能源化学(英文) ›› 2018, Vol. 27 ›› Issue (1): 146-160.DOI: 10.1016/j.jechem.2017.12.006
Haifeng Xua,b, Lianbo Maa, Zhong Jina
收稿日期:
2017-11-21
修回日期:
2017-12-04
出版日期:
2018-01-15
发布日期:
2018-01-13
通讯作者:
Zhong Jin
作者简介:
Haifeng Xu received his Ph.D. degree in Materials Science and Engineering from Anhui University (2015); Lianbo Ma received his M.S. degree in Applied Chemistry from Jiangsu University (2015);Zhong Jin received his B.S. (2003) and Ph.D. (2008) in chemistry from Peking University.
基金资助:
This work is supported by the National Key R&D Program of China (2017YFA0208200, 2016YFB0700600, 2015CB659300), Projects of NSFC (21403105, 21573108), Anhui Provincial Key Research and Development Program (1704A0902022), Natural Science Foundation of Jiangsu Province (BK20150583, BK20160647) and the Fundamental Research Funds for the Central Universities (020514380107).
Haifeng Xua,b, Lianbo Maa, Zhong Jina
Received:
2017-11-21
Revised:
2017-12-04
Online:
2018-01-15
Published:
2018-01-13
Contact:
Zhong Jin
Supported by:
This work is supported by the National Key R&D Program of China (2017YFA0208200, 2016YFB0700600, 2015CB659300), Projects of NSFC (21403105, 21573108), Anhui Provincial Key Research and Development Program (1704A0902022), Natural Science Foundation of Jiangsu Province (BK20150583, BK20160647) and the Fundamental Research Funds for the Central Universities (020514380107).
摘要: Nitrogen-doped (N-doped) graphene has attracted increasing attentions because of the significantly enhanced properties in physic, chemistry, biology and material science, as compared with those of pristine graphene. By date, N-doped graphene has opened up an exciting new field in the science and technology of two-dimensional materials. From the viewpoints of chemistry and materials, this article presents an overview on the recent progress of N-doped graphene, including the typical synthesis methods, characterization techniques, and various applications in energy fields. The challenges and perspective of Ndoped graphene are also discussed. We expect that this review will provide new insights into the further development and practical applications of N-doped graphene.
Haifeng Xu, Lianbo Ma, Zhong Jin. Nitrogen-doped graphene: Synthesis, characterizations and energy applications[J]. 能源化学(英文), 2018, 27(1): 146-160.
Haifeng Xu, Lianbo Ma, Zhong Jin. Nitrogen-doped graphene: Synthesis, characterizations and energy applications[J]. Journal of Energy Chemistry, 2018, 27(1): 146-160.
