能源化学(英文) ›› 2017, Vol. 26 ›› Issue (5): 868-880.DOI: 10.1016/j.jechem.2017.07.001
Chao Chena, Siqian Zhangb, Kyung Ho Rowb, Wha-Seung Ahnb
收稿日期:
2017-05-29
修回日期:
2017-07-02
出版日期:
2017-09-15
发布日期:
2017-11-10
通讯作者:
Chao Chen,E-mail addresses:c.chen@gdut.edu.cn;Wha-Seung Ahn,E-mail addresses:whasahn@inha.ac.kr
作者简介:
Chao Chen received his Ph.D. in Chemical Engineering from Inha University in 2011, under the supervision of Professor Wha-Seung Ahn;Siqian Zhang is a Ph.D. student in the Department of Chemical Engineering, Inha University, under the supervision of Prof. Wha-Seung Ahn;Kyung-Ho Row is a Professor in the Department of Chemical Engineering, Inha University in Korea;Wha-Seung Ahn is a professor in the Department of Chemical Engineering, Inha University in Korea.
基金资助:
This study was supported financially by the National Natural Science Foundation of China (No. 21607121) and also by the National Research Foundation of Korea (NRF) (Grant number:NRF-2015R1A4A1042434).
Chao Chena, Siqian Zhangb, Kyung Ho Rowb, Wha-Seung Ahnb
Received:
2017-05-29
Revised:
2017-07-02
Online:
2017-09-15
Published:
2017-11-10
Contact:
Chao Chen,E-mail addresses:c.chen@gdut.edu.cn;Wha-Seung Ahn,E-mail addresses:whasahn@inha.ac.kr
Supported by:
This study was supported financially by the National Natural Science Foundation of China (No. 21607121) and also by the National Research Foundation of Korea (NRF) (Grant number:NRF-2015R1A4A1042434).
摘要: Amine-silica composite materials for post-combustion CO2 capture have attracted considerable attention because of their high CO2 uptake at low CO2 concentrations, excellent CO2 capture selectivity in the presence of moisture, and lower energy requirements for sorbent regeneration. This review discusses the recent advances in amine-silica composites for CO2 capture, including adsorbent preparation and characterization, CO2 capture under dry and moisture conditions at different CO2 partial pressures, sorbent regeneration, and stability after many cyclic sorption-desorption runs.
Chao Chen, Siqian Zhang, Kyung Ho Row, Wha-Seung Ahn. Amine-silica composites for CO2 capture:A short review[J]. 能源化学(英文), 2017, 26(5): 868-880.
Chao Chen, Siqian Zhang, Kyung Ho Row, Wha-Seung Ahn. Amine-silica composites for CO2 capture:A short review[J]. Journal of Energy Chemistry, 2017, 26(5): 868-880.
