能源化学(英文) ›› 2018, Vol. 27 ›› Issue (1): 57-72.DOI: 10.1016/j.jechem.2017.10.033
Yan Hana,b, Yu Geb, Yunfeng Chaob, Caiyun Wangb, Gordon G. Wallaceb
收稿日期:
2017-09-29
修回日期:
2017-10-31
出版日期:
2018-01-15
发布日期:
2018-01-13
通讯作者:
Caiyun Wang, Gordon G. Wallace
作者简介:
Yan Han is a lecturer at the College of Physics and Materials Science, Tianjin Normal University;Yu Ge received his B.S. degree and M.S. degree from the School of Chemistry and Chemical Engineering at Shanghai Jiaotong University in 2009 and 2012;Yunfeng Chao received his B.S. degree and M.S. degree from Zhengzhou University in 2012 and 2015, respectively;Caiyun Wang completed her BSc at Shandong Normal University, MSc in Physical Organic Chemistry at Nankai University, and Ph.D. in Materials Engineering at the University of Wollongong.
基金资助:
Funding from the Australian Research Council Centre of Excellence Scheme(CE 140100012) is gratefully acknowledged. Y. Han is grateful to the funding from National Natural Science Foundation of China (51502206) and the CSC scholarship from the Ministry of Education of PR China. Y. Chao acknowledges the support of the CSC scholarship from the Ministry of Education of PR China.
Yan Hana,b, Yu Geb, Yunfeng Chaob, Caiyun Wangb, Gordon G. Wallaceb
Received:
2017-09-29
Revised:
2017-10-31
Online:
2018-01-15
Published:
2018-01-13
Contact:
Caiyun Wang, Gordon G. Wallace
Supported by:
Funding from the Australian Research Council Centre of Excellence Scheme(CE 140100012) is gratefully acknowledged. Y. Han is grateful to the funding from National Natural Science Foundation of China (51502206) and the CSC scholarship from the Ministry of Education of PR China. Y. Chao acknowledges the support of the CSC scholarship from the Ministry of Education of PR China.
摘要: High performance supercapacitors coupled with mechanical flexibility are needed to drive flexible and wearable electronics that have anesthetic appeal and multi-functionality. Two dimensional (2D) materials have attracted attention owing to their unique physicochemical and electrochemical properties, in addition to their ability to form hetero-structures with other nanomaterials further improving mechanical and electrochemical properties. After a brief introduction of supercapacitors and 2D materials, recent progress on flexible supercapacitors using 2D materials is reviewed. Here we provide insights into the structure-property relationships of flexible electrodes, in particular free-standing films. We also present our perspectives on the development of flexible supercapacitors.
Yan Han, Yu Ge, Yunfeng Chao, Caiyun Wang, Gordon G. Wallace. Recent progress in 2D materials for flexible supercapacitors[J]. 能源化学(英文), 2018, 27(1): 57-72.
Yan Han, Yu Ge, Yunfeng Chao, Caiyun Wang, Gordon G. Wallace. Recent progress in 2D materials for flexible supercapacitors[J]. Journal of Energy Chemistry, 2018, 27(1): 57-72.