[1] A.K. Geim, K.S. Novoselov, Nat. Mater. 6(2007) 183-191.[2] C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321(2008) 385-388.[3] A.K. Geim, Science 324(2009) 1530-1534.[4] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(2004) 666-669.[5] Y.J. Hu, P. Wu, C.X. Cai, Electrochim. Acta 85(2012) 314-321.[6] S.J. Guo, D. Wen, Y.M. Zhai, S.J. Dong, E.K. Wang, ACS Nano 4(2010) 3959-3968.[7] P.C. Lian, X.F. Zhu, H.F. Xiang, Z. Li, E.S. Yang, H.H. Wang, Electrochim. Acta 56(2010) 834-840.[8] L.L. Li, K.P. Liu, G.H. Yang, C.M. Wang, J.R. Zhang, J.J. Zhu, Adv. Funct. Mater. 21(2011) 869-878.[9] Z.B. Wang, C.R. Zhao, P.F. Shi, Y.S. Yang, Z.B. Yu, W.K. Wang, G.P. Yin, J. Phys. Chem. C 1(2010) 114-119.[10] K.P. Gong, F. Du, Z.H. Xia, M. Durstock, L.M. Dai, Science 323(2009) 760-764.[11] L.T. Qu, Y. Liu, J.B. Baek, L.M. Dai, ACS Nano 3(2010) 1321-1326.[12] D.H. Wei, Y.Q. Liu, Y. Wang, H.L. Zhang, L.P. Huang, G. Yu, Nano Lett. 5(2009) 1752-1758.[13] Y.J. Cho, H.S. Kim, S.Y. Baik, Y. Myung, C.S. Jung, C.H. Kim, J.H. Park, H.S. Kang, J. Phys. Chem. C 115(2011) 3737-3744.[14] Y.J. Cho, H.S. Kim, H. Im, Y. Myung, G.B. Jung, C.W. Lee, J. Park, M.H. Park, J. Cho, H.S. Kang, J. Phys. Chem. C 115(2011) 9451-9457.[15] Y.Z. Xue, B. Wu, L. Jiang, Y.L. Guo, L.P. Huang, J.Y. Chen, J.H. Tan, D.H. Geng, B.R. Luo, W.P. Hu, G. Yu, Y.Q. Liu, J. Am. Chem. Soc. 134(2012) 11060-11063.[16] Z. Jin, J. Yao, C. Kittrell, J.M. Tour, ACS Nano 5(2011) 4112-4117.[17] R.T. Lv, Q. Li, A.R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q.Z. Hao, A.L. Elias, R. Cruz-Silva, H.R. Gutuerrez, Y.A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.C. Charlier, M.H. Pan, M. Terrones, Sci. Rep. 2(2012) 586.[18] H. Gao, L. Song, W.H. Guo, L. Huang, D.Z. Yang, F.C. Wang, Y.L. Zuo, X.L. Fan, Z. Liu, W. Gao, R. Vajtai, K. Hackenberg, P.M. Ajayan, Carbon 50(2012) 4476-4482.[19] O.S. Kwon, S.J. Park, J.Y. Hong, A.R. Han, J.S. Lee, J.H. Oh, J. Jang, ACS Nano 6(2012) 1486-1493.[20] A.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, ACS Nano 4(2012) 6337-6342.[21] M. Li, Z.S. Wu, W.C. Ren, H.M. Cheng, N.J. Tang, W.B. Wu, W. Zhong, Y.W. Du, Carbon 50(2012) 5286-5291.[22] B. Xiong, Y.K. Zhou, Y.Y. Zhao, J. Wang, X. Chen, R. O'Hayre, Z.P. Shao, Carbon 52(2013) 181-192.[23] X.L. Li, H.L. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H.J. Dai, J. Am. Chem. Soc. 131(2009) 15939-15944.[24] B. Xiong, Y.K. Zhou, R. Hayre, Z.P. Shao, Appl. Surf. Sci. 266(2013) 433-439.[25] K.J. Zhang, P.G. Han, L. Gu, L.X. Zhang, Z.H. Liu, Q.S. Kong, C.J. Zhang, S.M. Dong, Z.Y. Zhang, J.H. Yao, H.X. Xu, G.L. Cui, L.Q. Chen, ACS Appl. Mater. Interfaces 4(2012) 658-664.