能源化学(英文) ›› 2017, Vol. 26 ›› Issue (5): 839-853.DOI: 10.1016/j.jechem.2017.07.003
Xiaomin Zhanga, Yuefeng Songa,b, Guoxiong Wanga, Xinhe Baoa
收稿日期:
2017-06-06
修回日期:
2017-07-04
出版日期:
2017-09-15
发布日期:
2017-11-10
通讯作者:
Guoxiong Wang,E-mail addresses:wanggx@dicp.ac.cn;Xinhe Bao,E-mail addresses:xhbao@dicp.ac.cn
作者简介:
Xiaomin Zhang is a postdoctoral researcher of State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics (DICP). She received her Ph.D. in Chemical Engineering from DICP, Chinese Academy of Sciences (CAS) in 2015. Her research interests are in the areas of highly efficient electrode materials and processes for electrochemical energy conversion and storage, especially high temperature electrolysis of CO2/H2O using solid oxide electrolytic cells (SOECs);Yuefeng Song is currently studying for a Ph.D. degree from DICP, CAS. He received his B.S. in chemistry from Jilin University in 2014. His research interests are electrochemical energy storage and conversion, particularly focusing on the electrochemical reduction of CO2/H2O at high temperature.
基金资助:
We gratefully acknowledge financial support from the Ministry of Science and Technology of China (Grants 2016YFB0600901 and 2013CB933100), the National Natural Science Foundation of China (Grants 21573222 and 91545202), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB17020200) and China Postdoctoral Science Foundation (NO. 2016M600220).
Xiaomin Zhanga, Yuefeng Songa,b, Guoxiong Wanga, Xinhe Baoa
Received:
2017-06-06
Revised:
2017-07-04
Online:
2017-09-15
Published:
2017-11-10
Contact:
Guoxiong Wang,E-mail addresses:wanggx@dicp.ac.cn;Xinhe Bao,E-mail addresses:xhbao@dicp.ac.cn
Supported by:
We gratefully acknowledge financial support from the Ministry of Science and Technology of China (Grants 2016YFB0600901 and 2013CB933100), the National Natural Science Foundation of China (Grants 21573222 and 91545202), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB17020200) and China Postdoctoral Science Foundation (NO. 2016M600220).
摘要: Co-electrolysis of CO2 and H2O using high-temperature solid oxide electrolysis cells (SOECs) into valuable chemicals has attracted great attentions recently due to the high conversion and energy efficiency, which provides opportunities of reducing CO2 emission, mitigating global warming and storing intermittent renewable energies. A single SOEC typically consists of an ion conducting electrolyte, an anode and a cathode where the co-electrolysis reaction takes place. The high operating temperature and difficult activated carbon-oxygen double-bond of CO2 put forward strict requirements for SOEC cathode. Great efforts are being devoted to develop suitable cathode materials with high catalytic activity and excellent long-term stability for CO2/H2O electro-reduction. The so far cathode material development is the key point of this review and alternative strategies of high-performance cathode material preparation is proposed. Understanding the mechanism of CO2/H2O electro-reduction is beneficial to highly active cathode design and optimization. Thus the possible reaction mechanism is also discussed. Especially, a method in combination with electrochemical impedance spectroscopy (EIS) measurement, distribution functions of relaxation times (DRT) calculation, complex nonlinear least square (CNLS) fitting and operando ambient pressure X-ray photoelectron spectroscopy (APXPS) characterization is introduced to correctly disclose the reaction mechanism of CO2/H2O co-electrolysis. Finally, different reaction modes of the CO2/H2O coelectrolysis in SOECs are summarized to offer new strategies to enhance the CO2 conversion. Otherwise, developing SOECs operating at 300-600℃ can integrate the electrochemical reduction and the Fischer-Tropsch reaction to convert the CO2/H2O into more valuable chemicals, which will be a new research direction in the future.
Xiaomin Zhang, Yuefeng Song, Guoxiong Wang, Xinhe Bao. Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells:Recent advance in cathodes[J]. 能源化学(英文), 2017, 26(5): 839-853.
Xiaomin Zhang, Yuefeng Song, Guoxiong Wang, Xinhe Bao. Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells:Recent advance in cathodes[J]. Journal of Energy Chemistry, 2017, 26(5): 839-853.