[1] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Fut. Gener. Comput. Syst. 29(2013) 1645-1660.[2] F. Carpi, D. De Rossi, IEEE Trans. Inf. Technol. Biomed. 9(2005) 295-318.[3] J.A. Rogers, T. Someya, Y. Huang, Science 327(2010) 1603-1607.[4] D.J. Lipomi, Z. Bao, Energy Environ. Sci. 4(2011) 3314-3328.[5] H. Nishide, K. Oyaizu, Science 319(2008) 737-738.[6] D. Larcher, J.M. Tarascon, Nat. Chem. 7(2015) 19-29.[7] M. Armand, J.M. Tarascon, Nature 451(2008) 652-657.[8] P. Poizot, F. Dolhem, Energy Environ. Sci. 4(2011) 2003-2019.[9] H. Chen, M. Armand, G. Demailly, F. Dolhem, P. Poizot, J.M. Tarascon, ChemSusChem 1(2008) 348-355.[10] J.M. Tarascon, M. Armand, Nature 414(2001) 359-367.[11] J.B. Goodenough, Y. Kim, Chem. Mater. 22(2009) 587-603.[12] B. Scrosati, J. Garche, J. Power Sources 195(2010) 2419-2430.[13] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 4(2011) 3243-3262.[14] G. Zhou, F. Li, H.M. Cheng, Energy Environ. Sci. 7(2014) 1307-1338.[15] H. Gwon, J. Hong, H. Kim, D.H. Seo, S. Jeon, K. Kang, Energy Environ. Sci. 7(2014) 538-551.[16] P.G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed. 47(2008) 2930-2946.[17] S.M. Whittingham, Chem. Rev. 104(2004) 4271-4302.[18] M. Reddy, G. Subba Rao, B. Chowdari, Chem. Rev. 113(2013) 5364-5457.[19] Z. Song, H. Zhou, Energy Environ. Sci. 6(2013) 2280-2301.[20] Y. Liang, Z. Tao, J. Chen, Adv. Energy Mater. 2(2012) 742-769.[21] P. Novák, K. Müller, K. Santhanam, O. Haas, Chem. Rev. 97(1997) 207-282.[22] R. Holze, Y. Wu, Electrochim. Acta 122(2014) 93-107.[23] X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong, G. Shen, Adv. Mater. 26(2014) 4763-4782.[24] K. Xie, B. Wei, Adv. Mater. 26(2014) 3592-3617.[25] C. Wang, G.G. Wallace, Electrochim. Acta 175(2015) 87-95.[26] K. Jost, G. Dion, Y. Gogotsi, J. Mater. Chem. A 2(2014) 10776-10787.[27] L. Nyholm, G. Nyström, A. Mihranyan, M. Strømme, Adv. Mater. 23(2011) 3751-3769.[28] Y.Z. Zhang, Y. Wang, T. Cheng, W.Y. Lai, H. Pang, W. Huang, Chem. Soc. Rev. 44(2015) 5181-5199.[29] S.Y. Lee, K.H. Choi, W.S. Choi, Y.H. Kwon, H.R. Jung, H.C. Shin, J.Y. Kim, Energy Environ. Sci. 6(2013) 2414-2423.[30] B.E. Conway, J. Electrochem. Soc. 138(1991) 1539-1548.[31] Y. Wang, Y. Xia, Adv. Mater. 25(2013) 5336-5342.[32] Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 45(2016) 5925-5950.[33] Z. Yu, L. Tetard, L. Zhai, J. Thomas, Energy Environ. Sci 8(2015) 702-730.[34] H. Choi, H. Yoon, Nanomaterials 5(2015) 906-936.[35] M. Vangari, T. Pryor, L. Jiang, J. Energy Eng. 139(2013) 72-79.[36] M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanoscale 5(2013) 72-88.[37] A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4(2005) 366-377.[38] Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, ACS Nano 7(2013) 174-182.[39] F. Liu, S. Song, D. Xue, H. Zhang, Adv. Mater. 24(2012) 1089-1094.[40] Q. Lu, J.G. Chen, J.Q. Xiao, Angew. Chem. Int. Ed. Engl. 52(2013) 1882-1889.[41] X. Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang, Adv. Mater. 24(2012) 5979-6004.[42] Z. Fan, Q. Zhao, T. Li, J. Yan, Y. Ren, J. Feng, T. Wei, Carbon 50(2012) 1699-1703.[43] Y. Wang, Y. Lei, J. Li, L. Gu, H. Yuan, D. Xiao, ACS Appl. Mater. Interfaces 6(2014) 6739-6747.[44] M. Fan, B. Ren, L. Yu, Q. Liu, J. Wang, D. Song, J. Liu, X. Jing, L. Liu, CrystEngComm 16(2014) 10389-10394.[45] X.Y. Yu, L. Yu, X.W.D. Lou, Adv. Energy Mater. 6(2016) 1501333.[46] Y. Liu, X. Peng, Appl. Mater. Today 8(2017) 104-115.[47] X. Peng, L. Peng, C. Wu, Y. Xie, Chem. Soc. Rev. 43(2014) 3303-3323.[48] J.E. Kim, J.H. Oh, M. Kotal, N. Koratkar, I.K. Oh, Nano Today 14(2017) 100-123.[49] H. Wang, H. Yuan, S. Sae Hong, Y. Li, Y. Cui, Chem. Soc. Rev. 44(2015) 2664-2680.[50] A.H. Khan, S. Ghosh, B. Pradhan, A. Dalui, L.K. Shrestha, S. Acharya, K. Ariga, Bull. Chem. Soc. Jpn. 90(2017) 627-648.