能源化学(英文) ›› 2017, Vol. 26 ›› Issue (6): 1094-1106.DOI: 10.1016/j.jechem.2017.09.015
Lei Zhou, Mingfei Shao, Min Wei, Xue Duan
收稿日期:
2017-09-02
修回日期:
2017-09-15
出版日期:
2017-11-15
发布日期:
2017-11-24
通讯作者:
Mingfei Shao,E-mail address:shaomf@mail.buct.edu.cn
作者简介:
Lei Zhou received her Bachelor's degree in 2013 from Beijing University of Chemical Technology;Lei Zhou received her Bachelor's degree in 2013 from Beijing University of Chemical Technology;Min Wei obtained her B.Eng. degree in 1995 and M.Eng. degree in 1998 from Beijing University of Chemical Technology (BUCT);Xue Duan was elected as an Academician of the Chinese Academy of Sciences in 2007.
基金资助:
This work was supported by the National Natural Science Foundation of China (Nos. U1462118; 21601011), the 973 Program (Grant No. 2014CB932102) and the Fundamental Research Funds for the Central Universities (buctrc201506; PYCC1704).
Lei Zhou, Mingfei Shao, Min Wei, Xue Duan
Received:
2017-09-02
Revised:
2017-09-15
Online:
2017-11-15
Published:
2017-11-24
Contact:
Mingfei Shao,E-mail address:shaomf@mail.buct.edu.cn
About author:
Lei Zhou received her Bachelor's degree in 2013 from Beijing University of Chemical Technology;Lei Zhou received her Bachelor's degree in 2013 from Beijing University of Chemical Technology;Min Wei obtained her B.Eng. degree in 1995 and M.Eng. degree in 1998 from Beijing University of Chemical Technology (BUCT);Xue Duan was elected as an Academician of the Chinese Academy of Sciences in 2007.
Supported by:
This work was supported by the National Natural Science Foundation of China (Nos. U1462118; 21601011), the 973 Program (Grant No. 2014CB932102) and the Fundamental Research Funds for the Central Universities (buctrc201506; PYCC1704).
摘要: The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal-air batteries and solar water splitting cells. Layered double hydroxides (LDHs) and their derivatives (e.g., transition metal alloys, oxides, sulfides, nitrides and phosphides) have been adopted as catalysts for various electrochemical reactions, such as oxygen reduction, oxygen evolution, hydrogen evolution, and CO2 reduction, which show excellent activity and remarkable durability in electrocatalytic process. In this review, the synthesis strategies, structural characters and electrochemical performances for the LDHs and their derivatives are described. In addition, we also discussed the effect of electronic and geometry structures to their electrocatalytic activity. The further development of high-performance electrocatalysts based on LDHs and their derivatives is covered by both a short summary and future outlook from the viewpoint of the material design and practical application.
Lei Zhou, Mingfei Shao, Min Wei, Xue Duan. Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives[J]. 能源化学(英文), 2017, 26(6): 1094-1106.
Lei Zhou, Mingfei Shao, Min Wei, Xue Duan. Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives[J]. Journal of Energy Chemistry, 2017, 26(6): 1094-1106.
[1] J. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.G. Park, S.D. Tilley, H.J. Fan, M. Grätzel, Science 345(2014) 1593-1596.[2] M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan, M.C. Lin, B. Zhang, Y. Hu, D.Y. Wang, J. Yang, Nat. Commun. 5(2014) 4695-4700.[3] C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 137(2015) 4347-4357.[4] I.E.L. Stephens, J. Rossmeisl, I. Chorkendorff, Science 354(2016) 1378-1379.[5] D.H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 351(2016) 361-365.[6] A. Das, S.S. Stahl, Angew. Chem. Int. Ed. 56(2017) 8892-8897.[7] M. Choun, H.J. Lee, J. Lee, J. Energy Chem. 25(2016) 793-797.