[1] J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Int. J. Greenh. Gas Control 2(2008) 9-20.[2] M. Zhao, A.I. Minett, A.T. Harris, Energy Environ. Sci. 6(2013) 25-40.[3] D.M. D'Alessandro, B. Smit, J.R. Long, Angew. Chem. Int. Ed. 49(2010) 6058-6082.[4] G.T. Rochelle, Science 325(2009) 1652-1654.[5] P.D. Vaidya, E.Y. Kenig, Chem. Eng. Technol. 30(2007) 1467-1474.[6] A. Veawab, P. Tontiwachwuthikul, A. Chakma, Ind. Eng. Chem. Res. 38(1999) 3917-3924.[7] G.P. Hao, W.C. Li, A.H. Lu, J. Mater. Chem. 21(2011) 6447-6451.[8] Q. Wang, J. Luo, Z. Zhong, A. Borgna, Energy Environ. Sci. 4(2011) 42-55.[9] K.S. Walton, M.B. Abney, M.D. Levan, Micropor. Mesopor. Mater. 91(2006) 78-84.[10] S.T. Yang, J. Kim, W.S. Ahn, Micropor. Mesopor. Mater. 135(2010) 90-94.[11] R.V. Siriwardane, M.S. Shen, E.P. Fisher, J.A. Poston, Energy Fuels 15(2001) 279-284.[12] J.H. Chen, D.S.H. Wong, C.S. Tan, Ind. Eng. Chem. Res. 36(1997) 2808-2815.[13] J.R. Li, Y. Ma, M.C. McCarthy, J. Sculley, J. Yu, H.K. Jeong, P.B. Balbuena, H.C. Zhou, Coord. Chem. Rev 255(2011) 1791-1823.[14] D. Britt, H. Furukawa, B. Wang, T.G. Glover, O.M. Yaghi, Proc. Natl. Acad. Sci. 106(49) (2009) 20637-20640.[15] A.R. Millward, O.M. Yaghi, J. Am. Chem. Soc. 127(2005) 17998-17999.[16] N. Gargiulo, F. Pepe, D. Caputo, J. Nanosci. Nanotechnol. 14(2) (2014) 1811-1822.[17] T. Asefa, Z. Tao, Can. J. Chem. 90(12) (2012) 1015-1031.[18] X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Micropor. Mesopor. Mater. 62(2003) 29-45.[19] H.Y. Huang, R.T. Yang, D. Chinn, C.L. Munson, Ind. Eng. Chem. Res. 42(2003) 2427-2433.[20] P.J.E. Harlick, A. Sayari, Ind. Eng. Chem. Res. 46(2007) 446-458.[21] S. Choi, J.H. Drese, P.M. Eisenberge, C.W. Jones, Environ. Sci. Technol. 45(2011) 2420-2427.[22] J.C. Hicks, J.H. Drese, D.J. Fauth, M.L. Gray, G. Qi, C.W. Jones, J. Am. Chem. Soc. 130(2008) 2902-2903.[23] P. López-Aranguren, S. Builes, J. Fraile, A. López-Periago, L.F. Vega, C. Domingo, RSC Adv. 5(2015) 104943-104953.[24] F.Q. Liu, L. Wang, Z.G. Huang, C.Q. Li, W. Li, R.X. Li, W.H. Li, ACS Appl. Mater. Interfaces 6(2014) 4371-4381.[25] R. Ullah, M. Atilhan, S. Aparicio, A. Canlier, C.T. Yavuz, Int. J. Greenh. Gas Control 43(2015) 22-32.[26] Y. Du, Z. Du, W. Zou, H. Li, J. Mi, C. Zhang, J. Colloid Interface Sci. 409(2013) 123-128.[27] E.G. Moschetta, M.A. Sakwa-Novak, J.L. Greenfield, C.W. Jones, Langmuir 31(2015) 2218-2227.[28] Y. Sánchez-Vicente, L.A. Stevens, C. Pando, M.J. Torralvo, C.E. Snape, T.C. Drage, A. Cabañas, Chem. Eng. J. 264(2015) 886-898.[29] P. López-Aranguren, J. Fraile, L.F. Vega, C. Domingo, J Supercrit. Fluids 85(2014) 68-80.[30] G.P. Knowles, A.L. Chaffee, J. Chem. 2016(2016) 1-10, Article ID 1070838.[31] Y. Tang, K. Landskron, J. Phys. Chem. C 114(2010) 2494-2498.