[51] H. Zhang, ACS Nano 9(2015) 9451-9469.[52] W. Yang, X. Zhang, Y. Xie, Nano Today 11(2016) 793-816.[53] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(2004) 666-669.[54] C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nanotechnol. 5(2010) 722-726.[55] H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D.W. Fam, A.I. Tok, Q. Zhang, H. Zhang, Small 8(2012) 63-67.[56] H. Li, J. Wu, Z. Yin, H. Zhang, Acc. Chem. Res. 47(2014) 1067-1075.[57] D.J. Late, B. Liu, H.S.S.R. Matte, C.N.R. Rao, V.P. Dravid, Adv. Funct. Mater. 22(2012) 1894-1905.[58] K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O'Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O'Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J.N. Coleman, Nat. Mater. 13(2014) 624-630.[59] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun'Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, Nat. Nanotechnol. 3(2008) 563-568.[60] U. Khan, P. May, A. O'Neill, A.P. Bell, E. Boussac, A. Martin, J. Semple, J.N. Coleman, Nanoscale 5(2013) 581-587.[61] D. Hanlon, C. Backes, T.M. Higgins, M. Hughes, A. O'Neill, P. King, N. McEvoy, G.S. Duesberg, B. Mendoza Sanchez, H. Pettersson, V. Nicolosi, J.N. Coleman, Chem. Mater. 26(2014) 1751-1763.[62] J.R. Brent, N. Savjani, E.A. Lewis, S.J. Haigh, D.J. Lewis, P. O'Brien, Chem. Commun. (Camb) 50(2014) 13338-13341.[63] K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490(2012) 192-200.[64] L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, R.B. Kaner, J. Mater. Chem. 15(2005) 974-978.[65] M. Acerce, D. Voiry, M. Chhowalla, Nat. Nanotechnol. 10(2015) 313-318.[66] Y. Zhu, L. Peng, D. Chen, G. Yu, Nano Lett. 16(2016) 742-747.[67] M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 135(2013) 10274-10277.[68] M. Yi, Z. Shen, J. Mater. Chem. A 3(2015) 11700-11715.[69] J.N. Coleman, M. Lotya, A. O'Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, Science 331(2011) 568-571.[70] R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O'Neill, G.S. Duesberg, J.C. Grunlan, G. Moriarty, J. Chen, J. Wang, A.I. Minett, V. Nicolosi, J.N. Coleman, Adv. Mater. 23(2011) 3944-3948.[71] Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H.H. Hng, H. Zhang, Angew. Chem. Int. Ed. Engl. 51(2012) 9052-9056.[72] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Angew. Chem. Int. Ed. 50(2011) 11093-11097.[73] K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Mullen, J. Am. Chem. Soc. 136(2014) 6083-6091.[74] C. Wu, X. Lu, L. Peng, K. Xu, X. Peng, J. Huang, G. Yu, Y. Xie, Nat. Commun. 4(2013) 2431.[75] C. Lin, X. Zhu, J. Feng, C. Wu, S. Hu, J. Peng, Y. Guo, L. Peng, J. Zhao, J. Huang, J. Yang, Y. Xie, J. Am. Chem. Soc. 135(2013) 5144-5151.[76] J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, Y. Xie, J. Am. Chem. Soc. 133(2011) 17832-17838.[77] W.S. Hummers Jr, R.E. Offeman, J. Am. Chem. Soc. 80(1958) 1339-1339.[78] M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110(2010) 132-145.[79] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nano 3(2008) 101-105.[80] C.D. Zangmeister, Chem. Mater. 22(2010) 5625-5629.[81] H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, X.-H. Xia, ACS Nano 3(2009) 2653-2659.[82] Y. Shi, H. Li, L.J. Li, Chem. Soc. Rev. 44(2015) 2744-2756.[83] A. Ambrosi, C.K. Chua, N.M. Latiff, A.H. Loo, C.H.A. Wong, A.Y.S. Eng, A. Bonanni, M. Pumera, Chem. Soc. Rev. 45(2016) 2458-2493.