Z. Qiu, Y. Wang, Y. Xia, Adv. Mater. 25(2013) 5668-5672.[135] H.D. Lim, K.Y. Park, H. Song, E.Y. Jang, H. Gwon, J. Kim, Y.H. Kim, M.D. Lima, R. Ovalle Robles, X. Lepro, R.H. Baughman, K. Kang, Adv. Mater. 25(2013) 1348-1352.[136] Z.Q. Peng, S.A. Freunberger, Y.H. Chen, P.G. Bruce, Science 337(2012) 563-566.[137] F. Li, D.-M. Tang, Y. Chen, D. Golberg, H. Kitaura, T. Zhang, A. Yamada, H. Zhou, Nano Lett. 13(2013) 4702-4707.[138] Y.-C. Lu, Z. Xu, H.A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, J. Am. Chem. Soc. 132(2010) 12170-12171.[139] X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, Q. Zhang, Adv. Sci. 3(2016) 1500213.[140] C. Yan, X.B. Cheng, C.Z. Zhao, J.Q. Huang, S.T. Yang, Q. Zhang, J. Power Sources 327(2016) 212-220.[141] Y.Y. Lu, Z.Y. Tu, L.A. Archer, Nat. Mater. 13(2014) 961-969.[142] Y.Y. Lu, M. Tikekar, R. Mohanty, K. Hendrickson, L. Ma, L.A. Archer, Adv. Energy Mater. 5(2015) 1402073.[143] G. Zheng, S.W. Lee, Z. Liang, H.W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, Y. Cui, Nat. Nanotechnol. 9(2014) 618-623.[144] X.-B. Cheng, T.Z. Hou, R. Zhang, H.J. Peng, C.Z. Zhao, J.Q. Huang, Q. Zhang, Adv. Mater. 28(2016) 2888-2895.[145] N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, Adv. Mater. 28(2016) 1853-1858.[146] R. Zhang, X.-B. Cheng, C.-Z. Zhao, H.-J. Peng, J.-L. Shi, J.-Q. Huang, J. Wang, F. Wei, Q. Zhang, Adv. Mater. 28(2016) 2155-2162.[147] J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.G. Zhang, Nat. Commun. 6(2015) 6362.[148] F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, X. Liu, P.V. Sushko, J. Liu, J.G. Zhang, J. Am. Chem. Soc. 135(2013) 4450-4456.[149] L. Suo, Y.S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun. 4(2013) 1481.[150] X.B. Cheng, H.J. Peng, J.Q. Huang, R. Zhang, C.Z. Zhao, Q. Zhang, ACS Nano 9(2015) 6373-6382.[151] C.P. Yang, Y.X. Yin, S.F. Zhang, N.W. Li, Y.G. Guo, Nat. Commun. 6(2015) 8058.[152] G. Wang, J. Chen, X. Wang, J. Tian, H. Kang, X. Zhu, Y. Zhang, X. Liu, R. Wang, J. Energy Chem. 23(2014) 73-81.[153] Y. Gogotsi, P. Simon, Science 334(2011) 917-918.[154] F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 26(2014) 2219-2251.[155] F. Ran, Y.L. Yang, L. Zhao, X.Q. Niu, D.J. Zhang, L.B. Kong, Y.C. Luo, L. Kang, J. Energy Chem. 24(2015) 388-393.[156] J.J. Liu, X.M. Jin, W.W. Song, F. Wang, N. Wang, Y. Song, Chin. J. Catal. 35(2014) 1173-1188.[157] C. Zhang, D. Tang, X. Hu, X. Liu, T. Zhang, H. Zhou, Energy Storage Mater. 2(2016) 8-13. Y. Huang, L. Mai, Y. Gogotsi, J. Zhou, Energy Storage Mater. 1(2015) 1-8. |
[1] | Yuefeng Zhang, Wenchao Zhang, Yuezhan Feng, Jianmin Ma. Promoted CO2 electroreduction over indium-doped SnP3: A computational study[J]. 能源化学(英文版), 2020, 48(9): 1-6. |
[2] | Fen Qiao, Yi Xie. Strategies for enhancing conductivity of colloidal nanocrystals and their photoelectronic applications[J]. 能源化学(英文版), 2020, 48(9): 29-42. |