[32] C. Gunathilake, M. Jaroniec, ACS Appl. Mater. Interfaces 6(2014) 13069-13078.[33] J.J. Wen, F.N. Gu, F. Wei, Y. Zhou, W.G. Lin, J. Yang, J.Y. Yang, Y. Wang, Z.G. Zou, J.H. Zhu, J. Mater. Chem. 20(2010) 2840-2846.[34] W. Klinthong, C.H. Huang, C.S. Tan, Ind. Eng. Chem. Res. 55(2016) 6481-6491.[35] S. Cui, W. Cheng, X. Shen, M. Fan, A. Russell (Ted), Z. Wu, X. Yi, Energy Environ. Sci. 4(2011) 2070-2074.[36] Y. Kong, G. Jiang, M. Fan, X. Shen, S. Cui, A.G. Russell, Chem. Commun. 50(2014) 12158-12161.[37] R. Sanz, G. Calleja, A. Arencibia, E.S. Sanz-Pérez, Micropor. Mesopor. Mater. 209(2015) 165-171.[38] X. Wang, L. Chen, Q. Guo, Chem. Eng. J. 260(2015) 573-581.[39] H. Jung, C.H. Lee, S. Jeon, D.H. Jo, J. Huh, S.H. Kim, Adsorption 22(2016) 1137-1146.[40] J. Fujiki, H. Yamada, K. Yogo, Micropor. Mesopor. Mater. 215(2015) 76-83.[41] W.J. Son, J.S. Choi, W.S. Ahn, Micropor. Mesopor. Mater. 113(2008) 31-40.[42] A. Danon, P.C. Stair, E. Weitz, J. Phys. Chem. C 115(2011) 11540-11549.[43] T. Watabe, K. Yogo, Sep. Purif. Technol. 120(2013) 20-23.[44] A.C.C. Chang, S.S.C. Chuang, M. Gray, Y. Soong, Energy Fuels 17(2003) 468-473.[45] S. Choi, J.H. Drese, C.W. Jones, ChemSusChem 2(2009) 796-854.[46] X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Energy Fuels 16(2002) 1463-1469.[47] X. Xu, C. Song, B.G. Miller, A.W. Scaroni, Ind. Eng. Chem. Res. 44(2005) 8113-8119.[48] Z. Liu, Y. Teng, K. Zhang, H. Chen, Y. Yang, J. Energy Chem. 24(2015) 322-330.[49] L. Wei, Y. Jing, Z. Gao, Y. Wang, Chin. J. Chem. Eng. 23(2015) 366-371.[50] L.S. Carvalho, E. Silva, J.C. Andrade, J.A. Silva, M. Urbina, P.F. Nascimento, F. Carvalho, J.A. Ruiz, Adsorption 21(2015) 597-609.[51] X. Wang, Q. Guo, J. Zhao, L. Chen, Int. J. Greenh. Gas Control 37(2015) 90-98.[52] M.U.T. Le, S.Y. Lee, S.J. Park, Int. J. Hydrog. Energy 39(2014) 12340-12346.[53] R.S. Franchi, P.J.E. Harlick, A. Sayari, Ind. Eng. Chem. Res. 44(2005) 8007-8013.[54] A. Heydari-Gorji, Y. Belmabkhout, A. Sayari, Langmuir 27(2011) 12411-12416.[55] J. Wei, L. Liao, Y. Xiao, P. Zhang, Y. Shi, J. Environ. Sci. 22(10) (2010) 1558-1563.[56] M.B. Yue, L.B. Sun, Y. Cao, Y. Wang, Z.J. Wang, J.H. Zhu, Chem. Eur. J. 14(2008) 3442-3451.[57] X. Yan, L. Zhang, Y. Zhang, G. Yang, Z. Yan, Ind. Eng. Chem. Res. 50(2011) 3220-3226.[58] R. Sanz, G. Calleja, A. Arencibia, E.S. Sanz-Pérez, Appl. Surf. Sci. 256(2010) 5323-5328.[59] A. Heydari-Gorji, Y. Yang, A. Sayari, Energy Fuels 25(2011) 4206-4210.[60] X. Ma, X. Wang, C. Song, J. Am. Chem. Soc. 131(2009) 5777-5783.[61] N. Gargiulo, A. Peluso, P. Aprea, F. Pepe, D. Caputo, J. Chem. Eng. Data 59(2014) 896-902.