[8] M.L. Dou, M. Hou, Z.L. Li, F. Wang, D. Liang, Z.G. Shao, B. L.Yi, J. Energy Chem. 24(2015) 39-44.[9] W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.J. Zhang, J.Q. Wang, J.S. Hu, Z.D. Wei, L.J. Wan, J. Am. Chem. Soc. 138(2017) 3570-3578.[10] P.Z. Chen, T.P. Zhou, L.L. Xing, K. Xu, Y. Tong, H. Xie, L.D. Zhang, W.S. Yan, W.S. Chu, C.Z. Wu, Angew. Chem. Int. Ed. 56(2017) 610-614.[11] L. Qie, Y. Lin, J.W. Connell, J.T. Xu, L.M. Dai, Angew. Chem. Int. Ed. 56(2017) 6970-6974.[12] J.G. Lee, J. Hwang, H.J. Hwang, O.S. Jeon, J. Jang, O. Kwon, Y. Lee, B. Han, Y.G. Shul, J. Am. Chem. Soc. 138(2017) 3541-3547.[13] H. Ju, J. Lee, J. Energy Chem. 24(2015) 614-619.[14] L. Yao, H.X. Zhong, C.W. Deng, X.F. Li, H.M. Zhang, J. Energy Chem. 25(2016) 153-157.[15] L.Z. Yuan, Z. Yan, L.H. Jiang, E.D. Wang, S.L. Wang, G.Q. Sun, J. Energy Chem. 25(2016) 805-810.[16] J.B. Sambur, T.Y. Chen, E. Choudhary, G.Q. Chen, E.J. Nissen, E.M. Thomas, N.M. Zou, P. Chen, Nature 530(2016) 7588-7596.[17] I.A. Digdaya, G.W.P. Adhyaksa, B.J. Trzesniewski, E.C. Garnett, W.A. Smith, Nat. Commun. 8(2017) 15968.[18] L. Yang, X.Y. Li, G.Z. Zhang, P. Cui, X.J. Wang, X. Jiang, J. Zhao, Y. Luo, J. Jiang, Nat. Commun. 8(2017) 16049.[19] T.Y. Liu, W. Chen, X.H. Liu, J.W. Zhu, L.D. Lu, J. Energy Chem. 25(2016) 1-9.[20] J.W. Li, X.Q. Zhang, L. Song, M. Zhang, B.H. Zhang, J. Energy Chem. 25(2016) 654-658.[21] Y. Wang, Y.P. Zeng, B.Q. Li, A.Q. Li, P. Yang, L. Yang, G. Wang, J.W. Chen, R.L. Wang, J. Energy Chem. 25(2016) 594-600.[22] Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 56(2017) 1324-1328.[23] J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R.H. Dong, S.H. Liu, X.D. Zhuang, X.L. Feng, Angew. Chem. Int. Ed. 55(2016) 6701-6706.[24] A. Aijaz, J. Masa, C. Rosler, W. Xia, P. Weide, A.J.R. Botz, R.A. Fischer, W. Schuhmann, M. Muhler, Angew. Chem. Int. Ed. 55(2016) 4087-4091.[25] N. Yang, C. Tang, K.Y. Wang, G. Du, A.M. Asiri, X.P. Sun, Nano Res. 9(2016) 3346-3354.[26] L.B. Yang, H.L. Qi, C.X. Zhang, X.P. Sun, Nanotechnology 27(2016) 23LT01.[27] Y.Y. Wu, G.D. Li, Y.P. Liu, L. Yang, X.R. Lian, T. Asefa, X.X. Zou, Adv. Funct. Mater. 26(2016) 4839-4847.[28] L.J. Yang, W.J. Zhou, J. Lu, D.M. Hou, Y.T. Ke, G.Q. Li, Z.H. Tang, X.W. Kang, S.W. Chen, Nano Energy 22(2016) 490-498.[29] Z.H. Li, M.F. Shao, L. Zhou, R.K. Zhang, C. Zhang, M. Wei, D.G. Evans, X. Duan, Adv. Mater. 28(2016) 2337-2344.[30] Z.H. Li, M.F. Shao, L. Zhou, Q.H. Yang, C. Zhang, M. Wei, D.G. Evans, X. Duan, Nano Energy 25(2016) 100-109.[31] W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.J. Zhang, J.Q. Wang, J.S. Hu, Z.D. Wei, L.J. Wan, J. Am. Chem. Soc. 138(2016) 3570-3578.[32] H.L. An, R.K. Zhang, Z.H. Li, L. Zhou, M.F. Shao, M. Wei, J. Mater. Chem. A 4(2016) 18008-18014.[33] M. Liu, Y.J. Pang, B. Zhang, P. De Luna, O. Voznyy, J.X. Xu, X.L. Zheng, C.T. Dinh, F.J. Fan, C.H. Cao, Nature 537(2016) 382-388.[34] S. Gao, Y. Lin, X.C. Jiao, Y.F. Sun, Q.Q. Luo, W.H. Zhang, D.Q. Li, J.L. Yang, Y. Xie, Nature 529(2016) 68-72.[35] L.P. Wang, W.S. Jia, X.F. Liu, J.Z. Li, M.M. Titirici, J. Energy Chem. 25(2016) 594-570.[36] J. Lu, W.J. Zhou, L.K. Wang, J. Jia, Y.T. Ke, L.J. Yang, K. Zhou, X.J. Liu, Z.H. Tang, L.G. Li, ACS Catal. 6(2016) 1045-1053.[37] W.H. Niu, L.G. Li, X.J. Liu, N. Wang, J. Liu, W.J. Zhou, Z.H. Tang, S.W. Chen, J. Am. Chem. Soc. 137(2015) 5555-5562.[38] X.J. Liu, Y.C. Zhou, W.J. Zhou, L.G. Li, S.B. Huang, S.W. Chen, Nanoscale 7(2015) 6136-6142.[39] W.Y. Yuan, M. Zhao, J. Yuan, C.M. Li, J. Power Sources 319(2016) 159-167.[40] C.B. Ouyang, X. Wang, S.Y. Wang, Chem. Commun. 51(2015) 14160-14163.