[26] S.B. Yang, L.J. Zhi, K. Tang, X.L. Feng, J. Maier, K. Mullen, Adv. Funct. Mater. 22(2012) 3634-3640.[27] T.V. Khai, H.G. Na, D.S. Kwak, H. Ham, K.B. Shim, H.W. Kim, Carbon 50(2012) 3799-3806.[28] Z.S. Wu, W.C. Ren, L. Xu, F. Li, H.M. Cheng, ACS Nano 5(2011) 5463-5471.[29] Y.C. Qiu, X.F. Zhang, S.H. Yang, Phys. Chem. Chem. Phys. 13(2011) 12554-12558.[30] L. Jia, D.H. Wang, Y.X. Huang, A.W. Xu, H.Q. Yu, J. Phys. Chem. C 115(2011) 11466-11473.[31] B.D. Guo, Q. Liu, E.D. Chen, H.W. Zhu, L. Fang, J.R. Gong, Nano Lett. 10(2010) 4975-4980.[32] S.Y. Wang, L.P. Zhang, Z.H. Xia, A. Roy, D.W. Chang, J.B. Baek, L.M. Dai Angew, Chem. Int. Ed. 51(2012) 4209-4212.[33] J. Zhong, J.J. Deng, B.H. Mao, T. Xie, X.H. Sun, Z.G. Mou, C.H. Hong, P. Yang, S.D. Wang, Carbon 50(2012) 321-341.[34] Z.L. Li, J.H. Liu, Z.W. Huang, Y. Yang, C.G. Xia, F.W. Li, ACS Catal. 3(2013) 839-845.[35] D.S. Geng, S.L. Yang, Y. Zhang, J.L. Yang, J. Liu, R.Y. Li, T.K. Sham, X.L. Sun, S.Y. Ye, S. Knight, Appl. Surf. Sci. 257(2011) 9193-9198.[36] Q. Li, H.Y. Zhang, H.W. Zhong, S.M. Zhang, S. Chen, Electrochim. Acta 81(2012) 313-320.[37] X.G. Fu, Y.R. Liu, X.P. Cao, J.T. Jin, Q. Liu, J.Y. Zhang, Appl. Catal. B Environ. 130(2013) 143-151.[38] H.L. Peng, Z.Y. Mo, S.J. Liao, H.G. Liang, L.J. Yang, F. Luo, H.Y. Song, Y.L. Zhong, B.Q. Zhang, Sci. Rep. 3(2013) 1765-1771.[39] Z.Y. Lin, G.H. Waller, Y. Liu, M.L. Liu, C.P. Wong, Nano Energy 2(2013) 241-248.[40] S.Y. Yang, K.H. Chang, Y.L. Huang, Y.F. Lee, H.W. Tien, S.M. Li, Y.H. Lee, C.H. Liu, C.C.M. Ma, C.C. Hu, Electrochem. Commun. 14(2012) 39-42.[41] Z.Y. Lin, M.K. Song, Y. Ding, Y. Liu, M.L. Liu, C.P. Wong, Phys. Chem. Chem. Phys. 14(2012) 3381-3387.[42] L. Guan, L. Cui, K. Lin, Y.Y. Wang, X.T. Wang, F.M. Jin, F. He, X.P. Chen, S. Cui, Appl. Phys. A 102(2011) 289-294.[43] D.J. Late, A. Ghosh, K.S. Subrahmanyam, L.S. Panchakarla, S.B. Krupanidhi, C.N.R. Rao, Solid State Commun. 150(2010) 734-738.[44] N. Li, Z.Y. Wang, K.K. Zhao, Z.J. Shi, Z.N. Gu, S.K. Xu, Carbon 48(2010) 255-259.[45] Y. Wang, Y.Y. Shao, D.W. Matson, J.H. Li, Y.H. Lin, ACS Nano 4(2010) 1790-1798.[46] N. Soin, S.S. Roy, S. Roy, K.S. Hazra, D.S. Misra, T.H. Lim, C.J. Hetherington, J.A. Malaughlin, J. Phys. Chem. C 115(2011) 5366-5372.[47] H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nano Lett. 11(2011) 2472-2477.[48] J.O. Hwang, J.S. Park, D.S. Choi, J.Y. Kim, S.H. Lee, K.E. Lee, Y.H. Kim, M.H. Song, S. Yoo, S.O. Kim, ACS Nano 6(2012) 159-167.