[62] E. Vilarrasa-García, J.A. Cecilia, E.M.O. Moya, C.L. Cavalcante Jr., D.C.S. Azevedo, E. Rodríguez-Castellón, Materials 8(2015) 2495-2513.[63] M.W. Hahn, M. Steib, A. Jentys, J.A. Lercher, J. Phys. Chem. C 119(2015) 4126-4135.[64] X. Zhang, H. Qin, X. Zheng, W. Wu, Mater. Res. Bull. 48(2013) 3981-3986.[65] M.B. Yue, Y. Chun, Y. Cao, X. Dong, J. H. Zhu, Adv. Funct. Mater. 16(2006) 1717-1722.[66] C. Chen, W.J. Son, K.S. You, J.W. Ahn, W.S. Ahn, Chem. Eng. J. 161(2010) 46-52.[67] Y. Liu, Q. Ye, M. Shen, J. Shi, J. Chen, H. Pan, Y. Shi, Environ. Sci. Technol. 45(2011) 5710-5716.[68] R. Kishor, A.K. Ghoshal, Chem. Eng. J. 300(2016) 236-244.[69] R. Kishor, A.K. Ghoshal, Energy Fuels 30(2016) 9635-9644.[70] C. Chen, S.T. Yang, W.S. Ahn, R. Ryoo, Chem. Commun. 24(24) (2009) 3627-3629.[71] C. Ji, X. Huang, L. Li, F. Xiao, N. Zhao, W. Wei, Materials 9(2016) 835-851.[72] D.J.N. Subagyono, Z. Liang, G.P. Knowles, A.L. Chaffee, Chem. Eng. Res. Des. 89(2011) 1647-1657.[73] X. Yan, L. Zhang, Y. Zhang, K. Qiao, Z. Yan, S. Komarneni, Chem. Eng. J. 168(2011) 918-924.[74] X. Feng, G. Hu, X. Hu, G. Xie, Y. Xie, J. Lu, M. Luo, Ind. Eng. Chem. Res. 52(2013) 4221-4228.[75] W. Li, P. Bollini, S.A. Didas, S. Choi, J.H. Drese, C.W. Jones, ACS Appl. Mater. Interfaces 2(11) (2010) 3363-3372.[76] D.J.N. Subagyono, M. Marshall, G.P. Knowles, A.L. Chaffee, Micropor. Mesopor. Mater. 186(2014) 84-93.[77] E. Vilarrasa-Garcia, E.M. Ortigosa Moya, J.A. Cecilia, C.L. Cavalcante Jr., J. Jiménez-Jiménez, D.C.S. Azevedo, E. Rodríguez-Castellón, Micropor. Mesopor. Mater. 209(2015) 172-183.[78] J. Ma, Q. Liu, D. Chen, S. Wen, T. Wang, J. Porous Mater 21(2014) 859-867.[79] Z. Liu, D. Pudasainee, Q. Liu, R. Gupta, Sep. Purif. Technol. 156(2015) 259-268.[80] M.A. Alkhabbaz, R. Khunsupat, C.W. Jones, Fuel 121(2014) 79-85.[81] D.S. Dao, H. Yamada, K. Yogo, Energy Fuels 29(2015) 985-992.[82] M.M. Khader, M.J. Al-Marri, S. Ali1, G. Qi, E.P. Giannelis, Am. J. Anal. Chem. 6(2015) 274-284.[83] W. Yan, J. Tang, Z. Bian, J. Hu, H. Liu, Ind. Eng. Chem. Res. 51(2012) 3653-3662.[84] S.H. Liu, C.H. Wu, H.K. Lee, S.B. Liu, Top. Catal. 53(2010) 210-217.[85] Y. Han, G. Hwang, H. Kim, B.Z. Haznedaroglu, B. Lee, Chem. Eng. J. 259(2015) 653-662.[86] D.S. Dao, H. Yamada, K. Yogo, Ind. Eng. Chem. Res. 52(2013) 13810-13817.[87] J. Jiao, J. Cao, P.P. Lv, Chem. Lett. 44(2015) 928-930.[88] J. Jiao, P. Lv, L. Wang, S. Dan, L. Qi, Y. Cui, J. Porous Mater. 21(2014) 775-781.[89] A. Goeppert, S. Meth, G.K. SuryaPrakash, G.A. Olah, Energy Environ. Sci. 3(2010) 1949-1960.