[41] M. Al-Mamun, X.T. Su, H.M. Zhang, H.J. Yin, P.R. Liu, H.G. Yang, D. Wang, Z.Y. Tang, Y. Wang, H.J. Zhao, Small 12(2016) 2866-2871.[42] X.Z. Li, Y.Y. Fang, S.L. Zhao, J.T. Wu, F. Li, M. Tian, X.F. Long, J. Jin, J.T. Ma, J. Mater. Chem. A 4(2016) 13133-13141.[43] X.F. Lu, L.F. Gu, J.W. Wang, J.X. Wu, P.Q. Liao, G.R. Li, Adv. Mater. 29(2017) 1604437.[44] Y.P. Zhu, Y.P. Liu, T.Z. Ren, Z.Y. Yuan, Adv. Funct. Mater. 25(2015) 7337-7347.[45] L. Hadidi, E. Davari, D.G. Ivey, J.G.C. Veinot, Nanotechnology 28(2017) 095707.[46] J. Pandey, B. Hua, W. Ng, Y. Yang, K. van der Veen, J. Chen, N.J. Geels, J.L. Luo, G. Rothenberg, N. Yan, Green Chem. 19(2017) 2793-2797.[47] M.J. Park, S.J. Kwon, H.S. Park, S.J. Yoo, J.H. Jang, H.J. Kim, S.W. Nam, J.Y. Kim, J. Electrochem. Soc. 164(2017) F224-F228.[48] J.L. Liu, Y. Yang, B. Ni, H.Y. Li, X. Wang, Small 13(2017) 1602637.[49] J.J. Ye, D.Y. Zhao, Q. Hao, C.X. Xu, Electrochim. Acta 222(2016) 1402-1409.[50] X.C. Hu, Y. Zhou, H.R. Wen, H.M. Zhong, J. Solid State Electrochem. 19(2015) 315-320.[51] M.F. Shao, F.Y. Ning, J.W. Zhao, M. Wei, D.G. Evans, X. Duan, Adv. Funct. Mater 23(2013) 3513-3518.[52] M.E. Escribano, P. Malacrida, M.H. Hansen, U.G.V. Hansen, A.V. Palenzuela, V. Tripkovic, J. Schiotz, J. Rossmeisl, I.E.L. Stephens, I. Chorkendorff, Science 352(2016) 73-76.[53] M. Choun, J. Lee, J. Energy Chem. 25(2016) 683-690.[54] Z.C. Zhang, Y. Liu, B. Chen, Y. Gong, L. Gu, Z.X. Fan, N.L. Yang, Z.C. Lai, Y. Chen, J. Wang, Adv. Mater. 28(2016) 10282-10286.[55] O.D. Morales, S. Raaijman, R. Kortlever, P.J. Kooyman, T. Wezendonk, J. Gascon, W.T. Fu, M.T.M. Koper, Nat. Comm. 7(2016) 12363.[56] W. Wang, B. Lei, S.J. Guo, Adv. Energy Mater. 6(2016) 1600236.[57] L.Z. Bu, Y.G. Feng, J.L. Yao, S.J. Guo, J. Guo, X.Q. Huang, Nano Res. 9(2016) 2811-2821.[58] D.S. He, D.P. He, J. Wang, Y. Lin, P.Q. Yin, X. Hong, Y. Wu, Y.D. Li, J. Am. Chem. Soc. 138(2016) 1494-1497.[59] F.M. Ren, H.Y. Lu, H.T. Liu, Z. Wang, Y.E. Wu, Y.D. Li, J. Mater. Chem. A 3(2015) 23660-23663.[60] X.J. Cui, P.J. Ren, D.H. Deng, J. Deng, X.H. Bao, Energy Environ. Sci. 9(2016) 123-129.[61] G. Feng, Y. Kuang, P.S. Li, N.N. Han, M. Sun, G.X. Zhang, X.M. Sun, Adv. Sci. 4(2017) 1600179.[62] S. Saha, A.K. Ganguli, Chem. Sel. 2(2017) 1630-1636.[63] S. Dou, X.Y. Li, L. Tao, J. Huo, S.Y. Wang, Chem. Commun. 52(2016) 9727-9730.[64] H. Li, L. Chi, C. Yang, L.G. Zhang, F. Yue, J.D. Wang, J. Mater. Res. 31(2016) 3069-3077.[65] Y. Zhou, J.L. Long, Y.W. Li, Chinese J. Catal. 37(2016) 955-962.[66] G. Yilmaz, K.M. Yam, C. Zhang, H.J. Fan, G.W. Ho, Adv. Mater. 29(2017) 1606814.[67] C. Tang, H.S. Wang, H.F. Wang, Q. Zhang, G.L. Tian, J.Q. Nie, F. Wei, Adv. Mater. 27(2015) 4516-4522.[68] Z.Y. Lu, W.W. Xu, W. Zhu, Q. Yang, X.D. Lei, J.F. Liu, Y.P. Li, X.M. Sun, X Duan, Chem. Commun. 50(2014) 6479-6482.[69] M.F. Shao, F.Y. Ning, M. Wei, D.G. Evans, X. Duan, Adv. Funct. Mater 24(2014) 580-586.[70] F.Y. Ning, M.F. Shao, S.M. Xu, Y. Fu, R.K. Zhang, M. Wei, D.G. Evans, X. Duan, Energy Environ. Sci. 9(2016) 2633-2643.[71] J.W. Zhao, M.F. Shao, D.P. Yan, S.T. Zhang, Z.Z. Lu, Z.X. Li, X.Z. Cao, B.Y. Wang, M. Wei, D.G. Evans, X. Duan, J. Mater. Chem. A 1(2013) 5840-5846.[72] L.J. Zhou, X.X. Huang, H. Chen, P.P. Jin, G.D. Li, X.X. Zou, Dalton Trans. 25(2015) 11592-11600.[73] D.D. Wang, X. Chen, D.G. Evans, W.S. Yang, Nanoscale 5(2013) 5312-5316.[74] Y.F. Zhao, X.D. Jia, G.B. Chen, L. Shang, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, D.O. Hare, T.R. Zhang, J. Am. Chem. Soc. 138(2016) 6517-6524.[75] W. Huang, H.H. Zhong, D.Q. Li, P.G. Tang, Y.J. Feng, Electrochim. Acta 173(2015) 575-580.[76] K.X. Lei, X.P. Han, Y.X. Hu, X. Liu, L. Cong, F.Y. Cheng, J. Chen, Chem. Commun. 