[49] S. Seo, Y.H. Yoon, J.H. Lee, Y.H. Park, H. Lee, ACS Nano 7(2013) 3607-3615.[50] H.X. Fan, Y. Li, D. Wu, H.M. Ma, K.X. Mao, D.W. Fan, B. Du, H. Li, Q. Wei, Anal. Chim. Acta 711(2012) 24-28.[51] B.J. Jiang, C.G. Tian, L. Wang, L. Sun, C. Chen, X.Z. Nong, Y.J. Qiao, H.G. Fu, Appl. Surf. Sci. 258(2012) 3438-3443.[52] L. Sun, L. Wang, C.G. Tian, T.X. Tan, Y. Xie, K.Y. Shi, M.T. Li, H.G. Fu, RSC Adv. 2(2012) 4498-4506.[53] C. Nethravathi, C.R. Rajamathi, M. Rajamathi, U.K. Gautam, X. Wang, D. Golberg, Y. Bando, ACS Appl. Mater. Interfaces 5(2013) 2708-2714.[54] Z.S. Wu, S.B. Yang, Y. Sun, K. Parvez, X.L. Feng, K. Mullen, J. Am. Chem. Soc. 134(2012) 9082-9085.[55] J.C. Bai, Q.Q. Zhu, Z.X. Lv, H.Z. Dong, J.H. Yu, L.F. Dong, Int. J. Hydrogen Energy 38(2013) 1413-1418.[56] D.H. Deng, X.L. Pan, L. Yu, Y. Cui, Y.P. Jiang, J. Qi, W.X. Li, Q. Fu, X.C. Ma, Q.K. Xue, G.G. Sun, X.H. Bao, Chem. Mater. 23(2011) 1188-1193.[57] C.H. Choi, S.H. Park, M.W. Chung, S.I. Woo, Carbon 55(2013) 98-107.[58] Z. Jin, Z.Z. Sun, L.J. Simpson, K.J. O'Neal, P.A. Parilla, Y. Li, N.P. Stadie, C.C. Ahn, C. Kittrell, J.M. Tour, J. Am. Chem. Soc. 132(2010) 15246-15251.[59] Y.H. Lee, K.H. Chang, C.C. Hu, J. Power Sources 227(2013) 300-308.[60] C.L. Liu, K.H. Chang, C.C. Hu, W.C. Wen, J. Power Sources 217(2012) 184-192.[61] F. Zou, X.L. Hu, Y.M. Sun, W. Luo, F.F. Xia, L. Qie, Y. Jiang, Y.H. Huang, Chem. Eur. J. 19(2013) 6027-6033.[62] Y.J. Zhang, K. Fugane, T. Mori, L. Niu, J.H. Ye, J. Mater. Chem. 22(2012) 6575-6580.[63] Y.C. Xin, J.G. Liu, X. Jie, W.M. Liu, F.Q. Liu, Y. Yin, J. Gu, Z.G. Zou, Electrochim. Acta 60(2012) 354-358.[64] Y.P. Zhang, B. Cao, B. Zhang, X. Qi, C.X. Pan, Thin Solid Films 520(2012) 6850-6855.[65] W. Qian, X. Cui, R. Hao, Y.L. Hou, Z.Y. Zhang, ACS Appl. Mater. Interfaces 3(2011) 2259-2264.[66] D.P. He, Y.L. Jiang, H.F. Lv, M. Pan, S.C. Mu, Appl. Catal. B Environ 132(2013) 379-388.[67] X.L. Wang, Z.F. Hou, T. Lkeda, M. Oshima, M.A. Kakimoto, K. Terakura, J. Phys. Chem. A 117(2013) 579-589.[68] Z.Q. Luo, S. Lim, Z.Q. Tian, J.Z. Shang, L.F. Lai, B. MacDonald, C. Fu, Z.X. Shen, T. Yu, J.Y. Lin, J. Mater. Chem. 21(2011) 8038-8044.[69] L.S. Zhang, X.Q. Liang, W.G. Song, Z.Y. Wu, Phys. Chem. Chem. Phys. 12(2010) 12055-12059.[70] B. Huang, Phys. Lett. A 375(2011) 845-848.[71] D.S. Geng, Y. Chen, Y.G. Chen, Y.L. Li, R.Y. Li, X.L. Sun, S.Y. Ye, S.N. Knight, Energy Environ. Sci. 4(2011) 760-764.[72] H.B. Wang, C.J. Zhang, Z.H. Liu, L. Wang, P.X. Han, H.X. Xu, K.J. Zhang, S.M. Dong, J.H. Yao, G.L. Cui, J. Mater. Chem. 21(2011) 5430-5434.