[90] A. Goeppert, M. Czaun, R.B. May, G.K.S. Prakash, G.A. Olah, S.R. Narayanan, J. Am. Chem. Soc. 133(2011) 20164-20167.[91] H. Zhang, A. Goeppert, G.K. SuryaPrakash, G. Olah, RSC Adv. 5(2015) 52550-52562.[92] J.L. Liu, R.B. Lin, Powder Technol. 241(2013) 188-195.[93] A.D. Ebner, M.L. Gray, N.G. Chisholm, Q.T. Black, D.D. Mumford, M.A. Nicholson, J.A. Ritter, Ind. Eng. Chem. Res. 50(2011) 5634-5641.[94] E.R. Monazam, L.J. Shadle, D.C. Miller, H.W. Pennline, D.J. Fauth, J.S. Hoffman, M.L. Gray, AIChE J. 59(3) (2013) 923-935.[95] K. Li, J. Jiang, S. Tian, F. Yan, X. Chen, J. Mater. Chem. A 3(2015) 2166-2175.[96] K. Li, J. Jiang, F. Yan, S. Tian, X. Chen, Appl. Energy 136(2014) 750-755.[97] D.V. Quang, T.A. Hatton, M.R.M. Abu-Zahra, Ind. Eng. Chem. Res. 55(2016) 7842-7852.[98] L. Wang, M. Yao, X. Hu, G. Hu, J. Lu, M. Luo, M. Fan, Appl. Surf. Sci. 324(2015) 286-292.[99] W. Zhang, H. Liu, C. Sun, T.C. Drage, C.E. Snape, Chem. Eng. Sci. 116(2014) 306-316.[100] W. Zeng, H. Bai, Adsorption 22(2016) 117-127.[101] W. Zeng, H. Bai, Chem. Eng. J. 251(2014) 1-9.[102] G. Qi, Y. Wang, L. Estevez, X. Duan, N. Anako, A.H.A. Park, W. Li, C.W. Jones, E.P. Giannelis, Energy Environ. Sci. 4(2011) 444-452.[103] S. Yang, L. Zhan, X. Xu, Y. Wang, L. Ling, X. Feng, Adv. Mater. 25(2013) 2130-2134.[104] N. Linneen, R. Pfeffer, Y. Lin, Micropor. Mesopor. Mater. 176(2013) 123-131.[105] N. Minju, P. Abhilash, B.N. Nair, A.P. Mohamed, S. Ananthakumar, Chem. Eng. J. 269(2015) 335-342.[106] Y. Le, D. Guo, B. Cheng, J. Yu, J. Colloid Interface Sci. 408(2013) 173-180.[107] N.K. Sandhu, D. Pudasainee, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res. 55(2016) 2210-2220.[108] M. Niu, H. Yang, X. Zhang, Y. Wang, A. Tang, ACS Appl. Mater. Interfaces 8(2016) 17312-17320.[109] B. Singh, V. Polshettiwar, J. Mater. Chem. A 4(2016) 7005-7019.[110] C.F. Cogswell, H. Jiang, J. Ramberger, D. Accetta, R.J. Willey, S. Choi, Langmuir 31(2015) 4534-4541.[111] L. Zhang, N. Zhan, Q. Jin, H. Liu, J. Hu, Ind. Eng. Chem. Res. 55(2016) 5885-5891.[112] X. Wang, Q. Guo, T. Kong, Chem. Eng. J. 273(2015) 472-480.[113] X. Liu, F. Gao, J. Xu, L. Zhou, H. Liu, J. Hu, Micropor. Mesopor. Mater 222(2016) 113-119.[114] C. Chen, S. Bhattacharjee, Appl. Surf. Sci. 396(2017) 1515-1519.[115] O. Leal, C. Bolivar, C. Ovalles, J.J. Garcia, Y. Espidel, Inorg. Chim. Acta 240(1995) 183-189.[116] M.R. Mello, D. Phanon, G.Q. Silveira, P.L. Llewellyn, C.M. Ronconi, Micropor. Mesopor. Mater. 143(2011) 174-179.[117] H. Zhao, J. Hu, J. Wang, L. Zhou, H. Liu, Acta Phys. Chim. Sin. 23(6) (2007) 801-806.