[3] | Huanhuan Jia, Linfeng Peng, Zhuoran Zhang, Tao An, Jia Xie. Na3.8[Sn0.67Si0.33]0.8Sb0.2S4:A quinary sodium fast ionic conductor for all-solid-state sodium battery[J]. 能源化学(英文版), 2020, 48(9): 102-106. |
[4] | Bo Xu, Xiaodong Yang, Qiang Fang, Linbing Du, Yan Fu, Yiqiang Sun, Qisheng Liu, Qingquan Lin, cuncheng Li. Anion-cation dual doping: An effective electronic modulation strategy of Ni2P for high-performance oxygen evolution[J]. 能源化学(英文版), 2020, 48(9): 116-121. |
[5] | Feng Xiao, Xianghong Chen, Jiakui Zhang, chunmao Huang, Tong Hu, bo Hong, Jiantie Xu. Large-scale production of holey graphite as high-rate anode for lithium ion batteries[J]. 能源化学(英文版), 2020, 48(9): 122-127. |
[6] | Renheng Wang, Weisheng Cui, fulu Chu, feixiang Wu. Lithium metal anodes: Present and future[J]. 能源化学(英文版), 2020, 48(9): 145-159. |
[7] | Wen-Feng Ren, Jun-Tao Li, Shao-Jian Zhang, Ai-Ling Lin, You-Hu Chen, Zhen-Guang Gao, Yao Zhou, Li Deng, Ling Huang, Shi-Gang Sun. Fabrication of multi-shell coated silicon nanoparticles via in-situ electroless deposition as high performance anodes for lithium ion batteries[J]. 能源化学(英文版), 2020, 48(9): 160-168. |
[8] | Yeru Liang, Ye Xiao, chong Yan, Rui Xu, Jun-Fan Ding, Ji Liang, Hong-Jie Peng, Hong Yuan, Jia-Qi Huang. A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes[J]. 能源化学(英文版), 2020, 48(9): 203-207. |
[9] | Hongcheng Gao, Shunlian Ning, Jiasui Zou, Shuang Men, Yuan Zhou, Xiujun Wang, Xiongwu Kang. The electrocatalytic activity of BaTiO3 nanoparticles towards polysulfides enables high-performance lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 48(9): 208-216. |
[10] | Yuhang Li, Yexiang Tong, feng Peng. Metal-free carbocatalysis for electrochemical oxygen reduction reaction: Activity origin and mechanism[J]. 能源化学(英文版), 2020, 48(9): 308-321. |
[11] | Jing-Yi Xie, Zi-Zhang Liu, Jia Li, Lei Feng, Min Yang, Yu Ma, da-Peng Liu, Lei Wang, Yong-Ming Chai, bin Dong. Fe-doped CoP core-shell structure with open cages as efficient electrocatalyst for oxygen evolution[J]. 能源化学(英文版), 2020, 48(9): 328-333. |
[12] | Hewei Xu, Ying He, Zibo Zhang, Junli Shi, Pingying Liu, Ziqi Tian, Kan Luo, Xiaozhe Zhang, Suzhe Liang, Zhaoping Liu. Slurry-like hybrid electrolyte with high lithium-ion transference number for dendrite-free lithium metal anode[J]. 能源化学(英文版), 2020, 48(9): 375-382. |
[13] | Jia Liu, Hong Yuan. The evolution and failure mechanism of lithium metal anode under practical working conditions[J]. 能源化学(英文版), 2020, 48(9): 424-425. |
[14] | Rong Jiang, Xin Chen, Jinxia Deng, Tianyu Wang, Kang Wang, Yanli Chen, Jianzhuang Jiang. In-situ growth of ZnS/FeS heterojunctions on biomass-derived porous carbon for efficient oxygen reduction reaction[J]. 能源化学(英文版), 2020, 47(8): 79-85. |
[15] | Yuxin Li, Xiang Zhu, Yawen Chen, Shiqiao Zhang, Jia Li, Jianguo Liu. Rapid synthesis of highly active Pt/C catalysts with various metal loadings from single batch platinum colloid[J]. 能源化学(英文版), 2020, 47(8): 138-145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||