51(2015) 11599-11602.[77] K. Zhang, X.P. Han, Z. Hu, X.L. Zhang, Z.L. Tao, J. Chen, Chem. Soc. Rev. 44(2015) 699-728.[78] F.Y. Cheng, T.R. Zhang, Y. Zhang, J. Du, X.P. Han, J. Chen, Angew. Chem. Int. Ed. 52(2013) 2474-2477.[79] Y. Gao, F.X. Wu, H. Chen, J. Energy Chem. 26(2017) 428-432.[80] X. Zou, Y.P. Liu, G.D. Li, Y.Y. Wu, D.P. Liu, W. Li, H.W. Li, D.J. Wang, Y. Zhang, X.X. Zou, Adv. Mater. 29(2017) 1700404.[81] X. Long, G.X. Li, Z.L. Wang, H.Y. Zhu, T. Zhang, S. Xiao, W.Y. Guo, S.H. Yang, J. Am. Chem. Soc. 137(2015) 11900-11903.[82] J. Wang, L.Q. Li, X. Chen, Y.L. Lu, W.S. Yang, J. Mater. Chem. A 4(2016) 11342-11350.[83] Y.P. Liu, Q.J. Li, R. Si, G.D. Li, W. Li, D.P. Liu, D.J. Wang, L. Sun, Y. Zhang, X.X. Zou, Adv. Mater. 29(2017) 1606200.[84] L. Zhou, M.F. Shao, C. Zhang, J.W. Zhao, S. He, D.M. Rao, M. Wei, D.G. Evans, X. Duan, Adv. Mater. 29(2017) 1604080.[85] X. Ren, W.Y. Wang, R.X. Ge, S. Hao, F.L. Qu, G. Du, A.M. Asiri, Q. Wei, L. Chen, X.P. Sun, Chem. Commun. 53(2017) 9000-9003.[86] L.J. Yang, W.J. Zhou, J. Lu, D.M. Hou, Y.T. Ke, G.Q. Li, Z.H. Tang, X.W. Kang, S.W. Chen, Nano Energy 22(2016) 490-498.[87] X.D. Jia, Y.F. Zhao, G.B. Chen, L. Shang, R. Shi, X.F. Kang, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Adv. Energy Mater. 6(2016) 1502585.[88] K. Xu, P.Z. Chen, X.L. Li, Y. Tong, H. Ding, X.J. Wu, W.S. Chu, Z.M. Peng, C.Z. Wu, Y. Xie, J. Am. Chem. Soc. 137(2015) 4119-4125.[89] P.Z. Chen, K. Xu, Z.W. Fang, Y. Tong, J.C. Wu, X.L. Lu, X. Peng, H. Ding, C.Z. Wu, Y. Xie, Angew. Chem. Int. Ed. 54(2015) 14710-14714.[90] Y. Zhong, X.H. Xia, F. Shi, J.Y. Zhan, J.P. Tu, H.J. Fan, Adv. Sci. 3(2016) 1500286.[91] Z.C. Xing, Q. Liu, A.M. Asiri, X.P. Sun, ACS Catal. 5(2015) 145-149.[92] Y.Y. Wang, C. Xie, D.D. Liu, X.B. Huang, J. Huo, S.Y. Wang, ACS Appl. Mater. Interfaces 8(2016) 18652-18657.[93] S.L. Wang, M. Hou, Q. Zhao, Y.Y. Jiang, Z. Wang, H.Z. Li, Y. Fu, Z.G. Shao, J. Energy Chem. 26(2017) 168-174.[94] T.T. Liu, X. Ma, D.N. Liu, S. Hao, G. Du, Y.J. Ma, A.M. Asiri, X.P. Sun, L. Chen, ACS Catal. 7(2017) 98-102.[95] Y.J. Li, H.C. Zhang, M. Jiang, Y. Kuang, X.M. Sun, X. Duan, Nano Res. 9(2016) 2251-2259.[96] D.N. Liu, T.T. Liu, L.X. Zhang, F.L. Qu, G. Du, A.M. Asiri, X.P. Sun, J. Mater. Chem. A 5(2017) 3208-3213.[97] H.W. Huang, C. Yu, C.T. Zhao, X.T. Han, J. Yang, Z.B. Liu, S.F. Li, M.D. Zhang, J.S. Qiu, Nano Energy 34(2017) 472-480.[98] Y.W. Liu, X.Q. Cao, R.M. Kong, G. Du, A.M. Asiri, Q. Lu, X.P. Sun, J. Mater. Chem. B 5(2017) 1901-1904.[99] X.F. Xiao, C.T. He, S.L. Zhao, J. Li, W.S. Lin, Z.K. Yuan, Q. Zhang, S.Y. Wang, L.M. Dai, D.S. Yu, Energ. Environ. Sci. 10(2017) 893-899.[100] S. Hao, L.B. Yang, D.N. Liu, R.M. Kong, G. Du, A.M. Asiri, Y.C. Yang, X.P. Sun, Chem. Commun. 53(2017) 5710-5713.[101] R. Zhang, C. Tang, R.M. Kong, G. Du, A.M. Asiri, L. Chen, X.P. Sun, Nanoscale 9(2017) 4793-4800.[102] S.C. Chen, Z.X. Kang, X. Hu, X.D. Zhang, H. Wang, J.F. Xie, X.S. Zheng, W.S. Yan, B.C. Pan, Y. Xie, Adv. Mater. 29(2017) 1701687.[103] D.F. Yan, Y.X. Li, J. Huo, R. Chen, L.M. Dai, S.Y. Wang, Adv. Mater. (2017), doi:10.1002/adma.201606459.[104] Y.X. Zhao, C. Chang, F. Teng, Y.F. Zhao, G.B. Chen, R. Shi, G.I.N. Waterhouse, W.F. Huang, T.R. Zhang, Adv. Energy Mater. (2017), doi:10.1002/aenm. 201700005.[105] H. Fan, X. Huang, L. Shang, Y.T. Cao, Y.F. Zhao, L.Z. Wu, C.H. Tung, Y.D. Yin, T.R. Zhang, Angew. Chem. Int. Ed. 55(2016) 2167-2170.[106] J. Yin, Q.H. Fan, Y.X. Li, F.Y. Cheng, P.P. Zhou, P.X. Xi, S.H. Sun, J. Am. Chem. Soc. 138(2016) 14546-14549.[107] W.J. Huang, X.Y. Ma, H. Wang, R.F. Feng, J.G. Zhou, P.N. Duchesne, P. Zhang, F.J. Chen, N. Han, F.P. Zhao, J.H. Zhou, W.B. Cai, Y.G. Li, Adv. Mater. 