[73] X.S. Zhou, L.J. Wan, Y.G. Guo, Adv. Mater. 25(2013) 2152-2157.[74] D.H. Wu, Y.F. Li, Z. Zhou, Theor. Chem. Acc. 130(2011) 209-213.[75] Z.H. Wen, X.C. Wang, S. Mao, Z. Bo, H. Kim, S.M. Cui, G.H. Lu, X.L. Feng, J.H. Chen, Adv. Mater. 24(2012) 5610-5616.[76] P. Chen, J.J. Yang, S.S. Li, Z. Wang, T.Y. Xiao, Y.H. Qian, S.H. Yu, Nano Energy 2(2013) 249-256.[77] L.N. Zhang, L. Li, C. Ma, S.G. Ge, M. Yan, C. Bian, Sens. Actuat. B 221(2015) 799-806.[78] Y.Q. Sun, Q. Wu, G.Q. Shi, Energy Environ. Sci. 4(2011) 1113-1132.[79] P.L. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, J. Phys. Chem. C 113(2009) 4257-4259.[80] S. Bai, X.P. Shen, G.X. Zhu, M.Z. Li, H.T. Xi, K.M. Chen, ACS Appl. Mater. Interfaces 4(2012) 2378-2386.[81] Z.Y. Liu, G.X. Zhang, Z.Y. Lu, X.Y. Jin, Z. Chang, X.M. Sun, Nano Res. 6(2013) 293-301.[82] J.X. Chen, D.L. Zhao, R.R. Yao, C. Li, X.J. Wang, F.F. Sun, J. Alloy Compds. 714(2017) 419-424.[83] B. Zhang, P. Hermet, L. Henrard, ACS Nano 4(2010) 4165-4173.[84] S.O. Guillaume, B. Zheng, J.C. Charlier, L. Henratd, Phys. Rev. B 85(2012) 035444.[85] Y. Qin, J. Yuan, J. Li, D.C. Chen, Y. Kong, F.Q. Chu, Y.X. Tao, M.L. Liu, Adv. Mater. 27(2015) 5171-5175.[86] F. Parvizi, D. Tewelddebrhan, S. Dhosh, I. Calizo, A.A. Balandin, H. Zhu, R. Abbaschian, Micro Nano Lett. 3(2008) 29-34.[87] D.X. Yang, A. Velamakanni, G. Bozoklu, S.J. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Carbon 47(2009) 145-152.[88] D.H. Lee, W.J. Lee, S.O. Kim, Y.H. Kim, Phys. Rev. Lett. 106(2011) 175502.[89] H. Hibini, H. Kageshima, M. Kotsugi, F. Maeda, F.Z. Guo, Y. Watanabe, Phys. Rev. B 79(2009) 125437-125441.[90] D. Usachov, O. Vilkov, A. Gruneis, D. Haberer, A. Fedorov, V.K. Adamchuk, A.B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, D.V. Vyalikh, Nano Lett. 11(2011) 5401-5407.[91] N. Hellgren, J. Guo, C. Sathe, A. Agui, J. Nordgren, Y. Luo, H. Agren, J.E. Sundgren, Appl. Phys. Lett. 79(2001) 4348-4350.[92] X. Li, W.J. Hua, J.H. Guo, Y. Li, J. Phys. Chem. C 119(2015) 16660-16666.[93] L. Aurelien, R.B.M. Andres, C.C. Jean, Nano Lett. 13(2013) 1446-1450.[94] H. Li, J. He, S.J. Li, P.F.T. Anthony, Biosen. Bioelectron. 43(2013) 25-29.[95] B.P. Vinayan, R. Nagar, N. Rajalakshmi, S. Ramaprabhu, Adv. Funct. Mater. 22(2012) 3519-3526.[96] X. Wang, X.Q. Cao, L. Bourgeois, H. Guan, S.M. Chen, Y.T. Zhong, D.M. Tang, H.Q. Li, T.Y. Zhai, L. Li, Y. Bando, D. Golbery, Adv. Funct. Mater. 22(2012) 2682-2690.[97] Z.Y. Ji, X. Shen, M.Z. Li, H. Zhou, G.X. Zhu, K.M. Chen, Nanotechnol. 24(2013) 115603.[98] L.B. Ma, X.P. Shen, G.X. Zhu, Z.Y. Ji, H. Zhou, Carbon 77(2014) 255-265.