[1] M. Meinshausen, N. Meinshausen, W. Hare, S.C. Raper, K. Frieler, R. Knutti, D.J. Frame, M.R. Allen, Nature 458(2009) 1158-1162.[2] S.A. Henson, C. Beaulieu, T. Ilyina, J.G. John, M. Long, R. Seferian, J. Tjiputra, J.L. Sarmiento, Nat. Commun. 8(2017) 14682-14690.[3] W. Liu, Z. Zhang, X. Xie, Z. Yu, K. von Gadow, J. Xu, S. Zhao, Y. Yang, Sci., Rep 7(2017) 39857-39864.[4] M. Manzone, A. Calvo, Renewable Energy 108(2017) 250-259.[5] C. Genovese, C. Ampelli, S. Perathoner, G. Centi, J. Energy Chem. 22(2013) 202-213.[6] X. Su, J. Xu, B. Liang, H. Duan, B. Hou, Y. Huang, J. Energy Chem. 25(2016) 553-565.[7] C. Graves, S.D. Ebbesen, M. Mogensen, K.S. Lackner, Renewable Sustainable Energy Rev. 15(2011) 1-23.[8] A. Goeppert, M. Czaun, J.-P. Jones, G.K. Surya Prakash, G.A. Olah, Chem. Soc. Rev. 43(2014) 7995-8048.[9] V.N. Nguyen, L. Blum, Chem. Ing. Tech 87(2015) 354-375.[10] C. Costentin, M. Robert, J.M. Saveant, Chem. Soc. Rev. 42(2013) 2423-2436.[11] H.-R.M. Jhong, S. Ma, P.J.A. Kenis, Curr. Opin. Chem. Eng. 2(2013) 191-199.[12] J.-P. Jones, G.K.S. Prakash, G.A. Olah, Isr. J. Chem. 54(2014) 1451-1466.[13] R.J. Lim, M. Xie, M.A. Sk, J.-M. Lee, A. Fisher, X. Wang, K.H. Lim, Catal. Today 233(2014) 169-180.[14] S. Uhm, Y.D. Kim, Curr. Appl. Phys. 14(2014) 672-679.[15] S.H. Jensen, C. Graves, M. Mogensen, C. Wendel, R. Braun, G. Hughes, Z. Gao, S.A. Barnett, Energy Environ. Sci. 8(2015) 2471-2479.[16] S.Y. Gómez, D. Hotza, Renewable Sustainable Energy Rev. 61(2016) 155-174.[17] Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao, J. Zhang, Chem. Soc. Rev. 46(2017) 1427-1463.[18] D. Gao, F. Cai, Q. Xu, G. Wang, X. Pan, X. Bao, J. Energy Chem. 23(2014) 694-700.[19] J. Yan, L. Shang, Z. Zhao, D. Ou, M. Cheng, J. Energy Chem. 25(2016) 840-844.[20] F.V. Matera, I. Gatto, A. Patti, E. Passalacqua, J. Energy Chem. 25(2016) 531-538.[21] K.R. Sridhar, B.T. Vaniman, Solid State Ionics 93(1997) 321-328.[22] C.M. Stoots, J.E. O'Brien, J.S. Herring, J.J. Hartvigsen, J. Fuel Cell Sci. Technol. 6(2009) 011014.[23] Q. Fu, C. Mabilat, M. Zahid, A. Brisse, L. Gautier, Energy Environ. Sci. 3(2010) 1382-1397.[24] S.D. Ebbesen, C. Graves, M. Mogensen, Int. J. Green Energy 6(2009) 646-660.[25] C. Graves, S.D. Ebbesen, M. Mogensen, Solid State Ionics 192(2011) 398-403.[26] S.-E. Yoon, S.-H. Song, J. Choi, J.-Y. Ahn, B.-K. Kim, J.-S. Park, Int. J. Hydrogen Energy 39(2014) 5497-5504.[27] J. Hartvigsen, S. Elangovan, L. Frost, A. Nickens, C.M. Stoots, J.E. O'Brien, J.S. Herring, ECS Trans 12(2008) 625-637.[28] C. Stoots, J. O'Brien, J. Hartvigsen, Int. J. Hydrogen Energy 34(2009) 4208-4215.[29] S.H. Jensen, X. Sun, S.D. Ebbesen, R. Knibbe, M. Mogensen, Int. J. Hydrogen Energy 35(2010) 9544-9549.[30] S.D. Ebbesen, J. Høgh, K.A. Nielsen, J.U. Nielsen, M. Mogensen, Int. J. Hydrogen Energy 36(2011) 7363-7373.