[118] C. Schumacher, J. Gonzalez, M. Perez-Mendoza, P.A. Wright, N.A. Seaton, Ind. Eng. Chem. Res. 45(2006) 5586-5597.[119] Z. Liu, Y. Teng, K. Zhang, J. Chem. (2015) 1-8, Article ID 608265, doi:10.1155/2015/608265.[120] S. Kim, J. Ida, V.V. Guliants, J.Y.S. Lin, J. Phys. Chem. B 109(2005) 6287-6293.[121] H. Nigar, B. Garcia-Baños, F.L. Peñaranda-Foix, J.M. Catalá-Civera, R. Mallada, J. Santamaría, AIChE J. 62(2) (2016) 547-555.[122] M. Bhagiyalakshmi, L.J. Yun, R. Anuradha, H.T. Jang, J. Hazard. Mater. 175(2010) 928-938.[123] L. Wang, R.T. Yang, J. Phys. Chem. C 115(2011) 21264-21272.[124] V. Zelenak, M. Badanicova, D. Halamova, J. ?ejka, A. Zukal, N. Murafa, G. Go-erigk, Chem. Eng. J. 144(2008) 336-342.[125] M.H. Yuan, L. Wang, R.T. Yang, Langmuir 30(2014) 8124-8130.[126] F. Zheng, D.N. Tran, B.J. Busche, G.E. Fryxell, R.S. Addleman, T.S. Zemanian, C.L. Aardahl, Ind. Eng. Chem. Res. 44(9) (2005) 3099-3105.[127] N. Hiyoshi, K. Yogo, T. Yashima, Micropor. Mesopor. Mater. 84(2005) 357-365.[128] F.Y. Chang, K.J. Chao, H.H. Cheng, C.S. Tan, Sep. Purif. Technol. 70(2009) 87-95.[129] L. Zhou, J. Fan, G. Cui, X. Shang, Q. Tang, J. Wang, M. Fan, Green Chem. 16(2014) 4009-4016.[130] W. Chaikittisilp, J.D. Lunn, D.F. Shantz, C.W. Jones, Chem. Eur. J. 17(2011) 10556-10561.[131] N. Mittal, A. Samanta, P. Sarkar, R. Gupta, Energy Sci. Eng. 3(3) (2015) 207-220.[132] J. Wei, J. Shi, H. Pan, W. Zhao, Q. Ye, Y. Shi, Micropor. Mesopor. Mater 116(2008) 394-399.[133] C. Knofel, J. Descarpentries, A. Benzaouia, V. Zelenak, S. Mornet, P.L. Llewellyn, V. Hornebecq, Micropor. Mesopor. Mater. 99(2007) 79-85.[134] V. Zelenak, D. Halamova, L. Gaberova, E. Bloch, P. Llewellyn, Micropor. Mesopor. Mater. 116(2008) 358-364.[135] G.P. Knowles, J.V. Graham, S.W. Delaney, A.L. Chaffee, Fuel Process. Technol. 86(2005) 1435-1448.[136] G.P. Knowles, S.W. Delaney, A.L. Chaffee, Ind. Eng. Chem. Res. 45(2006) 2626-2633.[137] R. Kishor, A.K. Ghoshal, Chem. Eng. J. 262(2015) 882-890.[138] N. Hiyoshi, K. Yogo, T. Yashima, Chem. Lett. 37(12) (2008) 1266-1267.[139] T. Watabe, K. Yogo, Sep. Purif. Technol. 120(2013) 20-23.[140] D. Lee, Y. Jin, N. Jung, J. Lee, J. Lee, Y.S. Jeong, S. Jeon, Environ. Sci. Technol. 45(2011) 5704-5709.[141] M. Czaun, A. Goeppert, R.B. May, D. Peltier, H. Zhang, G.K.S. Prakash, G.A. Olah, J. CO2 Util. 1(2013) 1-7.[142] G. Zhao, B. Aziz, N. Hedin, Appl. Energy 87(2010) 2907-2913.[143] K.M. Li, J.G. Jiang, S.C. Tian, X.J. Chen, F. Yan, J. Phys. Chem. C 118(2014) 2454-2462.[144] M. Yao, Y. Dong, X. Feng, X. Hu, A. Jia, G. Xie, G. Hu, J. Lu, M. Luo, M. Fan, Fuel 123(2014) 66-72.