[84] Q. Ji, Y. Zhang, Y. Zhang, Z. Liu, Chem. Soc. Rev. 44(2015) 2587-2602.[85] C. Tan, H. Zhang, Nat. Commun. 6(2015) 7873.[86] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Science 324(2009) 1312-1314.[87] X. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, R.S. Ruoff, J. Am. Chem. Soc. 133(2011) 2816-2819.[88] L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Nano Lett. 10(2010) 3209-3215.[89] S. Wang, X. Wang, J.H. Warner, ACS Nano 9(2015) 5246-5254.[90] G. Ning, W. Jinquan, F. Lili, J. Yi, L. Dayao, Z. Hongwei, W. Kunlin, W. Dehai, Nanotechnology 23(2012) 415605.[91] Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T. Wang, C.S. Chang, L.J. Li, T.W. Lin, Adv. Mater. 24(2012) 2320-2325.[92] X. Lu, M.I. Utama, J. Lin, X. Gong, J. Zhang, Y. Zhao, S.T. Pantelides, J. Wang, Z. Dong, Z. Liu, W. Zhou, Q. Xiong, Nano Lett. 14(2014) 2419-2425.[93] Y.H. Chang, W. Zhang, Y. Zhu, Y. Han, J. Pu, J.K. Chang, W.T. Hsu, J.K. Huang, C.L. Hsu, M.H. Chiu, ACS Nano 8(2014) 8582-8590.[94] H.R. Gutierrez, N. Perea-Lopez, A.L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V.H. Crespi, H. Terrones, M. Terrones, Nano Lett. 13(2013) 3447-3454.[95] J.K. Huang, J. Pu, C.L. Hsu, M.H. Chiu, Z.Y. Juang, Y.H. Chang, W.H. Chang, Y. Iwasa, T. Takenobu, L.J. Li, ACS Nano 8(2013) 923-930.[96] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, ACS Nano 7(2013) 8963-8971.[97] M. Choucair, P. Thordarson, J.A. Stride, Nat. Nanotechnol. 4(2009) 30-33.[98] Y. Du, Z. Yin, J. Zhu, X. Huang, X.J. Wu, Z. Zeng, Q. Yan, H. Zhang, Nat. Commun. 3(2012) 1177.[99] Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M.S. Park, L. Jiang, J.H. Kim, S.X. Dou, Nat. Commun. 5(2014) 3813.[100] X.J. Wu, X. Huang, X. Qi, H. Li, B. Li, H. Zhang, Angew. Chem. Int. Ed. Engl. 53(2014) 8929-8933.[101] B. Mahler, V. Hoepfner, K. Liao, G.A. Ozin, J. Am. Chem. Soc. 136(2014) 14121-14127.[102] J.S. Son, J.H. Yu, S.G. Kwon, J. Lee, J. Joo, T. Hyeon, Adv. Mater. 23(2011) 3214-3219.[103] S. Eigler, M. Enzelberger-Heim, S. Grimm, P. Hofmann, W. Kroener, A. Geworski, C. Dotzer, M. Rockert, J. Xiao, C. Papp, O. Lytken, H.P. Steinruck, P. Muller, A. Hirsch, Adv. Mater. 25(2013) 3583-3587.[104] Y. Fang, Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng, D. Zhao, J. Am. Chem. Soc. 135(2013) 1524-1530.[105] K. Zhang, H.J. Kim, X. Shi, J.T. Lee, J.M. Choi, M.S. Song, J.H. Park, Inorg. Chem. 52(2013) 9807-9812.[106] H. Liang, F. Meng, M. Caban-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang, S. Jin, Nano Lett. 15(2015) 1421-1427.[107] L. Zhang, H. Yao, Z. Li, P. Sun, F. Liu, C. Dong, J. Wang, Z. Li, M. Wu, C. Zhang, B. Zhao, J. Alloys Compd. 711(2017) 31-41.[108] Z. Fan, X. Huang, Y. Han, M. Bosman, Q. Wang, Y. Zhu, Q. Liu, B. Li, Z. Zeng, J. Wu, W. Shi, S. Li, C.L. Gan, H. Zhang, Nat. Commun. 6(2015) 6571.[109] X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Nat. Nanotechnol. 6(2011) 28-32.[110] S. Gao, Y. Sun, F. Lei, L. Liang, J. Liu, W. Bi, B. Pan, Y. Xie, Angew. Chem. Int. Ed. Engl 53(2014) 12789-12793.[111] Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu, J. Piao, T. Yao, C. Wu, S. Hu, S. Wei, Y. Xie, Nat. Commun. 3(2012) 1057.[112] D. Yoo, M. Kim, S. Jeong, J. Han, J. Cheon, J. Am. Chem. Soc. 136(2014) 14670-14673.[113] A.K. Geim, K.S. Novoselov, Nat. Mater. 6(2007) 183-191.