[31] Z. Zhan, W. Kobsiriphat, J.R. Wilson, M. Pillai, I. Kim, S.A. Barnett, Energy Fuels 23(2009) 3089-3096.[32] K. Xie, Y. Zhang, G. Meng, J.T.S. Irvine, Energy Environ. Sci. 4(2011) 2218-2222.[33] L. Chen, F. Chen, C. Xia, Energy Environ. Sci. 7(2014) 4018-4022.[34] R.J. Gorte, J.M. Vohs, Annu. Rev. Chem. Biomol. 2(2011) 9-30.[35] L. Zhang, S. Hu, X. Zhu, W. Yang, J. Energy Chem. (2017). http://dx.doi.org/10.1016/j.jechem.2017.04.004.[36] Y. Wang, T. Liu, L. Lei, F. Chen, Fuel Process. Technol. 161(2017) 248-258.[37] M. Ni, M. Leung, D. Leung, Int. J. Hydrogen Energy 33(2008) 2337-2354.[38] C. Zuo, S. Zha, M. Liu, M. Hatano, M. Uchiyama, Adv. Mater. 18(2006) 3318-3320.[39] S.J. Zhan, X.F. Zhu, W.P. Wang, W.S. Yang, Adv. Mater. Res. 554-556(2012) 404-407.[40] A. VahidMohammadi, Z. Cheng, J. Electrochem. Soc. 162(2015) F803-F811.[41] M. Naeem Khan, A.K. Azad, C.D. Savaniu, P. Hing, J.T.S. Irvine, Ionics (2017), doi:10.1007/s11581-017-2086-x.[42] T. Ishiyama, H. Kishimoto, K. Develos-Bagarinao, K. Yamaji, T. Yamaguchi, Y. Fujishiro, J. Ceram, Soc. Jpn 125(2017) 247-251.[43] M.Y. Park, Y.J. Kim, L. Hyung-Tae, J. Ceram. Soc. Jpn. 123(2015) 257-262.[44] Y. Wang, T. Liu, S. Fang, G. Xiao, H. Wang, F. Chen, J. Power Sources 277(2015) 261-267.[45] P. Kim-Lohsoontorn, J. Bae, J Power Sources 196(2011) 7161-7168.[46] X. Yue, J.T.S. Irvine, Solid State Ionics 225(2012) 131-135.[47] M. Liang, B. Yu, M. Wen, J. Chen, J. Xu, Y. Zhai, Int. J. Hydrogen Energy 35(2010) 2852-2857.[48] S.D. Ebbesen, S.H. Jensen, A. Hauch, M.B. Mogensen, Chem. Rev. 114(2014) 10697-10734.[49] L. Kleiminger, T. Li, K. Li, G.H. Kelsall, RSC Adv 4(2014) 50003-50016.[50] O.A. Marina, L.R. Pederson, M.C. Williams, G.W. Coffey, K.D. Meinhardt, C.D. Nguyen, E.C. Thomsen, J. Electrochem. Soc 154(2007) B452-B459.[51] S.H. Jensen, P.H. Larsen, M. Mogensen, Int. J. Hydrogen Energy 32(2007) 3253-3257.[52] A. Hauch, K. Brodersen, M. Chen, C. Graves, S.H. Jensen, P.S. Jørgensen, P.V. Hendriksen, M.B. Mogensen, S. Ovtar, X. Sun, ECS Trans 75(2017) 3-14.[53] S. Wang, T. Ishihara, ISIJ Int 55(2015) 381-386.[54] E. Lay-Grindler, J. Laurencin, J. Villanova, P. Cloetens, P. Bleuet, A. Mansuy, J. Mougin, G. Delette, J. Power Sources 269(2014) 927-936.[55] X. Yang, J.T.S. Irvine, J. Mater. Chem. 18(2008) 2349-2354.[56] A. Hauch, S.D. Ebbesen, S.H. Jensen, M. Mogensen, J. Electrochem. Soc 155(2008) B1184-B1193.[57] R. Knibbe, M.L. Traulsen, A. Hauch, S.D. Ebbesen, M. Mogensen, J. Electrochem. Soc 157(2010) B1209-B1217.[58] T. Ishihara, A. Inoishi, H. Kim, S. Ida, ECS Trans 68(2015) 3279-3288.[59] M.S. Sohal, J.E. O'Brien, C.M. Stoots, V.I. Sharma, B. Yildiz, A. Virkar, J. Fuel Cell Sci. Technol. 9(2012) 011017.[60] S. Wang, A. Inoishi, J.