能源化学(英文) ›› 2017, Vol. 26 ›› Issue (6): 1077-1093.DOI: 10.1016/j.jechem.2017.08.008
Cheng Tanga, Maria-Magdalena Titiricib, Qiang Zhanga
收稿日期:
2017-07-24
修回日期:
2017-08-15
出版日期:
2017-11-15
发布日期:
2017-11-24
通讯作者:
Qiang Zhang,E-mail addresses:zhang-qiang@mails.tsinghua.edu.cn,zhangqiangflotu@mail.tsinghua.edu.cn
作者简介:
Cheng Tang received his B.S. degree in 2013 in the Department of Chemical Engineering;Magdalena Titirici obtained her Ph.D. at the University of Dortmund, Germany;Qiang Zhang received his bachelor and Ph.D. degree from Tsinghua University, China in 2004 and 2009, respectively. After a stay in Case Western Reserve University, USA, and Fritz Haber Institute of the Max Planck Society, Germany, he joined in Tsinghua University, China at 2011.
基金资助:
This work was supported by the National Key Research and Development Program (Nos. 2016YFA0202500 and 2016YFA0200102), the Natural Scientific Foundation of China (No. 21561130151), and Royal Society for the award of a Newton Advanced Fellowship (Ref:NA140249).
Cheng Tanga, Maria-Magdalena Titiricib, Qiang Zhanga
Received:
2017-07-24
Revised:
2017-08-15
Online:
2017-11-15
Published:
2017-11-24
Contact:
Qiang Zhang,E-mail addresses:zhang-qiang@mails.tsinghua.edu.cn,zhangqiangflotu@mail.tsinghua.edu.cn
About author:
Cheng Tang received his B.S. degree in 2013 in the Department of Chemical Engineering;Magdalena Titirici obtained her Ph.D. at the University of Dortmund, Germany;Qiang Zhang received his bachelor and Ph.D. degree from Tsinghua University, China in 2004 and 2009, respectively. After a stay in Case Western Reserve University, USA, and Fritz Haber Institute of the Max Planck Society, Germany, he joined in Tsinghua University, China at 2011.
Supported by:
This work was supported by the National Key Research and Development Program (Nos. 2016YFA0202500 and 2016YFA0200102), the Natural Scientific Foundation of China (No. 21561130151), and Royal Society for the award of a Newton Advanced Fellowship (Ref:NA140249).
摘要: Nanocarbons are of progressively increasing importance in energy electrocatalysis, including oxygen reduction, oxygen evolution, hydrogen evolution, CO2 reduction, etc. Precious-metal-free or metal-free nanocarbon-based electrocatalysts have been revealed to potentially have effective activity and remarkable durability, which is promising to replace precious metals in some important energy technologies, such as fuel cells, metal-air batteries, and water splitting. In this review, rather than overviewing recent progress completely, we aim to give an in-depth digestion of present achievements, focusing on the different roles of nanocarbons and material design principles. The multifunctionalities of nanocarbon substrates (accelerating the electron and mass transport, regulating the incorporation of active components, manipulating electron structures, generating confinement effects, assembly into 3D free-standing electrodes) and the intrinsic activity of nanocarbon catalysts (multi-heteroatom doping, hierarchical structure, topological defects) are discussed systematically, with perspectives on the further research in this rising research field. This review is inspiring for more insights and methodical research in mechanism understanding, material design, and device optimization, leading to a targeted and high-efficiency development of energy electrocatalysis.
Cheng Tang, Maria-Magdalena Titirici, Qiang Zhang. A review of nanocarbons in energy electrocatalysis:Multifunctional substrates and highly active sites[J]. 能源化学(英文), 2017, 26(6): 1077-1093.
Cheng Tang, Maria-Magdalena Titirici, Qiang Zhang. A review of nanocarbons in energy electrocatalysis:Multifunctional substrates and highly active sites[J]. Journal of Energy Chemistry, 2017, 26(6): 1077-1093.