[114] Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Chem. Soc. Rev. 44(2015) 3639-3665.[115] X. Yang, J. Zhu, L. Qiu, D. Li, Adv. Mater. 23(2011) 2833-2838.[116] X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Science 341(2013) 534-537.[117] Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, ACS Nano 7(2013) 4042-4049.[118] A. Yu, I. Roes, A. Davies, Z. Chen, Appl. Phys. Lett. 96(2010) 253105.[119] Z. Weng, Y. Su, D.-W. Wang, F. Li, J. Du, H.-M. Cheng, Adv. Energy Mater. 1(2011) 917-922.[120] S. Zheng, X. Tang, Z.-S. Wu, Y.-Z. Tan, S. Wang, C. Sun, H.-M. Cheng, X. Bao, ACS Nano 11(2017) 2171-2179.[121] C. Zhao, K. Shu, C. Wang, S. Gambhir, G.G. Wallace, Electrochim. Acta 172(2015) 12-19.[122] Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, L. Qu, Adv. Mater. 25(2013) 2326-2331.[123] Y. Li, K. Sheng, W. Yuan, G. Shi, Chem. Commun. 49(2013) 291-293.[124] L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Nat. Commun. 5(2014) 3754.[125] X. Wang, G. Shi, Energy Environ. Sci. 8(2015) 790-823.[126] W.K. Chee, H.N. Lim, Z. Zainal, N.M. Huang, I. Harrison, Y. Andou, J. Phys. Chem. C 120(2016) 4153-4172.[127] R.K.L. Tan, S.P. Reeves, N. Hashemi, D.G. Thomas, E. Kavak, R. Montazami, N.N. Hashemi, J. Mater. Chem. A 5(2017) 17777-17803.[128] C. Wang, D. Li, C.O. Too, G.G. Wallace, Chem. Mater. 21(2009) 2604-2606.[129] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature 448(2007) 457-460.[130] G. Wang, X. Sun, F. Lu, H. Sun, M. Yu, W. Jiang, C. Liu, J. Lian, Small 8(2012) 452-459.[131] L. Qiu, X. Yang, X. Gou, W. Yang, Z.-F. Ma, G.G. Wallace, D. Li, Chem.-A Eur. J. 16(2010) 10653-10658.[132] L. Huang, C. Li, G. Shi, J. Mater. Chem. A 2(2014) 968-974.[133] K. Shu, C. Wang, M. Wang, C. Zhao, G.G. Wallace, J. Mater. Chem. A 2(2014) 1325-1331.[134] Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 4(2010) 1963-1970.[135] Y. Liu, B. Weng, J.M. Razal, Q. Xu, C. Zhao, Y. Hou, S. Seyedin, R. Jalili, G.G. Wallace, J. Chem. 5(2015) 17045.[136] Y. Ge, C. Wang, K. Shu, C. Zhao, X. Jia, S. Gambhir, G.G. Wallace, RSC Adv. 5(2015) 102643-102651.[137] S. Li, K. Shu, C. Zhao, C. Wang, Z. Guo, G. Wallace, H.K. Liu, ACS Appl. Mater. Interface 6(2014) 16679-16686.[138] A. Sumboja, C.Y. Foo, X. Wang, P.S. Lee, Adv. Mater. 25(2013) 2809-2815.[139] M. Li, Z. Tang, M. Leng, J. Xue, Adv. Funct. Mater. 24(2014) 7495-7502.[140] C.-M. Chen, Q. Zhang, C.-H. Huang, X.-C. Zhao, B.-S. Zhang, Q.-Q. Kong, M.-Z. Wang, Y.-G. Yang, R. Cai, D. Sheng Su, Chem. Commun. 48(2012) 7149-7151.[141] B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, Y.S. Huh, ACS Nano 6(2012) 4020-4028.[142] X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Small 7(2011) 3163-3168.[143] P. Yu, X. Zhao, Z. Huang, Y. Li, Q. Zhang, J. Mater. Chem. A 2(2014) 14413-14420.[144] J. Yan, Y. Ding, C. Hu, H. Cheng, N. Chen, Z. Feng, Z. Zhang, L. Qu, J. Mater. Chem. A 2(2014) 16786-16792.[145] S.H. Lee, H.W. Kim, J.O. Hwang, W.J. Lee, J. Kwon, C.W. Bielawski, R.S. Ruoff, S.O. Kim, Angew. Chem. Int. Ed. 49(2010) 10084-10088.[146] Y. Li, J. Chen, L. Huang, C. Li, J.-D. Hong, G. Shi, Adv. Mater. 26(2014) 4789-4793.[147] Z. Niu, J. Chen, H.H. Hng, J. Ma, X. Chen, Adv. Mater. 24(2012) 4144-4150.[148] Z. Xiong, C. Liao, W. Han, X. Wang, Adv. Mater. 27(2015) 4469-4475.[149] U.N. Maiti, J. Lim, K.E. Lee, W.J. Lee, S.O. Kim, Adv. Mater. 26(2014) 615-619.