-E. Hong, Y.-W. Ju, H. Hagiwara, S. Ida, T. Ishihara, J. Mater. Chem. A 1(2013) 12455-12461.[61] M. Keane, H. Fan, M. Han, P. Singh, Int. J. Hydrogen Energy 39(2014) 18718-18726.[62] S.D. Ebbesen, M. Mogensen, J. Power Sources 193(2009) 349-358.[63] G. Tsekouras, J.T.S. Irvine, J. Mater. Chem. 21(2011) 9367-9376.[64] Y. Gan, J. Zhang, Y. Li, S. Li, K. Xie, J.T.S. Irvine, J. Electrochem. Soc. 159(2012) F763-F767.[65] X. Yue, J.T.S. Irvine, J. Electrochem. Soc 159(2012) F442-F448.[66] X. Yue, J.T.S. Irvine, Electrochem. Solid-State Lett 15(2012) B31-B34.[67] S. Xu, S. Li, W. Yao, D. Dong, K. Xie, J. Power Sources 230(2013) 115-121.[68] M. Torrell, S. Garcia-Rodriguez, A. Morata, G. Penelas, A. Tarancon, Faraday Discuss 182(2015) 241-255.[69] S. Chen, K. Xie, D. Dong, H. Li, Q. Qin, Y. Zhang, Y. Wu, J. Power Sources 274(2015) 718-729.[70] W. Yao, T. Duan, Y. Li, L. Yang, K. Xie, New J. Chem. 39(2015) 2956-2965.[71] Q. Liu, X. Dong, G. Xiao, F. Zhao, F. Chen, Adv. Mater. 22(2010) 5478-5482.[72] X. Ge, L. Zhang, Y. Fang, J. Zeng, S.H. Chan, RSC Adv 1(2011) 715-724.[73] K. Hosoi, H. Hagiwara, S. Ida, T. Ishihara, J. Phys. Chem. C 120(2016) 16110-16117.[74] S. Wang, T. Ishihara, ECS Trans 57(2013) 3171-3176.[75] L. Yang, X. Xue, K. Xie, Phys. Chem. Chem. Phys. 17(2015) 11705-11714.[76] F. Bidrawn, G. Kim, G. Corre, J.T.S. Irvine, J.M. Vohs, R.J. Gorte, Electrochem. Solid-State Lett 11(2008) B167-B170.[77] C. Jin, C. Yang, F. Zhao, D. Cui, F. Chen, Int. J. Hydrogen Energy 36(2011) 3340-3346.[78] R. Xing, Y. Wang, S. Liu, C. Jin, J. Power Sources 208(2012) 276-281.[79] S.-E. Yoon, J.-Y. Ahn, B.-K. Kim, J.-S. Park, Int. J. Hydrogen Energy 40(2015) 13558-13565.[80] O.A. Marina, N.L. Canfield, J.W. Stevenson, Solid State Ionics 149(2002) 21-28.[81] S. Hashimoto, L. Kindermann, P.H. Larsen, F.W. Poulsen, M. Mogensen, J. Electroceram 16(2006) 103-107.[82] S. Li, Y. Li, Y. Gan, K. Xie, G. Meng, J. Power Sources 218(2012) 244-249.[83] M. Hou, W. Sun, P. Li, J. Feng, G. Yang, J. Qiao, Z. Wang, D. Rooney, J. Feng, K. Sun, J. Power Sources 272(2014) 759-765.[84] J. Rager, M. Zipperle, A. Sharma, J. MacManus-Driscoll, J. Am. Ceram. Soc. 87(2004) 1330-1335.[85] J. Li, C. Zhong, X. Meng, H. Wu, H. Nie, Z. Zhan, S. Wang, Fuel Cells 14(2014) 1046-1049.[86] Y.-H. Huang, R.I. Dass, Z.-L. Xing, J.B. Goodenough, Science 312(2006) 254-257.[87] Z. Du, H. Zhao, S. Yi, Q. Xia, Y. Gong, Y. Zhang, X. Cheng, Y. Li, L. Gu, K. Swierczek, ACS Nano 10(2016) 8660-8669.[88] D.A. Osinkin, N.I. Lobachevskaya, A.V. Kuz'min, Russ. J. Appl. Chem. 90(2017) 41-46.[89] Q. Liu, C. Yang, X. Dong, F. Chen, Int. J. Hydrogen Energy 35(2010) 10039-10044.[90] Y. Li, P. Li, B. Hu, C. Xia, J. Mater. Chem. A 4(2016) 9236-9243.[91] Y. Wang, T. Liu, S. Fang, F. Chen, J. Power Sources 305(2016) 240-248.