[1] S. Chu, A. Majumdar, Nature 488(2012) 294-303.[2] B. Dunn, H. Kamath, J.M. Tarascon, Science 334(2011) 928-935.[3] M.K. Debe, Nature 486(2012) 43-51.[4] S. Wang, S.P. Jiang, Natl. Sci. Rev. 4(2017) 163-166.[5] J.Z. Su, J.L. Zhou, L. Wang, C. Liu, Y.B. Chen, Sci. Bull. 62(2017) 633-644.[6] Q. Wang, H.J. Chen, G. Liu, L.Z. Wang, Sci. Bull. 60(2015) 405-418.[7] H.-J. Peng, X.-B. Cheng, J.-Q. Huang, Q. Zhang, Adv. Energy Mater. 7(2017) 1700260.[8] Y.C. Tu, D.H. Deng, X.H. Bao, J. Energy Chem. 25(2016) 957-966.[9] W. Lv, Z.J. Li, Y.Q. Deng, Q.H. Yang, F.Y. Kang, Energy Storage Mater. 2(2016) 107-138.[10] P. Zhang, M. Fujitsuka, T. Majima, J. Energy Chem. 25(2016) 917-926.[11] Y.M. He, J.E. Thorne, C.H. Wu, P.Y. Ma, C. Du, Q. Dong, J.H. Guo, D.W. Wang, Chem 1(2016) 640-655.[12] V. Strauss, A. Roth, M. Sekita, D.M. Guldi, Chem 1(2016) 531-556.[13] Y. Li, X.G. Wang, S.M. Dong, X. Chen, G.L. Cui, Adv. Energy Mater. 6(2016) 1600751.[14] J. Fu, Z.P. Cano, M.G. Park, A.P. Yu, M. Fowler, Z.W. Chen, Adv. Mater. 29(2017) 1604685.[15] J.Y. Xiong, C. Han, Z. Li, S.X. Dou, Sci. Bull. 60(2015) 2083-2090.[16] X.Q. Zhang, X.B. Cheng, Q. Zhang, J. Energy Chem. 25(2016) 967-984.[17] Z.-F. Huang, J. Wang, Y. Peng, C.-Y. Jung, A. Fisher, X. Wang, Adv. Energy Mater. 7(2017) 1700544.[18] H.C. Yang, J. Liang, Z.X. Wang, B.G. An, F. Li, New Carbon Mater. 31(2016) 243-263.[19] G.X. Zhang, X.Y. Jin, H.Y. Li, L. Wang, C.J. Hu, X.M. Sun, Sci. China Mater. 59(2016) 337-347.[20] K.Q. Lu, Q. Quan, N. Zhang, Y.J. Xu, J. Energy Chem. 25(2016) 927-935.[21] W. Zhang, W.Z. Lai, R. Cao, Chem. Rev. 117(2017) 3717-3797.[22] S.Q. Lu, Z.B. Zhuang, Sci. China Mater. 59(2016) 217-238.[23] J. Liu, C. Guo, A. Vasileff, S. Qiao, Small Methods 1(2017) 1600006.[24] L. Zhang, S. Hu, X. Zhu, W. Yang, J. Energy Chem. 26(2017) 593-601.[25] R. Liu, C. Stephani, K.L. Tan, D.W. Wang, Sci. China Mater. 58(2015) 515-520.[26] S. Abate, G. Centi, P. Lanzafame, S. Perathoner, J. Energy Chem. 24(2015) 535-547.[27] D.S. Su, G. Centi, J. Energy Chem. 22(2013) 151-173.[28] H.L. Wang, H.J. Dai, Chem. Soc. Rev. 42(2013) 3088-3113.[29] C. Tang, H.F. Wang, X.L. Zhu, B.Q. Li, Q. Zhang, Part. Part. Syst. Charact. 33(2016) 473-486.[30] C.G. Hu, L.M. Dai, Angew. Chem. Int. Ed. 55(2016) 11736-11758.[31] X. Liu, L. Dai, Nat. Rev. Mater. 1(2016) 16064.[32] S. Abate, K. Barbera, G. Centi, G. Giorgianni, S. Perathoner, J. Energy Chem. 25(2016) 297-305.[33] S. Chung, M. Choun, B. Jeong, J.K. Lee, J. Lee, J. Energy Chem. 25(2016) 258-264.[34] C.M. Wang, S. Bai, Y.J. Xiong, Chin. J. Catal. 36(2015) 1476-1493.[35] M.L. Dou, M. Hou, Z.L. Li, F. Wang, D. Liang, Z.G. Shao, B.L. Yi, J. Energy Chem. 24(2015) 39-44.[36] G.R. Zhang, B.J.M. Etzold, J. Energy Chem. 25(2016) 199-207.[37] Y.Y. Gui, Y.L. Cao, G.R. Li, X.P. Ai, X.P. Gao, H.X. Yang, Energy Storage Mater. 5(2016) 165-170.[38] Q. Li, T.Y. Wang, D. Havas, H.G. Zhang, P. Xu, J.T. Han, J. Cho, G. Wu, Adv. Sci. 3(2016) 1600140.[39] Y.-J. Wang, N. Zhao, B. Fang, H. Li, X.T. Bi, H. Wang, Chem. Rev. 115(2015) 3433-3467.[40] C. Tang, Q. Zhang, Adv. Mater. 29(2017) 1604103.[41] M. Zhou, H.-L. Wang, S. Guo, Chem. Soc. Rev. 45(2016) 1273-1307.[42] M. Gong, H. Dai, Nano Res. 8(2015) 23-39.[43] Y.P. Zhu, C.X. Guo, Y. Zheng, S.Z. Qiao, Acc. Chem. Res. 50(2017) 915-923.[44] Y. Zheng, Y. Jiao, S.Z. Qiao, Adv. Mater. 27(2015) 5372-5378.[45] Z. Zhao, M. Li, L. Zhang, L. Dai, Z. Xia, Adv. Mater. 27(2015) 6834-6840.[46] Z.L. Wang, D. Xu, J.J. Xu, X.B. Zhang, Chem. Soc. Rev. 43(2014) 7746-7786.[47] Y. Jiao, Y. Zheng, M.T. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 44(2015) 2060-2086.[48] Q. Zhang, J.Q. Huang, W.Z. Qian, Y.Y. Zhang, F. Wei, Small 9(2013) 1237-1265.[49] J. Liang, Z.H. Sun, F. Li, H.M. Cheng, Energy Storage Mater. 2(2016) 76-106.[50] Y.Y. Liang, Y.G. Li, H.L. Wang, J.G. Zhou, J. Wang, T. Regier, H.J. Dai, Nat. Mater. 10(2011) 780-786.[51] M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 135(2013) 8452-8455.[52] H.-J. Peng, T.-Z. Hou, Q. Zhang, J.-Q. Huang, X.-B. Cheng, M.-Q. Guo, Z. Yuan, L.-Y. He, F. Wei, Adv. Mater. Interfaces 1(2014) 1400227.[53] T.-Z. Hou, W.-T. Xu, X. Chen, H.-J. Peng, J.-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 56(2017) 8178-8182.