[99] S.Y. Wang, D.S. Yu, L.M. Dai, D.W. Chang, J.B. Baek, ACS Nano 5(2011) 6202-6209.[100] E.K. Rideal, W.M. Wright, J. Electrochem. Soc. 128(1926) 1813-1815.[101] H.B. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2(2012) 781-794.[102] K.A. Kurak, A.B. Anderson, J. Phys. Chem. C 113(2009) 6730-6734.[103] L.P. Zhang, Z.H. Xia, J. Phys. Chem. C 115(2011) 11170-11176.[104] L. Yu, X.L. Pan, X.M. Cao, P. Hu, X.H. Bao, J. Catal. 282(2011) 183-190.[105] H.B. Yang, J.W. Miao, S.F. Hung, J.Z. Chen, H.B. Tao, X.Z. Wang, L.P. Zhang, R. Chen, J.J. Gao, H.M. Chen, L.M. Dai, B. Liu, Sci. Adv. 2(2016) e1501122.[106] Y. Zhao, C.G. Hu, Y. Hu, H.H. Cheng, G.Q. Shi, L.T. Qu, Angew. Chem. Int. Ed. 51(2012) 11371-11375.[107] I.Y. Jeon, D.S. Yu, S.Y. Bae, H.J. Choi, D.W. Chang, L.M. Dai, J.B. Baek, Chem. Mater. 23(2011) 3987-3992.[108] B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Energy Environ. Sci. 2(2009) 638-654.[109] H.L. Lu, R.P. Chen, Y. Hu, X.Q. Wang, Y.R. Wang, L.B. Ma, G.Y. Zhu, T. Chen, Z.X. Tie, Z. Jin, J. Liu, Nanoscale 9(2017) 1972-1977.[110] H.L. Lv, R.P. Chen, X.Q. Wang, Y. Hu, Y.R. Wang, T. Chen, L.B. Ma, G.Y. Zhu, J. Liang, Z.X. Tie, J. Liu, Z. Jin, ACS Appl. Mater. Interfaces 9(2017) 25232-25238.[111] P. Guo, H.H. Song, X.H. Chen, Electrochem. Commun. 11(2009) 1320-1324.[112] N. Kurita, Carbon 38(2000) 65-75.[113] L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Adv. Mater. 11(2009) 4726-4730.[114] D.B. Xiong, X.F. Li, Z.M. Bai, H. Shan, L.L. Fan, C.X. Wu, D.J. Li, S.G. Lu, ACS Appl. Mater. Interfaces 9(2017) 10643-10651.[115] Y.S. Huang, D.Q. Wu, A. Dianat, M. Bobeth, T. Huang, Y.Y. Mai, F. Zhang, G. Cuniberti, X.L. Feng, J. Mater. Chem. A 5(2017) 1588-1594.[116] W.Y. Yuan, L.F. Cheng, Y.Z. Zhang, Y.Q. Li, X.H. Guo, H. Wu, L.X. Zheng, Ceram. Int. 43(2017) 11563-11568.[117] X.Y. Zhou, S.M. Chen, J. Yang, T. Bai, Y.P. Ren, H.Y. Tian, ACS Appl. Mater. Interfaces 9(2017) 14309-14318.[118] C.M. Yang, Y.Q. Qing, K. An, Z.F. Zhang, L.S. Wang, C.S. Liu, Mater. Chem. Phys. 195(2017) 149-156.[119] L.Y. Qi, Y.L. Xin, Z.C. Zuo, C.K. Yang, K. Wu, B. Wu, H.H. Zhou, ACS Appl. Mater. Interfaces 8(2017) 17245-17252.[120] S. Li, P. Xue, C. Lai, J.X. Qiu, M. Ling, S.Q. Zhang, Electrochim. Acta 180(2015) 112-119.[121] J.L. Li, R.H. Li, C. Bulin, R.G. Xing, B.W. Zhang, Int. J. Electrochem. Sci. 12(2017) 4164-4172.[122] X.L. Ge, Z.Q. Li, L.W. Yin, Nano Energy 32(2017) 117-124.[123] M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Adv. Funct. Mater. 23(2013) 947-958.