29(2017) 1703057.[108] J. Hu, B.L. Huang, C.X. Zhang, Z.L. Wang, Y.M. An, D. Zhou, H. Lin, M.K.H. Leung, S.H. Yang, Energ. Environ. Sci. 10(2017) 593-603.[109] L.L. Huo, B.C. Liu, G. Zhang, J. Zhang, ACS Appl. Mater. Interfaces 8(2016) 18107-18118.[110] Q. Wang, D.O. Hare, Chem. Rev. 112(2012) 4124-4155.[111] M.F. Shao, R.K. Zhang, Z.H. Li, M. Wei, D.G. Evans, X. Duan, Chem. Commun. 51(2015) 15880-15893.[112] M.F. Shao, M. Wei, X. Duan, Sci.China Chem. 45(2015) 109-123.[113] T.H. Wang, J.F. Li, Y. Su, C.C. Wang, Y. Gao, L.J. Chou, W.J. Yao, J. Energy Chem. 24(2015) 432-440.[114] B. Li, Z.X. Xu, F.L. Jing, S.Z. Luo, N. Wang, W. Chu, J. Energy Chem. 25(2016) 1078-1085.[115] J.Y. Wang, X.Y. Mei, L. Huang, Q.W. Zheng, Y.Q. Qiao, K.T. Zang, S.C. Mao, R.Y. Yang, Z. Zhang, Y.S. Gao, J. Energy Chem. 24(2015) 127-137.[116] Q.Q. Qin, J.Y. Wang, T.T. Zhou, Q.W. Zheng, L. Huang, Y. Zhang, P. Lu, A. Umar, B. Louis, Q. Wang, J. Energy Chem. 26(2017) 346-353.[117] J.W. Zhao, J.L. Chen, S.M. Xu, M.F. Shao, Q. Zhang, F. Wei, J. Ma, M. Wei, D.G. Evans, X. Duan, Adv. Funct. Mater. 24(2014) 2938-2946.[118] J.W. Nai, H.J. Yin, T.T. You, L.R. Zheng, J. Zhang, P.X. Wang, Z. Jin, Y. Tian, J.Z. Liu, Z.Y. Tang, L. Guo, Adv. Energy Mater. 5(2015) 1401880.[119] Z.H. Li, M.F. Shao, H.L. An, Z.X. Wang, S.M. Xu, M. Wei, D.G. Evans, X. Duan, Chem. Sci. 6(2015) 6624-6631.[120] J.B. Han, Y.B. Dou, J.W. Zhao, M. Wei, D.G. Evans, X. Duan, Small 9(2013) 98-106.[121] F.Y. Ning, M.F. Shao, C.L. Zhang, S.M. Xu, M. Wei, X. Duan, Nano Energy 7(2014) 134-142.[122] M.F. Shao, Z.H. Li, R.K. Zhang, F.Y. Ning, M. Wei, D.G. Evans, X. Duan, Small 11(2015) 3530-3538.[123] Z.H. Li, M.F. Shao, L. Zhou, R.K. Zhang, C. Zhang, J.B. Han, M. Wein, D.G. Evans, X. Duan, Nano Energy 20(2016) 294-304.[124] Z.Q. Liang, R.J. Huo, S.H. Yin, F.Z. Zhang, S.L. Xu, J. Mater. Chem. A 2(2014) 921-925.[125] J. Sun, H.M. Liu, X. Chen, D.G. Evans, W.S. Yang, X. Duan, Adv. Mater. 25(2013) 1125-1130.[126] C. Xie, Y.Y. Wang, K. Hu, L. Tao, X.B. Huang, J. Huo, S.Y. Wang, J. Mater. Chem. A 5(2017) 87-91.[127] C. Tang, H.F. Wang, X.L. Zhu, B.Q. Li, Q. Zhang, Part. Part. Syst. Charact. 33(2016) 473-486.[128] R.Z. Ma, T. Sasaki, Acc. Chem. Res. 48(2015) 136-143.[129] K. Yan, G.S. Wu, W. Jin, Energy Technol. 4(2016) 354-368.[130] M. Gong, H.J. Dai, Nano Res. 8(2015) 23-39.[131] J.F. Yu, Q. Wang, D. O'Hare, L.Y. Sun, Chem. Soc. Rev. (2017), doi:10.1039/c7cs00318h.[132] L. Qian, Z.Y. Lu, T.H. Xu, X.C. Wu, Y. Tian, Y.P. Li, Z.Y. Huo, X.M. Sun, X. Duan, Adv. Energy Mater. 5(2015) 1500245.[133] C. Zhang, M.F. Shao, L. Zhou, Z.H. Li, K.M. Xiao, M. Wei, ACS Appl. Mater. Interfaces 8(2016) 33697-33703.[134] Z.Y. Lu, L. Qian, Y. Tian, Y.P. Li, X.M. Sun, X. Duan, Chem. Commun. 52(2016) 908-911.[135] H.F. Liang, F. Meng, M. Caban-Acevedo, L.S. Li, A. Forticaux,, L.C. Xiu, Z.C. Wang, S. Jin, Nano Lett. 15(2015) 1421-1427.[136] C. Tang, H.F. Wang, H.S. Wang, F. Wei, Q. Zhang, J. Mater. Chem. A 4(2016) 3210-3216.[137] X.L. Zhu, C. Tang, H.F. Wang, B.Q. Li, Q. Zhang, C.Y. Li, C.H. Yang, F. Wei, J. Mater. Chem. A 4(2016) 7245-7250.[138] M. Gong, Y.G. Li, H.L. Wang, Y.Y. Liang, J.Z. Wu, J.G. Zhou, J. Wang, T. Rieger, F. Wei, H.J. Dai, J. Am. Chem. Soc. 135(2013) 8452-8455.[139] D.H. Youna, Y.B. Park, J.Y. Kim, G. Magesh, Y.J. Jang, J.S. Lee, J. Power Sources 294(2015) 437-443. [140] L. Wang, F. Dionigi, N.T. Nguyen, R. Kirchgeorg, M. Gliech, S. Grigorescu, P. Strasser, P. Schmuki, Chem. Mater. 27(2015) 2360-2366.[141] W.J. Chen, T.T. Wang, J.W. Xue, S.K. Li, Z.D. Wang, S. Sun, Small 13(2017) 1602420.[142] J.W. Huang, G.W. Hua, Y. Ding, M.C. Pang, B.C. Ma, J. Catal. 