[54] D. Tang, J. Liu, X. Wu, R. Liu, X. Han, Y. Han, H. Huang, Y. Liu, Z. Kang, ACS Appl. Mater. Interfaces 6(2014) 7918-7925.[55] D.H. Youn, Y. Bin Park, J.Y. Kim, G. Magesh, Y.J. Jang, J.S. Lee, J. Power Sources 294(2015) 437-443.[56] R. Chen, G.Z. Sun, C.J. Yang, L.P. Zhang, J.W. Miao, H.B. Tao, H.B. Yang, J.Z. Chen, P. Chen, B. Liu, Nanoscale Horiz. 1(2016) 156-160.[57] C. Tang, H.S. Wang, H.F. Wang, Q. Zhang, G.L. Tian, J.Q. Nie, F. Wei, Adv. Mater. 27(2015) 4516-4522.[58] Y. Gao, F. Wu, H. Chen, J. Energy Chem. 26(2017) 428-432.[59] V.M. Bau, X.J. Bo, L.P. Guo, J. Energy Chem. 26(2017) 63-71.[60] S. Chen, J.J. Duan, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 52(2013) 13567-13570.[61] A. Kongkanand, K. Vinodgopal, S. Kuwabata, P.V. Kamat, J. Phys. Chem. B 110(2006) 16185-16188.[62] L.R. Nan, W.B. Yue, Y. Jiang, J. Mater. Chem. A 3(2015) 22170-22175.[63] B.-Q. Li, C. Tang, H.-F. Wang, X.L. Zhu, Q. Zhang, Sci. Adv. 2(2016) e1600495.[64] H.-F. Wang, C. Tang, X.L. Zhu, Q. Zhang, J. Mater. Chem. A 4(2016) 3379-3385.[65] Z. Dong, T. Wang, J. Zhao, T. Fu, L. Wang, J.L. Li, W.P. Ding, J. Energy Chem. 25(2016) 1021-1026.[66] L.Z. Yuan, Z. Yan, L.H. Jiang, E.D. Wang, S.L. Wang, G.Q. Sun, J. Energy Chem. 25(2016) 805-810.[67] J. Yu, G. Chen, J. Sunarso, Y.L. Zhu, R. Ran, Z.H. Zhu, W. Zhou, Z.P. Shao, Adv. Sci. 3(2016) 1600060.[68] X.Y. Zhou, F. Chen, J. Yang, J. Energy Chem. 24(2015) 448-455.[69] Y.M. Sun, G.Y. Zheng, Z.W. Seh, N. Liu, S. Wang, J. Sun, H.R. Lee, Y. Cui, Chem 1(2016) 287-297.[70] Z.W. Tang, F. Xu, Y.R. Liang, D.C. Wu, R.W. Fu, New Carbon Mater. 30(2015) 319-326.[71] W.W. Wen, M.Z. Zou, Q. Feng, J.X. Li, H. Lai, Z.G. Huang, J. Energy Chem. 25(2016) 445-449.[72] J.J. Zhang, A.S. Yu, Sci. Bull. 60(2015) 823-838.[73] O. Gerber, S. Begin-Colin, B.P. Pichon, E. Barraud, S. Lemonnier, C. Pham-Huu, B. Daffos, P. Simon, J. Come, D. Begin, J. Energy Chem. 25(2016) 272-277.[74] F.L. Lou, D. Chen, J. Energy Chem. 24(2015) 559-586.[75] S.L. Candelaria, G.Z. Cao, Sci. Bull. 60(2015) 1587-1597.[76] L.J. Xie, G.H. Sun, L.F. Xie, F.Y. Su, X.M. Li, Z. Liu, Q.Q. Kong, C.X. Lu, K.X. Li, C.M. Chen, New Carbon Mater. 31(2016) 37-45.[77] M.C. Liu, J.J. Li, W. Han, L. Kang, J. Energy Chem. 25(2016) 601-608.[78] Q.L. Zhu, Q. Xu, Chem 1(2016) 220-245.[79] N. Seselj, C. Engelbrekt, J.D. Zhang, Sci. Bull. 60(2015) 864-876.[80] C.W. Zhang, L.B. Xu, J.F. Chen, Chin. Chem. Lett. 27(2016) 832-836.[81] C.F. Zhang, D.M. Tang, X.K. Hu, X.Z. Liu, T. Zhang, H.S. Zhou, Energy Storage Mater. 2(2016) 8-13.[82] K.P. Xie, W. Xia, J. Masa, F. Yang, P. Weide, W. Schuhmann, M. Muhler, J. Energy Chem. 25(2016) 282-288.[83] Y.B. Huang, M. Zhang, P. Liu, F.L. Cheng, L.S. Wang, Chin. J. Catal. 37(2016) 1249-1256.[84] Y.W. Ju, S. Yoo, C. Kim, S. Kim, I.Y. Jeon, J. Shin, J.B. Baek, G. Kim, Adv. Sci. 3(2016) 1500205.[85] C. Tang, H.-F. Wang, H.-S. Wang, F. Wei, Q. Zhang, J. Mater. Chem. A 4(2016) 3210-3216.[86] X.L. Zhu, C. Tang, H.F. Wang, Q. Zhang, C.H. Yang, F. Wei, J. Mater. Chem. A 3(2015) 24540-24546.[87] H.-F. Wang, C. Tang, B. Wang, B.-Q. Li, Q. Zhang, Adv. Mater. 29(2017) 1702327.[88] X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang, H. Wang, Nat. Commun. 8(2017) 14675.[89] M.H. Shao, Q.W. Chang, J.P. Dodelet, R. Chenitz, Chem. Rev. 116(2016) 3594-3657.[90] X. Zhong, L. Wang, H. Zhou, Y.Y. Qin, W.L. Xu, Y. Jiang, Y.Y. Sun, Z.Q. Shi, G.L. Zhuang, X.N. Li, D.H. Mei, J.G. Wang, Adv. Mater. Interfaces 2(2015) 1500365.[91] Q.Q. Fu, H.H. Li, S.Y. Ma, B.C. Hu, S.H. Yu, Sci. China Mater. 59(2016) 112-121.[92] J. Qi, W. Zhang, R.J. Xiang, K.Q. Liu, H.Y. Wang, M.X. Chen, Y.Z. Han, R. Cao, Adv. Sci. 2(2015) 1500199.[93] S. Chen, L.W. Wang, Q. Wu, X. Li, Y. Zhao, H.W. Lai, L.J. Yang, T. Sun, Y. Li, X.Z. Wang, Z. Hu, Sci. China Chem. 58(2015) 180-186.[94] Y.P. Liu, G.T. Yu, G.D. Li, Y.H. Sun, T. Asefa, W. Chen, X.X. Zou, Angew. Chem. Int. Ed. 54(2015) 10752-10757.[95] J. Yang, G.X. Zhu, Y.J. Liu, J.X. Xia, Z.Y. Ji, X.P. Shen, S.K. Wu, Adv. Funct. Mater. 