[124] H.W. Lee, H.S. Moon, J. Hur, I.T. Kim, M.S. Park, J.M. Yun, K.H. Kim, S.G. Lee, Carbon 119(2017) 492-501.[125] G.Y. Ma, K.S. Huang, Q.C. Zhuang, Z.C. Ju, Mater. Lett. 174(2016) 221-225.[126] H. Liu, M.Q. Jia, B. Cao, R.J. Chen, X.Y. Lv, R.J. Tang, F. Wu, B. Xu, J. Power Sources 310(2016) 195-201.[127] J.T. Xu, M. Wang, N.P. Wickramaratne, M.J. Jaroniec, S.X. Dou, L.M. Dai, Adv. Mater. 27(2015) 2042-2048.[128] J. Zhang, C. Li, Z.K. Peng, Y.S. Liu, J.M. Zhang, Z.Y. Liu, D. Li, Sci. Rep. 7(2017) 4886.[129] C. Zhang, X. Wang, Q.F. Liang, X.Z. Liu, Q.H. Weng, J.W. Liu, Y.J. Yang, Z.H. Dai, K.J. Ding, Y. Bando, J. Tang, D. Golberg, Nano Lett. 16(2016) 2054-2060.[130] H.X. Liu, Y. Guo, Solid State Ion. 307(2017) 65-72.[131] G.Z. Wang, J.M. Feng, L. Dong, L.F. Li, D.J. Li, Appl. Surf. Sci. 396(2017) 260-277.[132] D. Zhou, X.G. Li, L.Z. Fan, Y.H. Deng, Electrochim. Acta 230(2017) 212-221.[133] C. Liu, F. Li, L.P. Ma, H.M. Cheng, Adv. Mater. 22(2010) E28-E62.[134] P. Simon, Y. Gogotsi, Nat. Mater. 7(2008) 845-854.[135] D.H. Guan, Z. Gao, W.L. Yang, J. Wang, Y. Yuan, B. Wang, M.L. Zhang, L.H. Liu, Mater. Sci. Eng. B 178(2013) 736-743.[136] W.H. Shi, J.X. Zhu, D.H. Sim, Y.Y. Tay, Z.Y. Lu, X.J. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H.H. Hng, Q.Y. Yan, J. Mater. Chem. 21(2011) 3422-3427.[137] J.W. Lee, J.M. Ko, J.D. Kim, Electrochim. Acta 85(2012) 459-466.[138] B. You, L.L. Wang, L. Yao, J. Yang, Chem. Commun. 49(2013) 5016-5018.[139] D.W. Chang, E.K. Lee, E.Y. Park, H. Yu, H.J. Choi, I.Y. Jeon, G.J. Sohn, D.B. Shin, N. Park, J.H. Oh, L.M. Dai, J.B. Baek, J. Am. Chem. Soc. 135(2013) 8981-8988.[140] S.Y. Wang, X.S. Zhao, T. Cochell, A. Manthiram, J. Phys. Chem. Lett. 3(2013) 2164-2167. |
[1] | Ziqun Wang, Longfeng Li, Mingzhu Liu, Tifang Miao, Xiangju Ye, Sugang Meng, Shifu Chen, Xianliang Fu. A new phosphidation route for the synthesis of NiPx and their cocatalytic performances for photocatalytic hydrogen evolution over g-C3N4[J]. 能源化学(英文版), 2020, 48(9): 241-249. |
[2] | Teng Lv, Wei Weng, Jing Zhou,dong Gu, Wei Xiao. Effects of K and Mn promoters over Fe2O3 on Fischer-Tropsch synthesis[J]. 能源化学(英文版), 2020, 47(8): 118-127. |
[3] | Junbiao Wu, Yu Wang, Yaopeng Zhang, Hao Meng, Yan Xu, Yide Han, Zhuopeng Wang, Yanfeng Dong, Xia Zhang. Highly safe and ionothermal synthesis of Ti3C2 MXene with expanded interlayer spacing for enhanced lithium storage[J]. 能源化学(英文版), 2020, 47(8): 203-209. |
[4] | Ya-Li Song, Zi-Chang Wang, Yong-De Yan, Mi-Lin Zhang, Gui-Ling Wang, Tai-Qi Yin, Yun Xue, Fan Gao, Min Qiu. Molten salt synthesis and supercapacitor properties of oxygen-vacancy LaMnO3-δ[J]. 能源化学(英文版), 2020, 43(4): 173-181. |