[145] Y.G. Ko, H.J. Lee, H.C. Oh, U.S. Choi, J. Hazard. Mater. 53(2013) 250-251.[146] J.H. Park, J.M. Celedonio, H. Seo, Y.K. Park, Y.S. Ko, Catal. Today 265(2016) 68-76.[147] K. Sim, N. Lee, J. Kim, E.B. Cho, C. Gunathilake, M. Jaroniec, ACS Appl. Mater. Interfaces 7(2015) 6792-6802.[148] N.N. Linneen, R. Pfeffer, Y.S. Lin, Chem. Eng. J. 254(2014) 190-197.[149] Y.G. Ko, H.J. Lee, J.Y. Kim, U.S. Choi, ACS Appl. Mater. Interfaces 6(2014) 12988-12996.[150] Y. Li, X. Wen, L. Li, F. Wang, N. Zhao, F. Xiao, W. Wei, Y Sun, J. Sol-Gel Sci. Technol. 66(2013) 353-362.[151] S.N. Kim, W.J. Son, J.S. Choi, W.S. Ahn, Micropor. Mesopor. Mater. 115(2008) 497-503.[152] S. Araki, H. Doi, Y. Sano, S. Tanaka, Y. Miyake, J. Colloid Interface Sci. 339(2009) 382-389.[153] Z. Hu, D. Zhang, J. Wang, Chin. J. Chem. Eng. 19(3) (2011) 386-390.[154] K.A.S. Abhilash, T. Deepthi, R.A. Sadhana, K.G. Benny, ACS Appl. Mater. Interfaces 7(2015) 17969-17976.[155] R. Begag, H. Krutka, W. Dong, D. Mihalcik, W. Rhine, G. Gould, J. Baldic, P. Nahass, Greenh. Gases:Sci. Technol. 3(1) (2013) 30-39.[156] S. Che, A.E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, T. Tatsumi, Nat. Mater. 2(2003) 801-805.[157] D.V. Quang, A. Dindi, A.V. Rayer, N.E. Hadri, A. Abdulkadir, M.R.M.A. Zahra, Energy Proc. 63(2014) 2122-2128.[158] A. Ahmadalinezhad, A. Sayari, Phys. Chem. Chem. Phys. 16(2014) 1529-1535.[159] P. Lopez-Aranguren, S. Builes, J. Fraile, L.F. Vega, C. Domingo, Ind. Eng. Chem. Res. 53(2014) 15611-15619.[160] Y. Belmabkhout, A. Sayari, Adsorption 15(2009) 318-328.[161] Y. Fan, Y. Labreche, R.P. Lively, C.W. Jones, W.J. Koros, AIChE J. 60(11) (2014) 3878-3887. |
[1] | Ziyue Zhou, Wenping Si, Pengyi Lu, Wenlei Guo, Lei Wang, Tao Zhang,feng Hou, Ji Liang. A flexible CNT@nickel silicate composite film for high-performance sodium storage[J]. 能源化学(英文版), 2020, 47(8): 29-37. |
[2] | Chong Yan, Hong Yuan, Ho Seok Park, Jia-Qi Huang. Perspective on the critical role of interface for advanced batteries[J]. 能源化学(英文版), 2020, 47(8): 217-220. |
[3] | Wenjun Li, Hong Li. New insight of stabilizing electrode/electrolyte interphase: Regulating the specific adsorption of the inner Helmholtz plane[J]. 能源化学(英文版), 2020, 45(6): 126-127. |
[4] | Huifa Shi, Zhenhua Sun, Wei Lv, Shujie Xiao, Huicong Yang, Ying Shi, Ke Chen, Shaogang Wang, Bingsen Zhang, Quan-Hong Yang, Feng Li. Efficient polysulfide blocker from conductive niobium nitride@graphene for Li-S batteries[J]. 能源化学(英文版), 2020, 45(6): 135-141. |