26(2016) 4712-4721.[96] M.F. Shao, R.K. Zhang, Z.H. Li, M. Wei, D.G. Evans, X. Duan, Chem. Commun. 51(2015) 15880-15893.[97] L.H. Zhuang, L. Ge, Y.S. Yang, M.R. Li, Y. Jia, X.D. Yao, Z.H. Zhu, Adv. Mater. 29(2017) 1606793.[98] R. Liu, Y. Wang, D. Liu, Y. Zou, S. Wang, Adv. Mater. 29(2017) 1701546.[99] S. Wan, J. Qi, W. Zhang, W. Wang, S. Zhang, K. Liu, H. Zheng, J. Sun, S. Wang, R. Cao, Adv. Mater. 29(2017) 1700286.[100] B.-Q. Li, S.-Y. Zhang, C. Tang, X. Cui, Q. Zhang, Small 13(2017) 1700610.[101] Q. Han, Z.H. Cheng, J. Gao, Y. Zhao, Z.P. Zhang, L.M. Dai, L.T. Qu, Adv. Funct. Mater. 27(2017) 1606352.[102] Q.H. Liang, Z. Li, X.L. Yu, Z.H. Huang, F.Y. Kang, Q.H. Yang, Adv. Mater. 27(2015) 4634-4639.[103] T.Y. Ma, J.L. Cao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 55(2015) 1138-1142.[104] Y. Zhao, Z.X. Song, X. Li, Q. Sun, N.C. Cheng, S. Lawes, X.L. Sun, Energy Storage Mater. 2(2016) 35-62.[105] Z.H. Xiang, Q.B. Dai, J.F. Chen, L.M. Dai, Adv. Mater. 28(2016) 6253-6261.[106] Z. Xie, Y.-S. Li, L. Chen, D.-L. Jiang, Acta Polym. Sin. (12) (2016) 1621-1634.[107] T. He, X. Wang, H. Wu, H. Xue, P. Xue, J. Ma, M. Tan, S. He, R. Shen, L. Yi, Y. Zhang, J. Xiang, ACS Appl. Mater. Interfaces 9(2017) 22490-22501.[108] R.N. Li, D.T. Zhang, Y.Y. Zhou, X.Y. Wang, G.S. Guo, Sci. China Chem. 59(2016) 746-751.[109] X.F. Yang, A.Q. Wang, B.T. Qiao, J. Li, J.Y. Liu, T. Zhang, Acc. Chem. Res. 46(2013) 1740-1748.[110] C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Angew. Chem. Int. Ed. (2017), doi:10.1002/anie.201703864.[111] Y. Zheng, Y. Jiao, Y.H. Zhu, Q.R. Cai, A. Vasileff, L.H. Li, Y. Han, Y. Chen, S.Z. Qiao, J. Am. Chem. Soc. 139(2017) 3336-3339.[112] C. Tang, B. Wang, H.-F. Wang, Q. Zhang, Adv. Mater. 29(2017) 1703185.[113] P.Z. Chen, T.P. Zhou, L.L. Xing, K. Xu, Y. Tong, H. Xie, L.D. Zhang, W.S. Yan, W.S. Chu, C.Z. Wu, Y. Xie, Angew. Chem. Int. Ed. 56(2017) 610-614.[114] Y.J. Chen, S.F. Ji, Y.G. Wang, J.C. Dong, W.X. Chen, Z. Li, R.A. Shen, L.R. Zheng, Z.B. Zhuang, D.S. Wang, Y.D. Li, Angew. Chem. Int. Ed. 56(2017) 6937-6941.[115] H.L. Tang, S.C. Cai, S.L. Xie, Z.B. Wang, Y.X. Tong, M. Pan, X.H. Lu, Adv. Sci. 3(2016) 1500265.[116] Y. Ye, F. Cai, C. Yan, Y. Li, G. Wang, X. Bao, J. Energy Chem. 26(2017), doi:10. 1016/j.jechem.2017.1006.1013.[117] Q. Li, H.Y. Pan, D. Higgins, R.G. Cao, G.Q. Zhang, H.F. Lv, K.B. Wu, J. Cho, G. Wu, Small 11(2015) 1443-1452.[118] Z.H. Li, M.F. Shao, L. Zhou, R.K. Zhang, C. Zhang, M. Wei, D.G. Evans, X. Duan, Adv. Mater. 28(2016) 2337-2344.[119] P. He, X.-Y. Yu, X.W. Lou, Angew. Chem. Int. Ed. 56(2017) 3897-3900.[120] B.Y. Guan, L. Yu, X.W. Lou, Adv. Sci. 4(2017) 1700247.[121] X.M. Xu, C. Su, W. Zhou, Y.L. Zhu, Y.B. Chen, Z.P. Shao, Adv. Sci. 3(2016) 1500187.[122] Y. Peng, B.Z. Lu, N. Wang, L.G. Li, S.W. Chen, Phys. Chem. Chem. Phys. 19(2017) 9336-9348.[123] X.M. Ning, Y.H. Li, B.Q. Dong, H.J. Wang, H. Yu, F. Peng, Y.H. Yang, J. Catal. 348(2017) 100-109.[124] H. Jin, H. Huang, Y. He, X. Feng, S. Wang, L. Dai, J. Wang, J. Am. Chem. Soc. 137(2015) 7588-7591.[125] T.-Z. Hou, X. Chen, H.-J. Peng, J.-Q. Huang, B.-Q. Li, Q. Zhang, B. Li, Small 12(2016) 3283-3291.[126] H.J. Peng, Z.W. Zhang, J.Q. Huang, G. Zhang, J. Xie, W.T. Xu, J.L. Shi, X. Chen, X.B. Cheng, Q. Zhang, Adv. Mater. 28(2016) 9551-9558.[127] C. Tang, H.-F. Wang, X. Chen, B.-Q. Li, T.-Z. Hou, B. Zhang, Q. Zhang, M.-M. Titirici, F. Wei, Adv. Mater. 28(2016) 6845-6851.[128] H.B. Yang, J.W. Miao, S.F. Hung, J.Z. Chen, H.B. Tao, X.Z. Wang, L.P. Zhang, R. Chen, J.J. Gao, H.M. Chen, L.M. Dai, B. Liu, Sci. Adv 2(2016) e1501122.[129] Y. Jia, L.Z. Zhang, G.P. Gao, H. Chen, B. Wang, J.Z. Zhou, M.T. Soo, M. Hong, X.C. Yan, G.R. Qian, J. Zou, A.J. Du, X.D. Yao, Adv. Mater. 29(2017) 1700017.[130] W. Ma, R. Ma, C. Wang, J. Liang, X. Liu, K. Zhou, T. Sasaki, ACS Nano 9(2015) 1977-1984.[131] X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen, S. Yang, Angew. Chem. Int. Ed. 53(2014) 7584-7588.