[5] | Jiarong Yang, Wei Weng, Wei Xiao. Electrochemical synthesis of ammonia in molten salts[J]. 能源化学(英文版), 2020, 43(4): 195-207. |
[6] | Sanzhao Song, Hongliang Bao, Xiao Lin, Xian-Long Du, Jing Zhou, Linjuan Zhang, Ning Chen, Jun Hu, Jian-Qiang Wang. Molten salt-assisted synthesis of bulk CoOOH as a water oxidation catalyst[J]. 能源化学(英文版), 2020, 42(3): 5-10. |
[7] | Fanfei Sun, Ruoou Yang, Zhaoming Xia, Yuqi Yang, Ziang Zhao, Songqi Gu, Dongshuang Wu, Yunjie Ding, Zheng Jiang. Effects of cobalt carbide on Fischer-Tropsch synthesis with MnO supported Co-based catalysts[J]. 能源化学(英文版), 2020, 42(3): 227-232. |
[8] | Raúl Mateos, Adrián Escapa, María Isabel San-Martín, Heleen De Wever, Ana Sotres, Deepak Pant. Long-term open circuit microbial electrosynthesis system promotes methanogenesis[J]. 能源化学(英文版), 2020, 41(2): 3-6. |
[9] | Yongcheng Ma, Guojun Lan, Wenzhao Fu, Ying Lai, Wenfeng Han, Haodong Tang, Huazhang Liu, Ying Li. Role of surface defects of carbon nanotubes on catalytic performance of barium promoted ruthenium catalyst for ammonia synthesis[J]. 能源化学(英文版), 2020, 41(2): 79-86. |
[10] | Shiming Chen, Siglinda Perathoner, Claudio Ampelli, Hua Wei, Salvatore Abate, Bingsen Zhang, Gabriele Centi. Enhanced performance in the direct electrocatalytic synthesis of ammonia from N2 and H2O by an in-situ electrochemical activation of CNT-supported iron oxide nanoparticles[J]. 能源化学(英文版), 2020, 49(10): 22-32. |
[11] | Qianru Wang, Jianping Guo, Ping Chen. Recent progress towards mild-condition ammonia synthesis[J]. 能源化学(英文版), 2019, 36(9): 25-36. |
[12] | Junhao Yang, Ke Gong, Dengyun Miao, Feng Jiao, Xiulian Pan, Xiangju Meng, Fengshou Xiao, Xinhe Bao. Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion[J]. 能源化学(英文), 2019, 28(8): 44-48. |
[13] | Chang-Xin Zhao, Bo-Quan Li, Qiang Zhang. Advanced electrosynthesis of hydrogen peroxide on oxidized carbon electrocatalyst[J]. 能源化学(英文), 2019, 28(7): 10-11. |
[14] | Ting Kuang, Shuai Lyu, Sixu Liu, Yuhua Zhang, Jinlin Li, Guanghui Wang, Li Wang. Controlled synthesis of cobalt nanocrystals on the carbon spheres for enhancing Fischer-Tropsch synthesis performance[J]. 能源化学(英文), 2019, 28(6): 67-73. |
[15] | Shan Jiang, Yunke Liu, Wenfu Xie, Mingfei Shao. Electrosynthesis of hierarchical NiLa-layered double hydroxide electrode for efficient oxygen evolution reaction[J]. 能源化学(英文), 2019, 28(6): 125-129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||