[92] L. Lei, Y. Wang, S. Fang, C. Ren, T. Liu, F. Chen, Appl. Energy 173(2016) 52-58.[93] J.-S. Park, I.D. Hasson, M.D. Gross, C. Chen, J.M. Vohs, R.J. Gorte, J. Power Sources 196(2011) 7488-7494.[94] J.-S. Park, J. Luo, L. Adijanto, J.M. Vohs, R.J. Gorte, J. Power Sources 222(2013) 123-128.[95] K. Tamm, R. Küngas, R.J. Gorte, E. Lust, Electrochim. Acta 106(2013) 398-405.[96] S.-H. Song, S.-E. Yoon, J. Choi, B.-K. Kim, J.-S. Park, Int. J. Hydrogen Energy 39(2014) 16534-16540.[97] K.W. Reeping, D.M. Halat, J.D. Kirtley, M.D. McIntyre, R.A. Walker, ECS Trans 61(2014) 57-63.[98] C.-Y. Liu, S.-Y. Tsai, C.-T. Ni, K.-Z. Fung, J. Electron. Mater. 46(2017) 2301-2308.[99] G. Walch, A.K. Opitz, S. Kogler, J. Fleig, Monatsh. Chem. 145(2014) 1055-1061.[100] A.K. Opitz, A. Nenning, C. Rameshan, R. Rameshan, R. Blume, M. Havecker, A. Knop-Gericke, G. Rupprechter, J. Fleig, B. Klotzer, Angew. Chem. Int. Ed 54(2015) 2628-2632.[101] P. López, G. Mondragón-Galicia, M.E. Espinosa-Pesqueira, D. Mendoza——Anaya, M.E. Fernández, A. Gómez-Cortés, J. Bonifacio, G. Martínez-Barrera, R. Pérez-Hernández, Int. J. Hydrogen Energy 37(2012) 9018-9027.[102] C. Ruan, K. Xie, L. Yang, B. Ding, Y. Wu, Int. J. Hydrogen Energy 39(2014) 10338-10348.[103] Q. Qin, C. Ruan, L. Ye, L. Gan, K. Xie, J. Solid State Electrochem. 19(2015) 3389-3399.[104] R. Xing, Y. Wang, Y. Zhu, S. Liu, C. Jin, J. Power Sources 274(2015) 260-264.[105] S. Xu, S. Chen, M. Li, K. Xie, Y. Wang, Y. Wu, J. Power Sources 239(2013) 332-340.[106] Y. Gan, Q. Qin, S. Chen, Y. Wang, D. Dong, K. Xie, Y. Wu, J. Power Sources 245(2014) 245-255.[107] X. Zhang, L. Ye, J. Hu, J. Li, W. Jiang, C.-J. Tseng, K. Xie, Electrochim. Acta 212(2016) 32-40.[108] M.B. Katz, S. Zhang, Y. Duan, H. Wang, M. Fang, K. Zhang, B. Li, G.W. Graham, X. Pan, J. Catal. 293(2012) 145-148.[109] D. Neagu, G. Tsekouras, D.N. Miller, H. Menard, J.T. Irvine, Nat. Chem. 5(2013) 916-923.[110] D. Neagu, T.S. Oh, D.N. Miller, H. Menard, S.M. Bukhari, S.R. Gamble, R.J. Gorte, J.M. Vohs, J.T. Irvine, Nat. Commun. 6(2015) 8120-8127.[111] J.H. Myung, D. Neagu, D.N. Miller, J.T. Irvine, Nature 537(2016) 528-531.[112] T. Jardiel, M.T. Caldes, F. Moser, J. Hamon, G. Gauthier, O. Joubert, Solid State Ionics 181(2010) 894-901.[113] G. Tsekouras, D. Neagu, J.T.S. Irvine, Energy Environ. Sci. 6(2013) 256-266.[114] Y. Li, K. Xie, S. Chen, H. Li, Y. Zhang, Y. Wu, Electrochim. Acta 153(2015) 325-333.[115] C. Arrivé, T. Delahaye, O. Joubert, G. Gauthier, J. Power Sources 223(2013) 341-348.[116] Y. Li, Y. Wang, W. Doherty, K. Xie, Y. Wu, ACS Appl. Mater. Interfaces 5(2013) 8553-8562.[117] W. Qi, C. Ruan, G. Wu, Y. Zhang, Y. Wang, K. Xie, Y. Wu, Int. J. Hydrogen Energy 39(2014) 5485-5496.[118] S. Liu, Q. Liu, J.