[132] J.P. Shi, X.B. Zhou, G.F. Han, M.X. Liu, D.L. Ma, J.Y. Sun, C. Li, Q.Q. Ji, Y. Zhang, X.J. Song, X.Y. Lang, Q. Jiang, Z.F. Liu, Y.F. Zhang, Adv. Mater. Interfaces 3(2016) 1600332.[133] X.L. Pan, X.H. Bao, Chem. Commun. 47(2008) 6271-6281.[134] Q. Fu, X.H. Bao, Chem. Soc. Rev. 46(2017) 1842-1874.[135] X.L. Pan, X.H. Bao, Acc. Chem. Res. 44(2011) 553-562.[136] K. Chaitra, P. Sivaraman, R.T. Vinny, U.M. Bhatta, N. Nagaraju, N. Kathyayini, J. Energy Chem. 25(2016) 627-635.[137] C.-Y. Su, H. Cheng, W. Li, Z.-Q. Liu, N. Li, Z. Hou, F.-Q. Bai, H.-X. Zhang, T.-Y. Ma, Adv. Energy Mater. 7(2017) 1602420.[138] D.H. Deng, L. Yu, X.Q. Chen, G.X. Wang, L. Jin, X.L. Pan, J. Deng, G.Q. Sun, X.H. Bao, Angew. Chem. Int. Ed. 52(2013) 371-375.[139] H. Kim, A.W. Robertson, S.O. Kim, J.M. Kim, J.H. Warner, ACS Nano 9(2015) 5947-5957. [140] X. Cui, P. Ren, D. Deng, J. Deng, X. Bao, Energy Environ. Sci. 9(2016) 123-129.[141] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, Science 332(2011) 443-447.[142] H.T. Chung, J.H. Won, P. Zelenay, Nat. Commun. 4(2013) 1922.[143] C. Tang, Q. Zhang, J. Mater. Chem. A 4(2016) 4998-5001.[144] B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou, X. Wang, Nat. Energy 1(2016) 15006.[145] C. Wei, H. Wang, K. Eid, J. Kim, J.H. Kim, Z.A. Alothman, Y. Yamauchi, L. Wang, Chem. Eur. J. 23(2017) 637-643.[146] X. Zhong, Y.Y. Qin, X.L. Chen, W.L. Xu, G.L. Zhuang, X.N. Li, J.G. Wang, Carbon 114(2017) 740-748.[147] M. Kuang, Q. Wang, P. Han, G. Zheng, Adv. Energy Mater. 7(2017) 1700193.[148] S. Huang, Y. Meng, S. He, A. Goswami, Q. Wu, J. Li, S. Tong, T. Asefa, M. Wu, Adv. Funct. Mater. 27(2017) 1606585.[149] K. Qiu, G. Chai, C. Jiang, M. Ling, J. Tang, Z. Guo, ACS Catal. 6(2016) 3558-3568.[150] A. Zitolo, V. Goellner, V. Armel, M.T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 14(2015) 937-942.[151] D. Malko, A. Kucernak, T. Lopes, Nat. Commun. 7(2016) 13285.[152] J.A. Varnell, E.C.M. Tse, C.E. Schulz, T.T. Fister, R.T. Haasch, J. Timoshenko, A.I. Frenkel, A.A. Gewirth, Nat. Commun. 7(2016) 12582.[153] H. Ren, Y. Wang, X. Tang, J. Lu, L. Xiao, L. Zhuang, J. Energy Chem. (2017), doi:10.1016/j.jechem.2017.1005.1001.[154] F.C. Lei, W. Liu, Y.F. Sun, J.Q. Xu, K.T. Liu, L. Liang, T. Yao, B.C. Pan, S.Q. Wei, Y. Xie, Nat. Commun. 7(2016) 12697.[155] T.Y. Ma, S. Dai, S.Z. Qiao, Mater. Today 19(2016) 265-273.[156] X.J. Lin, X. Lu, T. Huang, Z.L. Liu, A.S. Yu, J. Power Sources 242(2013) 855-859.[157] H.F. Wang, C. Tang, Q. Zhang, J. Mater. Chem. A 3(2015) 16183-16189.[158] X.L. Zhu, C. Tang, H.F. Wang, B.Q. Li, Q. Zhang, C.Y. Li, C.H. Yang, F. Wei, J. Mater. Chem. A 4(2016) 7245-7250.[159] T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, J. Am. Chem. Soc. 136(2014) 13925-13931.[160] D.U. Lee, J.Y. Choi, K. Feng, H.W. Park, Z.W. Chen, Adv. Energy Mater. 4(2014) 1301389.[161] S.C. Du, Z.Y. Ren, J. Wu, W. Xi, H.G. Fu, Nano Res. 9(2016) 2260-2269.[162] T.Y. Ma, J.R. Ran, S. Dai, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 54(2015) 4646-4650.[163] M.H. Fan, H. Chen, Y.Y. Wu, L.L. Feng, Y.P. Liu, G.D. Li, X.X. Zou, J. Mater. Chem. A 3(2015) 16320-16326.[164] B. Li, X.M. Ge, F.W.T. Goh, T.S.A. Hor, D.S. Geng, G.J. Du, Z.L. Liu, J. Zhang, X.G. Liu, Y. Zong, Nanoscale 7(2015) 1830-1838.[165] C. Yu, Z.B. Liu, X.T. Han, H.W. Huang, C.T. Zhao, J. Yang, J.S. Qiu, Carbon 110(2016) 1-7.[166] Y. Zhang, X. Xia, X. Cao, B. Zhang, N.H. Tiep, H. He, S. Chen, Y. Huang, H.J. Fan, Adv. Energy Mater. 7(2017) 1700220.[167] Y. Zhao, C.G. Hu, Y. Hu, H.H. Cheng, G.Q. Shi, L.T. Qu, Angew. Chem. Int. Ed. 51(2012) 11371-11375.[168] S. Chen, J.J. Duan, J.R. Ran, M. Jaroniec, S.Z. Qiao, Energy Environ. Sci. 6(2013) 3693-3699.[169] Y. Ito, H.J. Qiu, T. Fujita, Y. Tanabe, K. Tanigaki, M.W. Chen, Adv. Mater. 26(2014) 4145-4150.[170] Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, H.M. Cheng, Nat. Mater. 10(2011) 424-428.[171] Y.D. Gao, Y.Y. Zhang, Y. Zhang, L.J. Xie, X.M. Li, F.Y. Su, X.X. Wei, Z.W. Xu, C.M. Chen, R. Cai, J. Energy Chem. 25(2016) 49-54.[172] D. Yu, X. He, J. Appl. Electrochem. 