[150] L.L. Zhang, X. Zhao, M.D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger, R.S. Ruoff, Nano Lett. 12(2012) 1806-1812.[151] Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss, Y. Huang, X. Duan, Nat. Commun. 5(2014) 4554.[152] A.J. Heeger, Angew. Chem. Int. Ed. 40(2001) 2591-2611.[153] G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196(2011) 1-12.[154] Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, C. Zhi, Nano Energy 22(2016) 422-438.[155] R. Gangopadhyay, A. De, Chem. Mater. 12(2000) 608-622.[156] Y. Shi, J. Zhang, L. Pan, Y. Shi, G. Yu, Nano Today 11(2016) 738-762.[157] H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Energy Environ. Sci. 6(2013) 1185-1191.[158] K. Chi, Z. Zhang, J. Xi, Y. Huang, F. Xiao, S. Wang, Y. Liu, ACS Appl. Mater. Interfaces 6(2014) 16312-16319.[159] Y. Zhao, J. Liu, Y. Hu, H. Cheng, C. Hu, C. Jiang, L. Jiang, A. Cao, L. Qu, Adv. Mater. 25(2013) 591-595.[160] K. Shu, C. Wang, C. Zhao, Y. Ge, G.G. Wallace, Electrochim. Acta 212(2016) 561-571.[161] X. Wu, M. Lian, J. Power Sour. 362(2017) 184-191.[162] S. Cho, M. Kim, J. Jang, ACS Appl. Mater. Interfaces 7(2015) 10213-10227.[163] Z. Li, Y. Mi, X. Liu, S. Liu, S. Yang, J. Wang, J. Mater. Chem. 21(2011) 14706-14711.[164] M. Liu, J. Sun, J. Mater. Chem. A 2(2014) 12068-12074.[165] J. Kim, W.-H. Khoh, B.-H. Wee, J.-D. Hong, RSC Adv. 5(2015) 9904-9911.[166] N.A. Kumar, M.A. Dar, R. Gul, J.B. Baek, Mater. Today 18(2015) 286-298.[167] A.H. Loo, A. Bonanni, Z. Sofer, M. Pumera, Electrochem. Commun. 50(2015) 39-42.[168] C.C. Mayorga-Martinez, A. Ambrosi, A.Y.S. Eng, Z. Sofer, M. Pumera, Electrochem. Commun. 56(2015) 24-28.[169] M. Yousaf, A. Mahmood, Y. Wang, Y. Chen, Z. Ma, R.P. Han, J. Electr. Eng. 4(2016) 58-74.[170] S.K. Balasingam, J.S. Lee, Y. Jun, Dalton Trans. 44(2015) 15491-15498.[171] Y. Chao, R. Jalili, Y. Ge, C. Wang, T. Zheng, K. Shu, G.G. Wallace, Adv. Funct. Mater. 27(2017) 1700234.[172] X. Zhang, L. Hou, A. Ciesielski, P. Samorì, Adv. Energy Mater. 6(2016) 1600671-n/a.[173] A.Y.S. Eng, A. Ambrosi, Z. Sofer, P. Simek, M. Pumera, ACS Nano 8(2014) 12185-12198.[174] R. Jalili, S. Aminorroaya-Yamini, T.M. Benedetti, S.H. Aboutalebi, Y. Chao, G.G. Wallace, D.L. Officer, Nanoscale 8(2016) 16862-16867.[175] Y. Ge, R. Jalili, C. Wang, T. Zheng, Y. Chao, G.G. Wallace, Electrochim. Acta 235(2017) 348-355.[176] S. Byun, D.M. Sim, J. Yu, J.J. Yoo, ChemElectroChem 2(2015) 1938-1946.[177] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 11(2011) 5111-5116.[178] R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, M. Chhowalla, Nat. Mater. 13(2014) 1128-1134.[179] Y. Xiao, L. Huang, Q. Zhang, S. Xu, Q. Chen, W. Shi, Appl. Phys. Lett. 107(2015) 013906.[180] J. Jeon, S.K. Jang, S.M. Jeon, G. Yoo, Y.H. Jang, J.H. Park, S. Lee, Nanoscale 7(2015) 1688-1695.[181] V.K. Kumar, S. Dhar, T.H. Choudhury, S. Shivashankar, S. Raghavan, Nanoscale 7(2015) 7802-7810.[182] J. Pu, Y. Yomogida, K.K. Liu, L.J. Li, Y. Iwasa, T. Takenobu, Nano Lett. 12(2012) 4013-4017.[183] S. Wang, J. Zhu, Y. Shao, W. Li, Y. Wu, L. Zhang, X. Hao, Chemistry 23(2017) 3438-3446.[184] X. Li, X. Li, J. Cheng, D. Yuan, W. Ni, Q. Guan, L. Gao, B. Wang, Nano Energy 21(2016) 228-237.[185] A. Liu, H. Lv, H. Liu, Q. Li, H. Zhao, J. Mater. Sci.:Mater. Electron. 28(2017) 8452-8459.[186] M.S. Javed, S. Dai, M. Wang, D. Guo, L. Chen, X. Wang, C. Hu, Y. Xi, J. Power Sources 285(2015) 63-69.