-L. Luo, J. Mater. Chem. A 4(2016) 17521-17528.[119] S. Liu, Q. Liu, J.-L. Luo, ACS Catal 6(2016) 6219-6228.[120] Y.F. Sun, Y.Q. Zhang, J. Chen, J.H. Li, Y.T. Zhu, Y.M. Zeng, B.S. Amirkhiz, J. Li, B. Hua, J.L. Luo, Nano Lett 16(2016) 5303-5309.[121] Y. Wang, T. Liu, M. Li, C. Xia, B. Zhou, F. Chen, J. Mater. Chem. A 4(2016) 14163-14169.[122] S. Xu, D. Dong, Y. Wang, W. Doherty, K. Xie, Y. Wu, J. Power Sources 246(2014) 346-355.[123] L. Ye, M. Zhang, P. Huang, G. Guo, M. Hong, C. Li, J.T. Irvine, K. Xie, Nat. Commun. 8(2017) 14785.[124] H. Li, G. Sun, K. Xie, W. Qi, Q. Qin, H. Wei, S. Chen, Y. Wang, Y. Zhang, Y. Wu, Int. J. Hydrogen Energy 39(2014) 20888-20897.[125] H. Wei, K. Xie, J. Zhang, Y. Zhang, Y. Wang, Y. Qin, J. Cui, J. Yan, Y. Wu, Sci. Rep. 4(2014) 5156.[126] T.S. Oh, E.K. Rahani, D. Neagu, J.T. Irvine, V.B. Shenoy, R.J. Gorte, J.M. Vohs, J. Phys. Chem. Lett. 6(2015) 5106-5110.[127] J. Zhou, T.-H. Shin, C. Ni, G. Chen, K. Wu, Y. Cheng, J.T.S. Irvine, Chem. Mater. 28(2016) 2981-2993.[128] C. Ruan, K. Xie, Catal. Sci. Technol. 5(2015) 1929-1940.[129] L. Gan, L. Ye, S. Tao, K. Xie, Phys. Chem. Chem. Phys. 18(2016) 3137-3143.[130] S.B. Adler, Chem. Rev. 104(2004) 4791-4844.[131] M. Juhl, S. Primdahl, C. Manon, M. Mogensen, J. Power Sources 61(1996) 173-181.[132] W. Zhu, D. Ding, C. Xia, Electrochem. Solid-State Lett 11(2008) B83-B86.[133] N. Vivet, S. Chupin, E. Estrade, T. Piquero, P.L. Pommier, D. Rochais, E. Bruneton, J. Power Sources 196(2011) 7541-7549.[134] S. Farhad, F. Hamdullahpur, AlChE J 58(2012) 1248-1261.[135] Y. Shi, Y. Luo, N. Cai, J. Qian, S. Wang, W. Li, H. Wang, Electrochim. Acta 88(2013) 644-653.[136] W. Li, Y. Shi, Y. Luo, N. Cai, Int. J. Hydrogen Energy 39(2014) 13738-13750.[137] B. Hu, Y. Wang, C. Xia, J. Power Sources 269(2014) 180-188.[138] X. Zhang, L. Liu, Z. Zhao, B. Tu, D. Ou, D. Cui, X. Wei, X. Chen, M. Cheng, Nano Lett 15(2015) 1703-1709.[139] W. Li, Y. Shi, Y. Luo, N. Cai, J. Power Sources 243(2013) 118-130.[140] Z.A. Feng, F. El Gabaly, X. Ye, Z.X. Shen, W.C. Chueh, Nat. Commun. 5(2014) 4374-4382.[141] Y. Yu, B. Mao, A. Geller, R. Chang, K. Gaskell, Z. Liu, B.W. Eichhorn, Phys. Chem. Chem. Phys. 16(2014) 11633-11639.[142] Z.A. Feng, M.L. Machala, W.C. Chueh, Phys. Chem. Chem. Phys 17(2015) 12273-12281.[143] J.-D. Kim, G.-D. Kim, J.-W. Moon, Y.-i. Park, W.-H. Lee, K. Kobayashi, M. Nagai, C.-E. Kim, Solid State Ionics 143(2001) 379-389.[144] M.J. Jørgensen, M. Mogensen, J. Electrochem. Soc. 148(2001) A433-A442.[145] X.J. Chen, K.A. Khor, S.H. Chan, J. Power Sources 123(2003) 17-25.[146] R. Barfod, M. Mogensen, T. Klemensø, A. Hagen, Y.-L. Liu, P. Vang Hendriksen, J. Electrochem. Soc 154(2007) B371-B378.[147] M. Cimenti, V.I. Birss, J.M. Hill, Fuel Cells 7(2007) 377-391.