47(2017) 13-23.[173] X.W. Yu, M. Zhang, W.J. Yuan, G.Q. Shi, J. Mater. Chem. A 3(2015) 6921-6928.[174] S. Chen, J.J. Duan, W. Han, S.Z. Qiao, Chem. Commun. 50(2014) 207-209.[175] X.W. Yu, M. Zhang, J. Chen, Y.R. Li, G.Q. Shi, Adv. Energy Mater. 6(2016) 1501492.[176] X. Xu, Y. Sun, W. Qiao, X. Zhang, X. Chen, X. Song, L. Wu, W. Zhong, Y. Du, Appl. Surf. Sci. 396(2017) 1520-1527.[177] L. Zhao, C. Hong, L. Lin, H. Wu, Y. Su, X. Zhang, A. Liu, Carbon 116(2017) 223-231.[178] Y.M. Jiang, X. Li, S.J. Yu, L.P. Jia, X.J. Zhao, C.M. Wang, Adv. Funct. Mater. 25(2015) 2693-2700.[179] Q. Ding, B. Song, P. Xu, S. Jin, Chem 1(2016) 699-726.[180] S.S. Zhou, J.N. Chen, L. Gan, Q. Zhang, Z. Zheng, H.Q. Li, T.Y. Zhai, Sci. Bull. 61(2016) 227-235.[181] A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May, Y. Gogotsi, M.W. Barsoum, A.T. Fafarman, Adv. Funct. Mater. 26(2016) 4162-4168.[182] J.J. Duan, S. Chen, M. Jaroniec, S.Z. Qiao, ACS Nano 9(2015) 931-940.[183] J. Duan, S. Chen, B.A. Chambers, G.G. Andersson, S.Z. Qiao, Adv. Mater. 27(2015) 4234-4241.[184] M. Wang, X.D. Wang, M. Chen, Z.Y. Yang, C.Z. Dong, Chin. J. Catal. 37(2016) 1037-1048.[185] W. Wang, F. Lv, B. Lei, S. Wan, M.C. Luo, S.J. Guo, Adv. Mater. 28(2016) 10117-10141.[186] D.P. He, H.L. Tang, Z.K. Kou, M. Pan, X.L. Sun, J.J. Zhang, S.C. Mu, Adv. Mater. 29(2017) 1601741.[187] Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei, Q. Zhang, Nano Lett. 16(2016) 519-527.[188] W. Chen, Y.F. Gong, J.H. Liu, Chin. Chem. Lett. 28(2017) 709-718.[189] J.Q. Huang, Q. Zhang, F. Wei, Energy Storage Mater. 1(2015) 127-145.[190] K.P. Gong, F. Du, Z.H. Xia, M. Durstock, L.M. Dai, Science 323(2009) 760-764.[191] Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 4(2013) 2390.[192] Y. Jiao, Y. Zheng, K. Davey, S.Z. Qiao, Nat. Energy 1(2016) 16130.[193] J. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 10(2015) 444-452.[194] J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen, L. Dai, Angew. Chem. Int. Ed. 55(2016) 2230-2234.[195] Y. Zheng, Y. Jiao, Y.H. Zhu, L.H. Li, Y. Han, Y. Chen, A.J. Du, M. Jaroniec, S.Z. Qiao, Nat. Commun. 5(2014) 3783.[196] D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater. 27(2017) 1606459.[197] J.J. Wu, M.T.F. Rodrigues, R. Vajtai, P.M. Ajayan, Adv. Mater. 28(2016) 6239-6246.[198] M.Q. Guo, J.Q. Huang, X.Y. Kong, H.J. Peng, H. Shut, F.Y. Qian, L. Zhu, W.C. Zhu, Q. Zhang, New Carbon Mater. 31(2016) 352-362.[199] L.M. Dai, Y.H. Xue, L.T. Qu, H.J. Choi, J.B. Baek, Chem. Rev. 115(2015) 4823-4892.[200] F. Hasche, M. Oezaslan, P. Strasser, T.P. Fellinger, J. Energy Chem. 25(2016) 251-257.[201] L.P. Wang, W.S. Jia, X.F. Liu, J.Z. Li, M.M. Titirici, J. Energy Chem. 25(2016) 566-570.[202] T.T. Zhang, C.S. He, L.B. Li, Y.Q. Lin, Chin. J. Catal. 37(2016) 1275-1282.[203] Y.Y. Li, L. Wang, X.M. He, B. Tang, Y.X. Jin, J.L. Wang, J. Energy Chem. 25(2016) 131-135.[204] S.H. Li, L. Ding, L.Z. Fan, Sci. China Chem. 58(2015) 417-424.[205] W.J. Lee, J. Lim, S.O. Kim, Small Methods 1(2017) 1600014.[206] J.L. Shi, H.F. Wang, X.L. Zhu, C.M. Chen, X. Huang, X.D. Zhang, B.Q. Li, C. Tang, Q. Zhang, Carbon 103(2016) 36-44.[207] D.S. Yu, Q. Zhang, L.M. Dai, J. Am. Chem. Soc. 132(2010) 15127-15129.[208] C.-Y. Chen, C. Tang, H.-F. Wang, C.-M. Chen, X. Zhang, X. Huang, Q. Zhang, ChemSusChem 9(2016) 1194-1199.[209] M. Li, Z. Liu, F. Wang, J. Xuan, J. Energy Chem. 26(2017) 422-427.[210] M.T. Li, L.P. Zhang, Q. Xu, J.B. Niu, Z.H. Xia, J. Catal. 314(2014) 66-72.[211] J. Wang, Z.X. Wu, L.L. Han, Y.Y. Liu, J.P. Guo, H.L.L. Xin, D.L. Wang, Chin. Chem. Lett. 27(2016) 597-601.[212] K.H. Wu, D.W. Wang, X. Zong, B.S. Zhang, Y.F. Liu, I.R. Gentle, D.S. Su, J. Mater. Chem. A 5(2017) 3239-3248.[213] G.P. Hao, N.R. Sahraie, Q. Zhang, S. Krause, M. Oschatz, A. Bachmatiuk, P. Strasser, S. Kaskel, Chem. Commun. 51(2015) 17285-17288.[214] M. Qiao, C. Tang, L.C. Tanase, C.M. Teodorescu, C. Chen, Q. Zhang, M.-M. Titirici, Mater. Horizons (2017), doi:10.1039/C7MH00298J.