340(2016) 261-269.[143] Y. Hou, Z.H. Wen, S.M. Cui, X.L. Feng, J.H. Chen, Nano Lett. 16(2016) 2268-2277.[144] M.W. Louie, A.T. Bell, J. Am. Chem. Soc. 135(2013) 12329-12337.[145] L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, J. Am. Chem. Soc. 136(2014) 6744-6753.[146] B.Q. Li, S.Y. Zhang, C. Tang, X.Y. Cui, Q. Zhang, small 13(2017) 1700610.[147] H.F. Wang, C. Tang, B. Wang, B.Q. Li, Q. Zhang, Adv. Mater. (2017), doi:10.1002/adma.201702327.[148] F. Song, X.L. Hu, J. Am. Chem. Soc. 136(2014) 16481-16484.[149] F. Song, X.L. Hu, Nat. Commun. 5(2014) 4477-4486.[150] C. Zhang, J.W. Zhao, L. Zhou, Z.H. Li, M.F. Shao, M. Wei, J. Mater. Chem. A 4(2016) 11516-11523.[151] J.F. Ping, Y.X. Wang, Q.P. Lu, B. Chen, J.Z. Chen, Y. Huang, Q.L. Ma, C.L. Tan, J. Yang, X.H. Cao, Z.J. Wang, J. Wu, Y.B. Ying, H. Zhang, Adv. Mater. 28(2016) 7640-7645.[152] W. Ma, R.Z. Ma, C.X. Wang, J.B. Liang, X.H. Liu, K.C. Zhou, T. Sasaki, ACS Nano 9(2015) 1977-1984.[153] S. Nayak, L. Mohapatra, K. Parida, J. Mater, Chem, A 3(2015) 18622-18635.[154] Y. Hou, Z.H. Wen, S.M. Cui, X.L. Feng, J.H. Chen, Nano Lett. 16(2016) 2268-2277.[155] J.Q. Sun, H.J. Yin, P.R. Liu, Y. Wang, X.D. Yao, Z.Y. Tang, H.J. Zhao, Chem. Sci. 7(2016) 5640-5646.[156] Y.Y. Wang, Y.Q. Zhang, Z.J. Liu, C. Xie, S. Feng, D.D. Liu, M.F. Shao, S.Y. Wang, Angew. Chem. Int. Ed. 56(2017) 5867-5871.[157] W. Liu, H. Liu, L.N. Dang, H.X. Zhang, X.L. Wu, B. Yang, Z.J. Li, X.W. Zhang, L.C. Lei, S. Jin, Adv. Funct. Mater. 27(2017) 1603904.[158] R.K. Zhang, M.F. Shao, S.M. Xu, F.Y. Ning, L. Zhou, M. Wei, Nano Energy 33(2017) 21-28.[159] M.C. Luo, Y.J. Sun, L. Wang, S.J. Guo, Adv. Energy Mater. 7(2017) 1602073.[160] X. Lang, G.F. Han, B.B. Xiao, L. Gu, Z.Z. Yang, Z. Wen, Y.F. Zhu, M. Zhao, J.C. Li, Q. Jiang, Adv. Funct. Mater 25(2015) 230-237.[161] L.Z. Bu, S.J. Guo, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J.L. Yao, J. Guo, X.Q. Huang, Nat. Commun. 7(2016) 11850-11857.[162] Z.X. Fan, X. Zhang, J. Yang, X.J. Wu, Z.D. Liu, W. Huang, H. Zhang, J. Am. Chem. Soc. 137(2015) 10910-10913.[163] Z.X. Fan, Y.H. Zhu, X. Huang, Y. Han, Q.X. Wang, Q. Liu, Y. Huang, C.L. Gan, H. Zhang, Angew. Chem. Int. Ed. 54(2015) 5672-5676.[164] X.Z. Yu, Z.G. Shen, Z. Xu, S. Wang, Appl. Surf. Sci 253(2007) 7082-7088.[165] P. Magudapathy, S.K. Srivastava, P. Gangopadhyay, S. Amirthapandian, K. Saravanan, A. Das, B.K. Panigrahi, Chem. Phys. Lett. 667(2017) 38-44.[166] H. Chen, X.X. Huang, L.J. Zhou, G.D. Li, M.H. Fan, X.X. Zou, ChemCatChem 8(2016) 992-1000.[167] X.Q. Ji, S. Hao, F.L. Qu, J.Q. Liu, G. Du, A.M. Asiri, L. Chen, X.P. Sun, Nanoscale 9(2017) 7714-7718.[168] X. Wang, J. Su, H. Chen, G.D. Li, Z.F. Shi, H.F. Zou, X.X. Zou, ACS Appl. Mater. Interfaces 9(2017) 16335-16342.[169] K. Zhou, W.J. Zhou, X.J. Liu, Y.H. Sang, S.Z. Ji, W. Li, J. Lu, L.G. Li, W.H. Niu, H. Liu, Nano Energy 12(2015) 510-520.[170] L.Y. Chen, X.W. Guo, J.H. Han, P. Liu, X.D. Xu, A. Hirata, M.W. Chen, J. Mater. Chem. A 3(2015) 3620-3626.[171] M. Abirami, S.M. Hwang, J. Yang, S.T. Senthilkumar, J. Kim, W.S. Go, B. Senthilkumar, H.K. Song, Y. Kim, ACS Appl. Mater. Interfaces 8(2016) 32778-32787.[172] N. Chen, J. Qi, X. Du, Y. Wang, W. Zhang, Y. Y.Wang, Y.B. Lu, S.Y. Wang, RSC Adv. 6(2016) 103541-103545.[173] C.C. Sun, J. Yang, Z.Y. Dai, X.W. Wang, Y.F. Zhang, L.Q. Li, P. Chen, W. Huang, W X.C. Dong, Nano Res. 9(2016) 1300-1309.[174] Q. Lu, Y.P. Chen, W.F. Li, J.G.G. Chen, J.Q. Xiao, F. Jiao, J. Mater. Chem. A 1(2013) 2331-2336.[175] R.A. Patil, C.P. Chang, R.S. Devan, Y. Liou, Y.R. Ma, ACS Appl. Mater. Interfaces 8(2016) 9872-9880.