[148] A. Nechache, M. Cassir, A. Ringuedé, J. Power Sources 258(2014) 164-181.[149] J. Nielsen, J. Hjelm, Electrochim. Acta 115(2014) 31-45.[150] H. Schichlein, A.C. Müller, M. Voigts, A. Krügel, E. Ivers-Tiffée, J. Appl. Electrochem. 32(2002) 875-882.[151] A. Leonide, V. Sonn, A. Weber, E. Ivers-Tiffeé, J. Electrochem. Soc 155(2008) B36-B41.[152] V. Sonn, A. Leonide, E. Ivers-Tiffeé, J. Electrochem. Soc 155(2008) B675-B679.[153] C. Endler, A. Leonide, A. Weber, F. Tietz, E. Ivers-Tiffeé, J. Electrochem. Soc 157 (2010) B292-B298.[154] A. Leonide, B. Ruger, A. Weber, W.A. Meulenberg, E. Ivers-Tiffeé, J. Elec-trochem. Soc 157(2010) B234-B239.[155] B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, K. Eguchi, J. Electrochem. Soc 157(2010) B1858-B1864.[156] B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, K. Eguchi, J. Electrochem. Soc 158(2011) B215-B224.[157] H. Sumi, T. Yamaguchi, K. Hamamoto, T. Suzuki, Y. Fujishiro, T. Matsui, K. Eguchi, Electrochim. Acta 67(2012) 159-165.[158] H. Sumi, T. Yamaguchi, K. Hamamoto, T. Suzuki, Y. Fujishiro, J. Power Sources 226(2013) 354-358.[159] X. Zhang, L. Liu, Z. Zhao, L. Shang, B. Tu, D. Ou, D. Cui, M. Cheng, Int. J. Hydrogen Energy 40(2015) 3332-3337.[160] X. Zhang, W. Wu, Z. Zhao, B. Tu, D. Ou, D. Cui, M. Cheng, Catal. Sci. Technol. 6(2016) 4945-4952.[161] W. Wang, J.M. Vohs, R.J. Gorte, Top. Catal. 46(2007) 380-385.[162] Y. Luo, Y. Shi, W. Li, M. Ni, N. Cai, Int. J. Hydrogen Energy 39(2014) 10359-10373.[163] Y. Patcharavorachot, S. Thongdee, D. Saebea, S. Authayanun, A. Arpornwichanop, Energy Convers. Manage. 120(2016) 274-286.[164] Y.F. Sun, Y.Y. Wu, Y.Q. Zhang, J.H. Li, Y. Luo, Y.X. Shi, B. Hua, J.L. Luo, Chem. Commun. 52(2016) 13687-13690. |
[1] | Bo Yuan, di Hua, Xingxing Gu, Yu Shen, Li-Chun Xu, Xiuyan Li, bing Zheng, Jiansheng Wu, Weina Zhang, Sheng Li, fengwei Huo. Polar, catalytic, and conductive CoSe2/C frameworks for performance enhanced S cathode in Li-S batteries[J]. 能源化学(英文版), 2020, 48(9): 128-135. |
[2] | Xuelei Li, Huilan Guan, Zhijie Ma, Ming Liang, dawei Song, Hongzhou Zhang, Xixi Shi, chunliang Li, Lifang Jiao, Lianqi Zhang. In/ex-situ Raman spectra combined with EIS for observing interface reactions between Ni-rich layered oxide cathode and sulfide electrolyte[J]. 能源化学(英文版), 2020, 48(9): 195-202. |
[3] | Wenjing Dong, di Wang, Xiaoyun Li, Yuan Yao, Xu Zhao, Zhao Wang, Hong-En Wang, Yu Li, Lihua Chen, dong Qian, bao-Lian Su. Bronze TiO2 as a cathode host for lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 48(9): 259-266. |
[4] | Wei Wang, Qin Yang, Kun Qian,baohua Li. Impact of evolution of cathode electrolyte interface of Li(Ni0.8Co0.1Mn0.1)O2 on electrochemical performance during high voltage cycling process[J]. 能源化学(英文版), 2020, 47(8): 72-78. |