[215] Y.Z. Liu, Y.F. Li, F.Y. Su, L.J. Xie, Q.Q. Kong, X.M. Li, J.G. Gao, C.M. Chen, Energy Storage Mater. 2(2016) 69-75.[216] Y.K. Zhou, X. Xu, B. Shan, Y.W. Wen, T.T. Jiang, J.M. Lu, S.W. Zhang, D.P. Wilkinson, J.J. Zhang, Y.H. Huang, Energy Storage Mater. 1(2015) 103-111.[217] L. Wei, H.E. Karahan, S.L. Zhai, Y. Yuan, Q.H. Qian, K.L. Goh, A.K. Ng, Y. Chen, J. Energy Chem. 25(2016) 191-198.[218] L. Zhang, J. Niu, M. Li, Z. Xia, J. Phys. Chem. C 118(2014) 3545-3553.[219] J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 51(2012) 11496-11500.[220] Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 52(2013) 3110-3116.[221] S. Chen, J.J. Duan, M. Jaroniec, S.Z. Qiao, Adv. Mater. 26(2014) 2925-2930.[222] S. Chen, J. Duan, Y. Zheng, X. Chen, X.W. Du, M. Jaroniec, S.-Z. Qiao, Energy Storage Mater. 1(2015) 17-24.[223] Y.P. Zhu, Y. Jing, A. Vasileff, T. Heine, S.Z. Qiao, Adv. Energy Mater. 7(2017) 1602928.[224] T. Sun, Q. Wu, Y. Jiang, Z. Zhang, L. Du, L. Yang, X. Wang, Z. Hu, Chem. Eur. J. 22(2016) 10326-10329.[225] J.T. Zhang, L.M. Dai, Angew. Chem. Int. Ed. 55(2016) 13296-13300.[226] C. Hu, L. Dai, Adv. Mater. 29(2017) 1604942.[227] Y. Zheng, Y. Jiao, L.H. Li, T. Xing, Y. Chen, M. Jaroniec, S.Z. Qiao, ACS Nano 8(2014) 5290-5296.[228] S. Buller, J. Strunk, J. Energy Chem. 25(2016) 171-190.[229] M. Qiao, C. Tang, G. He, K. Qiu, R. Binions, I.P. Parkin, Q. Zhang, Z. Guo, M.M. Titirici, J. Mater. Chem. A 4(2016) 12658-12666.[230] G.L. Tian, Q. Zhang, B.S. Zhang, Y.G. Jin, J.Q. Huang, D.S. Su, F. Wei, Adv. Funct. Mater. 24(2014) 5956-5961.[231] G.L. Tian, M.Q. Zhao, D.S. Yu, X.Y. Kong, J.Q. Huang, Q. Zhang, F. Wei, Small 10(2014) 2251-2259.[232] J.-L. Shi, G.-L. Tian, Q. Zhang, M.-Q. Zhao, F. Wei, Carbon 93(2015) 702-712.[233] X.-B. Cheng, Q. Zhang, H.-F. Wang, G.-L. Tian, J.-Q. Huang, H.-J. Peng, M.-Q. Zhao, F. Wei, Catal. Today 249(2015) 244-251.[234] K. Preuss, V.K. Kannuchamy, A. Marinovic, M. Isaacs, K. Wilson, I. Abrahams, M.M. Titirici, J. Energy Chem. 25(2016) 228-235.[235] M. Seredych, K. Laszlo, E. Rodriguez-Castellon, T.J. Bandosz, J. Energy Chem. 25(2016) 236-245.[236] B. Huang, L. Peng, F. Yang, Y. Liu, Z. Xie, J. Energy Chem. 26(2017), doi:10. 1016/j.jechem.2017.1003.1016.[237] W. Ding, Z.D. Wei, S.G. Chen, X.Q. Qi, T. Yang, J.S. Hu, D. Wang, L.J. Wan, S.F. Alvi, L. Li, Angew. Chem. Int. Ed. 52(2013) 11755-11759.[238] H.W. Liang, X.D. Zhuang, S. Bruller, X.L. Feng, K. Mullen, Nat. Commun. 5(2014) 4973.[239] W. Ding, L. Li, K. Xiong, Y. Wang, W. Li, Y. Nie, S.G. Chen, X.Q. Qi, Z.D. Wei, J. Am. Chem. Soc. 137(2015) 5414-5420.[240] S. Li, C. Cheng, H.-W. Liang, X. Feng, A. Thomas, Adv. Mater. 29(2017) 1700707.[241] F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano 5(2011) 26-41.[242] L. Vicarelli, S.J. Heerema, C. Dekker, H.W. Zandbergen, ACS Nano 9(2015) 3428-3435.[243] Y. Jiang, L. Yang, T. Sun, J. Zhao, Z. Lyu, O. Zhuo, X. Wang, Q. Wu, J. Ma, Z. Hu, ACS Catal. 5(2015) 6707-6712.[244] Y. Ito, Y.H. Shen, D. Hojo, Y. Itagaki, T. Fujita, L.H. Chen, T. Aida, Z. Tang, T. Adschiri, M.W. Chen, Adv. Mater. 28(2016) 10644-10651.[245] Y. Jia, L.Z. Zhang, A.J. Du, G.P. Gao, J. Chen, X.C. Yan, C.L. Brown, X.D. Yao, Adv. Mater. 28(2016) 9532-9538.[246] L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo, S. Wang, L. Dai, Chem. Commun. 52(2016) 2764-2767.[247] Z. Liu, Z. Zhao, Y. Wang, S. Dou, D. Yan, D. Liu, Z. Xia, S. Wang, Adv. Mater. 29(2017) 1606207.[248] H.-F. Wang, C. Tang, Q. Zhang, Catal. Today (2017), doi:10.1016/j.cattod.2017. 1002.1012.[249] Y.Y. Wang, Y.Q. Zhang, Z.J. Liu, C. Xie, S. Feng, D.D. Liu, M.F. Shao, S.Y. Wang, Angew. Chem. Int. Ed. 56(2017) 5867-5871.[250] D.L. Carroll, P. Redlich, P.M. Ajayan, J.C. Charlier, X. Blase, A. DeVita, R. Car, Phys. Rev. Lett. 78(1997) 2811-2814.[251] P.J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Adv. Mater. 11(1999) 154-157.[252] P. Zhang, X.L. Hou, J.L. Mi, Y.Q. He, L. Lin, Q. Jiang, M.D. Dong, Phys. Chem. Chem. Phys. 16(2014) 17479-17486.[253] G.-L. Chai, Z. Hou, D.-J. Shu, T. Ikeda, K. Terakura, J. Am. Chem. Soc. 136(2014) 13629-13640.[254] L. Zhang, Q. Xu, J. Niu, Z. Xia, Phys. Chem. Chem. Phys. 17(2015) 16733-16743.[255] X. Wang, X. Li, C. Ouyang, Z. Li, S. Dou, Z. Ma, L. Tao, J. Huo, S. Wang, J. Mater. Chem. A 4(2016) 9370-9374.[256] S. Kattel, G. Wang, J. Mater. Chem. A 1(2013) 10790-10797. |