[187] L. Gao, X. Li, X. Li, J. Cheng, B. Wang, Z. Wang, C. Li, RSC Adv. 6(2016) 57190-57198.[188] M.A. Bissett, I.A. Kinloch, R.A. Dryfe, ACS Appl. Mater. Interfaces 7(2015) 17388-17398.[189] N. Li, T. Lv, Y. Yao, H. Li, K. Liu, T. Chen, J. Mater. Chem. A 5(2017) 3267-3273.[190] L. Tian, Y. Yao, L. Ning, C. Tao, Angew. Chem. Int. Ed. 55(2016) 9191-9195.[191] C. Su, J. Xiang, F. Wen, L. Song, C. Mu, D. Xu, C. Hao, Z. Liu, Electrochim. Acta 212(2016) 941-949.[192] G. Sun, J. Liu, X. Zhang, X. Wang, H. Li, Y. Yu, W. Huang, H. Zhang, P. Chen, Angew. Chem. 126(2014) 12784-12788.[193] N. Choudhary, C. Li, H.-S. Chung, J. Moore, J. Thomas, Y. Jung, ACS Nano 10(2016) 10726-10735.[194] M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 26(2014) 992-1005.[195] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, ACS Nano 6(2012) 1322-1331.[196] B. Anasori, M.R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2(2017) 16098.[197] O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall'Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi, Nat. Commun. 4(2013) 1716.[198] S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita, K. Gotoh, Y. Tateyama, M. Okubo, A. Yamada, ACS Nano 10(2016) 3334-3341.[199] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall'Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Science 341(2013) 1502-1505.[200] J. Come, M. Naguib, P. Rozier, M. Barsoum, Y. Gogotsi, P.L. Taberna, M. Morcrette, P. Simon, J. Electrochem. Soc. 159(2012) A1368-A1373.[201] M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516(2014) 78.[202] Q. Tang, Z. Zhou, P. Shen, J. Am. Chem. Soc. 134(2012) 16909-16916.[203] S. Murali, N. Quarles, L.L. Zhang, J.R. Potts, Z. Tan, Y. Lu, Y. Zhu, R.S. Ruoff, Nano Energy 2(2013) 764-768.[204] S. Xu, G. Wei, J. Li, W. Han, Y. Gogotsi, J. Mater. Chem. A 5(2017) 17442-17451.[205] H. Li, Y. Hou, F. Wang, M.R. Lohe, X. Zhuang, L. Niu, X. Feng, Adv. Energy Mater. 7(2017) 1601847.[206] J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Adv. Funct. Mater. 27(2017) 1701264.[207] Y. Dall'Agnese, P. Rozier, P.L. Taberna, Y. Gogotsi, P. Simon, J. Power Sources 306(2016) 510-515.[208] M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 27(2015) 339-345.[209] M. Zhu, Y. Huang, Q. Deng, J. Zhou, Z. Pei, Q. Xue, Y. Huang, Z. Wang, H. Li, Q. Huang, Adv. Energy Mater. 6(2016) 1600969.[210] R.B. Rakhi, B. Ahmed, D. Anjum, H.N. Alshareef, ACS Appl. Mater. Interfaces 8(2016) 18806-18814.[211] Y. Tian, C. Yang, W. Que, X. Liu, X. Yin, L.B. Kong, J. Power Sources 359(2017) 332-339.[212] Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, F. Wei, Adv. Mater. 22(2010) 3723-3728.[213] D. Yu, E. Nagelli, F. Du, L. Dai, J. Phys. Chem. Lett. 1(2010) 2165-2173.[214] Y. Luo, Y. Zhang, Y. Zhao, X. Fang, J. Ren, W. Weng, Y. Jiang, H. Sun, B. Wang, X. Cheng, H. Peng, J. Mater. Chem. A 3(2015) 17553-17557.[215] H. Guo, M.H. Yeh, Y.C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z.L. Wang, ACS Nano 10(2016) 10580-10588.[216] S.L. Kim, H.T. Lin, C. Yu, Adv. Energy Mater. 6(2016) 1600546.[217] X. Tian, J. Jin, S. Yuan, C.K. Chua, S.B. Tor, K. Zhou, Adv. Energy Mater. 7(2017) 1700127.[218] F. Zhang, M. Wei, V.V. Viswanathan, B. Swart, Y. Shao, G. Wu, C. Zhou, Nano Energy (2017). https://doi.org/10.1016/j.nanoen.2017.08.037. |