[176] J.A. Haber, E. Anzenburg, J. Yano, C. Kisielowski, J.M. Gregoire, Adv. Energy Mater. 5(2015) 1402307.[177] Y.L. Zhu, W. Zhou, Y.B. Chen, J. Yu, M.L. Liu, Z.P. Shao, Adv. Mater. 27(2015) 7150-7160.[178] Y.L. Zhu, W. Zhou, J. Sunarso, Y.Z. Zhong, Z.P. Shao, Adv. Funct. Mater. 26(2016) 5862-5872.[179] E. Davari, A.D. Johnson, A. Mittal, M. Xiong, D.G. Ivey, Electrochim. Acta 211(2016) 735-743.[180] W. Huang, H.H. Zhong, D.Q. Li, P.G. Tang, Y.J. Feng, Electrochim. Acta 173(2015) 575-580.[181] C.Z. Yuan, H.B. Wu, Yi Xie, X.W. (David) Lou, Angew. Chem. Int. Ed. 53(2014) 1488-1504.[182] S. He, S.T. Zhang, J. Lu, Y.F. Zhao, J. Ma, M. Wei, D.G. Evans, Chem. Commun. 47(2011) 10797-10799.[183] C. Li, L.Y. Wang, M. Wei, D.G. Evans, X. Duan, J. Mater. Chem. 18(2008) 2666-2672.[184] Y.F. Zhao, S.T. Zhang, B. Li, H. Yan, S. He, L. Tian, W.Y. Shi, J. Ma, M. Wei, D.G. Evans, X. Duan, Chem. Eur. J. 17(2011) 13175-13181.[185] J. Fu, F.M. Hassan, C. Zhong, J. Lu, H. Liu, A.P. Yu, Z.W. Chen, 2017, Doi:10.1002/adma.201702526.[186] I. Song, C. Park, M. Hong, J. Baik, H.J. Shin, H.C. Choi, Angew. Chem. Int. Ed. 53(2014) 1266-1269.[187] Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T. Wang, C.S. Chang, L.J. Li, T.W. Lin, Adv. Mater. 24(2012) 2320-2325.[188] Q. Zhang, X. Xiao, R. Zhao, D. Lv, G. Xu, Z. Lu, L. Sun, S. Lin, X. Gao, J. Zhou, C. Jin, F. Ding, L. Jiao, Angew. Chem. Int. Ed. 54(2015) 8957-8960.[189] W. Bryks, M. Wette, N. Velez, S.W. Hsu, A.R. Tao, J. Am. Chem. Soc. 136(2014) 6175-6178.[190] G.X. Ma, Y.L. Zhou, X.Y. Li, K. Sun, S.Q. Liu, J.Q. Hu, N.A. Kotov, ACS Nano 7(2013) 9010-9018.[191] P.L. Saldanha, R. Brescia, M. Prato, H.B. Li, M. Povia, L. Manna, V. Lesnyak, Chem. Mater. 26(2014) 1442-1449.[192] P.X. Zhang, Y.G. Wang, Y.Q. Huang, T. Zhang, G.S. Wu, J. Li, Catal. Today 165(2011) 80-87.[193] M.D. Esrafli, V. Mokhtar Teymurian, R. Nurazar, Surf. Sci. 632(2015) 118-125.[194] M.C. Acevedo, M.L. Stone, J.R. Schmidt, J.G. Thomas, Q. Ding, H.C. Chang, M.L. Tsai, J.H. He, S. Jin, Nat. Mater. 14(2015) 1245-1253.[195] W. Liu, E.Y. Hu, H. Jiang, Y.J. Xiang, Z. Weng, M. Li, Q. Fan, X.Q. Yu, E.I. Altman, H.L. Wang, Nat. Common. 7(2016) 10771.[196] J.F. Xie, Y. Xie, Chem. Eur. J. 22(2016) 3588-3598.[197] A.M. Alexander, J.S.J. Hargreaves, Chem. Soc. Rev. 39(2010) 4388-4401.[198] Y.Y. Dong, Y.J. Deng, J.H. Zeng, H.Y. Song, S.J. Liao, J. Mater. Chem. A 5(2017) 5829-5837.[199] J. Li, F. Yu, M.R. Wang, Y.Q. Lai, H. Wang, X.K. Lei, J. Fang, Int. J. Hydrog. Energy 42(2017) 2996-3005.[200] X.L. Tian, J.M. Luo, H.X. Nan, H.B. Zou, R. Chen, T. Shu, X.H. Li, Y.W. Li, H.Y. Song, S.J. Liao, R.R. Adzic, J. Am. Chem. Soc. 138(2016) 1575-1583.[201] Y.H. Xiao, G.H. Zhan, Z.G. Fu, Z.C. Pan, C.M. Xiao, S.K. Wu, C. Chen, G.H. Hu, Z.G. Wei, J. Power Sources 284(2015) 296-304.[202] G.H. Zhan, Z.G. Fu, D.L. Sun, Z.C. Pan, C.M. Xiao, S.K. Wu, C. Chen, G.H. Hu, Z.G. Wei, J. Power Sources 326(2016) 84-92.[203] C.C. Hou, S. Cao, W.F. Fu, Y. Chen, ACS Appl. Mater. Interfaces 7(2015) 28412-28419.[204] A.L. Han, H.L. Chen, Z.J. Sun, J. Xu, P.W. Du, Chem. Commun. 51(2015) 11626-11629.[205] E. Muthuswamy, S.L. Brock, J. Am. Chem. Soc. 132(2010) 15849-15851.[206] C.D. Wang, T. Ding, Y. Sun, X.L. Zhou, Y. Liu, Q. Yang, Nanoscale 7(2015) 19241-19249.[207] A.E. Henkes, Y. Vasquez, R.E. Schaak, J. Am. Chem. Soc. 129(2007) 1896-1897.[208] P.L. He, X.L. Yu, X.W. (David) Lou, Angew. Chem. Int. Ed. 56(2017) 3897-3900.[209] W.L. Gua, L.F. Gan, X.Y. Zhang, E.K. Wang, J. Wang, Nano Energy 34(2017) 421-427. |
[1] | Hong Yuan, Qiang Zhang. Practical fuel cells enabled by unprecedented oxygen reduction reaction on 3D nanostructured electrocatalysts[J]. 能源化学(英文版), 2020, 48(9): 107-108. |