[5] | Jianing Liang, Yun Lu, Jie Wang, Xupo Liu, Ke Chen, Weihao Ji, Ye Zhu,deli Wang. Well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron sphere with fast electrochemical kinetics for cathodic lithium storage[J]. 能源化学(英文版), 2020, 47(8): 188-195. |
[6] | Lishun Meng, Yuan Yao, Jing Liu, Zhao Wang,dong Qian, Liuchun Zheng,bao-Lian Su, Hong-En Wang. MoSe2 nanosheets as a functional host for lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 47(8): 241-247. |
[7] | Xingyu Li,caiying Wen, Huifeng Li, Genban Sun. In situ decoration of nanosized metal oxide on highly conductive MXene nanosheets as efficient catalyst for Li-O2 battery[J]. 能源化学(英文版), 2020, 47(8): 272-280. |
[8] | Vaibhav Vibhu, Aurélien Flura, Aline Rougier, Clément Nicollet, Sébastien Fourcade, Teresa Hungria, Jean-Claude Grenier, Jean-Marc Bassat. Electrochemical ageing study of mixed lanthanum/ praseodymium nickelates La2-xPrxNiO4+δ as oxygen electrodes for solid oxide fuel or electrolysis cells[J]. 能源化学(英文版), 2020, 46(7): 62-70. |
[9] | Ying Chu, Ning Chen, Ximing Cui, Anmin Liu, Liang Zhen, Qinmin Pan. A multi-functional binder for high loading sulfur cathode[J]. 能源化学(英文版), 2020, 46(7): 99-104. |
[10] | Jiang-Hui Jiang, An-Bang Wang, Wei-Kun Wang, Zhao-Qing Jin, Li-Zhen Fan. P(VDF-HFP)-poly(sulfur-1,3-diisopropenylbenzene) functional polymer electrolyte for lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 46(7): 114-122. |
[11] | Yikun Yi, Zechen Liu, Pu Yang, Tao Wang, Xuewen Zhao, Hongyang Huang, Yonghong Cheng, Jinying Zhang, Mingtao Li. MoS2 nanorods with inner caves through synchronous encapsulation of sulfur for high performance Li-S cathodes[J]. 能源化学(英文版), 2020, 45(6): 18-24. |
[12] | Ruibai Cang, Ke Ye, Kai Zhu, Jun Yan, Jinling Yin, Kui Cheng, Guiling Wang, Dianxue Cao. Organic 3D interconnected graphene aerogel as cathode materials for high-performance aqueous zinc ion battery[J]. 能源化学(英文版), 2020, 45(6): 52-58. |
[13] | Fakui Luo, Congcong Wei, Chi Zhang, Hui Gao, Jiazheng Niu, Wensheng Ma, Zhangquan Peng, Yanwen Bai, Zhonghua Zhang. Operando X-ray diffraction analysis of the degradation mechanisms of a spinel LiMn2O4 cathode in different voltage windows[J]. 能源化学(英文版), 2020, 44(5): 138-146. |
[14] | Qian Kang, Qi Wang, Cunbin An, Chang He, Bowei Xu, Jianhui Hou. Significant influence of doping effect on photovoltaic performance of efficient fullerene-free polymer solar cells[J]. 能源化学(英文版), 2020, 43(4): 40-46. |
[15] | Sangryun Kim, Kentaro Harada, Naoki Toyama, Hiroyuki Oguchi, Kazuaki Kisu, Shin-ichi Orimo. Room temperature operation of all-solid-state battery using a closo-type complex hydride solid electrolyte and a LiCoO2 cathode by interfacial modification[J]. 能源化学(英文版), 2020, 43(4): 47-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||