[1] | Yuefeng Zhang, Wenchao Zhang, Yuezhan Feng, Jianmin Ma. Promoted CO2 electroreduction over indium-doped SnP3: A computational study[J]. 能源化学(英文版), 2020, 48(9): 1-6. |
[2] | Sasan Ghashghaie, Samson Ho-Sum Cheng, Jie Fang, Hafiz Khurram Shahzad, Robin Lok-Wang Ma, chi-Yuen Chung. Electrophoretically deposited binder-free 3-D carbon/sulfur nanocomposite cathode for high-performance Li-S batteries[J]. 能源化学(英文版), 2020, 48(9): 92-101. |
[3] | Bo Xu, Xiaodong Yang, Qiang Fang, Linbing Du, Yan Fu, Yiqiang Sun, Qisheng Liu, Qingquan Lin, cuncheng Li. Anion-cation dual doping: An effective electronic modulation strategy of Ni2P for high-performance oxygen evolution[J]. 能源化学(英文版), 2020, 48(9): 116-121. |
[4] | Wei Wei, Zhangjing Chen, Yan Zhang, Jian Chen, Liu Wan, cheng Du, Mingjiang Xie, Xuefeng Guo. Full-faradaic-active nitrogen species doping enables high-energy-density carbon-based supercapacitor[J]. 能源化学(英文版), 2020, 48(9): 277-284. |
[5] | Yuhang Li, Yexiang Tong, feng Peng. Metal-free carbocatalysis for electrochemical oxygen reduction reaction: Activity origin and mechanism[J]. 能源化学(英文版), 2020, 48(9): 308-321. |
[6] | Jing-Yi Xie, Zi-Zhang Liu, Jia Li, Lei Feng, Min Yang, Yu Ma, da-Peng Liu, Lei Wang, Yong-Ming Chai, bin Dong. Fe-doped CoP core-shell structure with open cages as efficient electrocatalyst for oxygen evolution[J]. 能源化学(英文版), 2020, 48(9): 328-333. |
[7] | Jing-Qi Chi, Min Yang, Yong-Ming Chai, Zhi Yang, Lei Wang, bin Dong. Design and modulation principles of molybdenum carbide-based materials for green hydrogen evolution[J]. 能源化学(英文版), 2020, 48(9): 398-423. |
[8] | Rong Jiang, Xin Chen, Jinxia Deng, Tianyu Wang, Kang Wang, Yanli Chen, Jianzhuang Jiang. In-situ growth of ZnS/FeS heterojunctions on biomass-derived porous carbon for efficient oxygen reduction reaction[J]. 能源化学(英文版), 2020, 47(8): 79-85. |
[9] | Jae Hyeon Nam, Myeong Je Jang, Hye Yeon Jang, Woojin Park, Xiaolei Wang, Sung Mook Choi,byungjin Cho. Room-temperature sputtered electrocatalyst WSe2 nanomaterials for hydrogen evolution reaction[J]. 能源化学(英文版), 2020, 47(8): 107-111. |
[10] | Yuxin Li, Xiang Zhu, Yawen Chen, Shiqiao Zhang, Jia Li, Jianguo Liu. Rapid synthesis of highly active Pt/C catalysts with various metal loadings from single batch platinum colloid[J]. 能源化学(英文版), 2020, 47(8): 138-145. |
[11] | Mengfei Qiao, Ying Wang, Thomas Wågberg, Xamxikamar Mamat, Xun Hu, Guoan Zou, Guangzhi Hu. Ni-Co bimetallic coordination effect for long lifetime rechargeable Zn-air battery[J]. 能源化学(英文版), 2020, 47(8): 146-154. |
[12] | Yuxiao Ding, Qingqing Gu, Alexander Klyushin, Xing Huang, Sakeb H.Choudhury, Ioannis Spanos,feihong Song, Rik Mom, Pascal Düngen, Anna K.Mechler, Robert Schlögl, Saskia Heumann. Dynamic carbon surface chemistry: Revealing the role of carbon in electrolytic water oxidation[J]. 能源化学(英文版), 2020, 47(8): 155-159. |
[13] | Meng Zha,chengang Pei, Quan Wang, Guangzhi Hu, Ligang Feng. Electrochemical oxygen evolution reaction efficiently boosted by selective fluoridation of FeNi3 alloy/oxide hybrid[J]. 能源化学(英文版), 2020, 47(8): 166-171. |
[14] | Hui-Ying Sun, Guang-Rui Xu,fu-Min Li, Qing-Ling Hong, Pu-Jun Jin, Pei Chen, Yu Chen. Hydrogen generation from ammonia electrolysis on bifunctional platinum nanocubes electrocatalysts[J]. 能源化学(英文版), 2020, 47(8): 234-240. |
[15] | Danyang He, Liyun Cao, Jianfeng Huang, Koji Kajiyoshi, Jianpeng Wu,changcong Wang, Qianqian Liu,dan Yang, Liangliang Feng. In-situ optimizing the valence configuration of vanadium sites in NiV-LDH nanosheet arrays for enhanced hydrogen evolution reaction[J]. 能源化学(英文版), 2020, 47(8): 263-271. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||