[2] | Naveed Altaf, Shuyu Liang, Liang Huang, Qiang Wang. Electro-derived Cu-Cu2O nanocluster from LDH for stable and selective C2 hydrocarbons production from CO2 electrochemical reduction[J]. 能源化学(英文版), 2020, 48(9): 169-180. |
[3] | Hongcheng Gao, Shunlian Ning, Jiasui Zou, Shuang Men, Yuan Zhou, Xiujun Wang, Xiongwu Kang. The electrocatalytic activity of BaTiO3 nanoparticles towards polysulfides enables high-performance lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 48(9): 208-216. |
[4] | Yuhang Li, Yexiang Tong, feng Peng. Metal-free carbocatalysis for electrochemical oxygen reduction reaction: Activity origin and mechanism[J]. 能源化学(英文版), 2020, 48(9): 308-321. |
[5] | Aili Wang, Zhiyuan Cao, Jianwei Wang, Shurong Wang, chengbo Li, Nuo Li, Lisha Xie, Yong Xiang, Tingshuai Li, Xiaobin Niu, Liming Ding, feng Hao. Vacancy defect modulation in hot-casted NiOx film for efficient inverted planar perovskite solar cells[J]. 能源化学(英文版), 2020, 48(9): 426-434. |
[6] | Rong Jiang, Xin Chen, Jinxia Deng, Tianyu Wang, Kang Wang, Yanli Chen, Jianzhuang Jiang. In-situ growth of ZnS/FeS heterojunctions on biomass-derived porous carbon for efficient oxygen reduction reaction[J]. 能源化学(英文版), 2020, 47(8): 79-85. |
[7] | Yuxin Li, Xiang Zhu, Yawen Chen, Shiqiao Zhang, Jia Li, Jianguo Liu. Rapid synthesis of highly active Pt/C catalysts with various metal loadings from single batch platinum colloid[J]. 能源化学(英文版), 2020, 47(8): 138-145. |
[8] | Mengfei Qiao, Ying Wang, Thomas Wågberg, Xamxikamar Mamat, Xun Hu, Guoan Zou, Guangzhi Hu. Ni-Co bimetallic coordination effect for long lifetime rechargeable Zn-air battery[J]. 能源化学(英文版), 2020, 47(8): 146-154. |
[9] | Yuxiao Ding, Qingqing Gu, Alexander Klyushin, Xing Huang, Sakeb H.Choudhury, Ioannis Spanos,feihong Song, Rik Mom, Pascal Düngen, Anna K.Mechler, Robert Schlögl, Saskia Heumann. Dynamic carbon surface chemistry: Revealing the role of carbon in electrolytic water oxidation[J]. 能源化学(英文版), 2020, 47(8): 155-159. |
[10] | Meng Zha,chengang Pei, Quan Wang, Guangzhi Hu, Ligang Feng. Electrochemical oxygen evolution reaction efficiently boosted by selective fluoridation of FeNi3 alloy/oxide hybrid[J]. 能源化学(英文版), 2020, 47(8): 166-171. |
[11] | Puxuan Yan, Meilin Huang,benzhi Wang, Zixia Wan, Mancai Qian, Hu Yan, Tayirjan Taylor Isimjan, Jianniao Tian, Xiulin Yang. Oxygen defect-rich double-layer hierarchical porous Co3O4 arrays as high-efficient oxygen evolution catalyst for overall water splitting[J]. 能源化学(英文版), 2020, 47(8): 299-306. |
[12] | Wei Liu, Hongxiu Zhang,chuanming Li, Xin Wang, Jingquan Liu, Xingwang Zhang. Non-noble metal single-atom catalysts prepared by wet chemical method and their applications in electrochemical water splitting[J]. 能源化学(英文版), 2020, 47(8): 333-345. |
[13] | Xian Wang, Zelin Wang, Ya Bai, Ling Tan, Yanqi Xu, Xiaojie Hao, Jikang Wang, Abdul Hanif Mahadi, Yufei Zhao, Lirong Zheng, Yu-Fei Song. Tuning the selectivity of photoreduction of CO2 to syngas over Pd/layered double hydroxide nanosheets under visible light up to 600 nm[J]. 能源化学(英文版), 2020, 46(7): 1-7. |
[14] | Baoxin Wu, Hao Qian, Zhongwu Nie, Zhongping Luo, Zixu Wu, Peng Liu, Hao He, Jianghong Wu, Shuguang Chen, Feifei Zhang. Ni3S2 nanorods growing directly on Ni foam for allsolid-state asymmetric supercapacitor and efficient overall water splitting[J]. 能源化学(英文版), 2020, 46(7): 178-186. |
[15] | Jie Gan, Jiankang Zhang, Baiyan Zhang, Wenyao Chen, Dongfang Niu, Yong Qin, Xuezhi Duan, Xinggui Zhou. Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition[J]. 能源化学(英文版), 2020, 45(6): 59-66. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||