[5] | Jie Du, Wen-Cui Li, Zhan-Xin Ren, Li-Ping Guo, An-Hui Lu. Synthesis of mechanically robust porous carbon monoliths for CO2 adsorption and separation[J]. 能源化学(英文版), 2020, 42(3): 56-61. |
[6] | Xiaodong Hong, Rui Wang, Yue Liu, Jiawei Fu, Ji Liang, Shixue Dou. Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries[J]. 能源化学(英文版), 2020, 42(3): 144-168. |
[7] | Syed Danish Ali Zaidi, Chong Wang, Qinjun Shao, Jing Gao, Shengdong Zhu, Haifeng Yuan, Jian Chen. Polymer-free electrospun separator film comprising silica nanofibers and alumina nanoparticles for Li-ion full cell[J]. 能源化学(英文版), 2020, 42(3): 217-226. |
[8] | Fanfei Sun, Ruoou Yang, Zhaoming Xia, Yuqi Yang, Ziang Zhao, Songqi Gu, Dongshuang Wu, Yunjie Ding, Zheng Jiang. Effects of cobalt carbide on Fischer-Tropsch synthesis with MnO supported Co-based catalysts[J]. 能源化学(英文版), 2020, 42(3): 227-232. |
[9] | Xiao-Bing Yang, Lei Zhao, Kokswee Goh, Xu-Lei Sui, Ling-Hui Meng, Zhen-Bo Wang. A phosphotungstic acid coupled silica-Nafion composite membrane with significantly enhanced ion selectivity for vanadium redox flow battery[J]. 能源化学(英文版), 2020, 41(2): 177-184. |
[10] | Junxian Hu, Yangyang Xie, Meng Yin, Zhian Zhang. Nitrogen doping and graphitization tuning coupled hard carbon for superior potassium-ion storage[J]. 能源化学(英文版), 2020, 49(10): 327-334. |
[11] | Hongyi Li, Linfeng Fei, Rong Zhang, Shenglan Yu, Yongyi Zhang, Longlong Shu, Yong Li, Yu Wang. FeCo alloy catalysts promoting polysulfide conversion for advanced lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 49(10): 339-347. |
[12] | Ruiling Zhang, Xin Mao, Pengfei Cheng, Yang Yang, Songqiu Yang, Tuerdi Wumaier, Weiqiao Deng, Keli Han. Bismuth doped lead-free two-dimensional tin based halide perovskite single crystals[J]. 能源化学(英文版), 2019, 36(9): 1-6. |
[13] | Adhitya G. Saputro, Refaldi I. D. Putra, Arifin L. Maulana, Muhammad U. Karami, Mochamad R. Pradana, Mohammad K. Agusta, Hermawan K. Dipojono, Hideaki Kasai. Theoretical study of CO2 hydrogenation to methanol on isolated small Pdx clusters[J]. 能源化学(英文), 2019, 28(8): 79-87. |
[14] | Jian-Qiu Huang, Jiaqiang Huang, Woon Gie Chong, Jiang Cui, Shanshan Yao, Baoling Huang, Jang-Kyo Kim. Graphene/RuO2 nanocrystal composites as sulfur host for lithium-sulfur batteries[J]. 能源化学(英文), 2019, 28(8): 204-211. |
[15] | Vaidheeshwar Ramasubramanian, Hema Ramsurn, Geoffrey L. Price. Methane dehydroaromatization-A study on hydrogen use for catalyst reduction, role of molybdenum, the nature of catalyst support and significance of Bronsted acid sites[J]. 能源化学(英文), 2019, 28(7): 20-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||