[1] | Mingtan Wang, Huaiqing Wang, Huamin Zhang, Xianfeng Li. Aqueous K-ion battery incorporating environment-friendly organic compound and Berlin green[J]. 能源化学(英文版), 2020, 48(9): 14-20. |
[2] | Ming Lu, Wenjuan Han, Haibo Li, Wei Zhang, bingsen Zhang. There is plenty of space in the MXene layers: The confinement and fillings[J]. 能源化学(英文版), 2020, 48(9): 344-363. |
[3] | Ju Fu, Wenbin Kang, Xiaodong Guo, Hao Wen, Tianbiao Zeng, Ruoxin Yuan,chuhong Zhang. 3D hierarchically porous NiO/Graphene hybrid paper anode for long-life and high rate cycling flexible Li-ion batteries[J]. 能源化学(英文版), 2020, 47(8): 172-179. |
[4] | Shijie Zhang, Peng Zhang, Ruohan Hou,bin Li, Yongshang Zhang, Kangli Liu, Xilai Zhang, Guosheng Shao. In situ sulfur-doped graphene nanofiber network as efficient metal-free electrocatalyst for polysulfides redox reactions in lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 47(8): 281-290. |
[5] | Hanyan Xu, Hao Chen, Haiwen Lai, Zheng Li, Xiaozhong Dong, Shengying Cai, Xingyuan Chu, Chao Gao. Capacitive charge storage enables an ultrahigh cathode capacity in aluminum-graphene battery[J]. 能源化学(英文版), 2020, 45(6): 40-44. |
[6] | Ruibai Cang, Ke Ye, Kai Zhu, Jun Yan, Jinling Yin, Kui Cheng, Guiling Wang, Dianxue Cao. Organic 3D interconnected graphene aerogel as cathode materials for high-performance aqueous zinc ion battery[J]. 能源化学(英文版), 2020, 45(6): 52-58. |
[7] | Tianshuai Wang, Jiewen Xiao, Xiyu Cao, Yanchen Fan, Qianfan Zhang. Interface effect on promoting reversible conversion for Na2Se in the metal selenide as sodium ion batteries[J]. 能源化学(英文版), 2020, 44(5): 8-12. |
[8] | Daxiong Wu, Caiyun Wang, Mingguang Wu, Yunfeng Chao, Pengbin He, Jianmin Ma. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage[J]. 能源化学(英文版), 2020, 43(4): 24-32. |
[9] | Yingqi Xu, Weifeng Zhang, Yaguang Li, Pengfei Lu, Zhong-Shuai Wu. A general bimetal-ion adsorption strategy to prepare nickel single atom catalysts anchored on graphene for efficient oxygen evolution reaction[J]. 能源化学(英文版), 2020, 43(4): 52-57. |
[10] | Chao Wang, Yinxiang Zeng, Xiang Xiao, Shijia Wu, Guobin Zhong, Kaiqi Xu, Zengfu Wei, Wei Su, Xihong Lu. γ -MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery[J]. 能源化学(英文版), 2020, 43(4): 182-187. |
[11] | Kimal Chandula Wasalathilake, Henan Li, Li Xu, Cheng Yan. Recent advances in graphene based materials as anode materials in sodium-ion batteries[J]. 能源化学(英文版), 2020, 42(3): 91-107. |
[12] | Nuo Li, Ying Xie, Shuting Peng, Xiang Xiong, Kai Han. Ultra-lightweight Ti3C2Tx MXene modified separator for Li-S batteries: Thickness regulation enabled polysulfide inhibition and lithium ion transportation[J]. 能源化学(英文版), 2020, 42(3): 116-125. |
[13] | Ming Lu, Bingsen Zhang, Wei Zhang, Weitao Zheng. Breaking the lithium storage limit via independent bilayer units within 2D layer materials[J]. 能源化学(英文版), 2020, 41(2): 1-2. |
[14] | Jun Tang, Linfei Zhang, Xiongwei Zhong, Xinghui Wang, Feng Pan, Baomin Xu. A laser synthesis of vanadium oxide bonded graphene for high-rate supercapacitors[J]. 能源化学(英文版), 2020, 49(10): 174-178. |
[15] | Xinlong Ma, Xinyu Song, Yushu Tang, Enzuo Liu, Chenggen Xu, Chuanlei Qi, Yun Li, Jinsen Gao, Yongfeng Li. Exfoliated multi-layered graphene anode with the broadened delithiation voltage plateau below 0.5 V[J]. 能源化学(英文版), 2020, 49(10): 233-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||