能源化学(英文) ›› 2018, Vol. 27 ›› Issue (1): 12-24.DOI: 10.1016/j.jechem.2017.08.015
Kena Chena, Qingrong Wanga, Zhiqiang Niua, Jun Chena,b
收稿日期:
2017-08-14
修回日期:
2017-08-25
出版日期:
2018-01-15
发布日期:
2018-01-13
通讯作者:
Zhiqiang Niu
作者简介:
Kena Chen received her B.S. degree in chemistry from Qufu Normal University (2015); Qingrong Wang received his B.S. degree in chemistry from Shandong University (2015);Zhiqiang Niu is a Professor at the College of Chemistry, Nankai University. He received his Ph.D. degree from the Institute of Physics, Chinese Academy of Sciences in 2010 under the supervision of Prof. Sishen Xie.
基金资助:
This work was supported by the National Natural Science Foundation of China (21573116 and 21231005), Ministry of Education of China (B12015 and IRT13R30), and Tianjin Basic and High-Tech Development (15JCYBJC17300). Z. Niu thanks the recruitment program of global experts.
Kena Chena, Qingrong Wanga, Zhiqiang Niua, Jun Chena,b
Received:
2017-08-14
Revised:
2017-08-25
Online:
2018-01-15
Published:
2018-01-13
Contact:
Zhiqiang Niu
Supported by:
This work was supported by the National Natural Science Foundation of China (21573116 and 21231005), Ministry of Education of China (B12015 and IRT13R30), and Tianjin Basic and High-Tech Development (15JCYBJC17300). Z. Niu thanks the recruitment program of global experts.
摘要: The booming developments in portable and wearable electronics promote the design of flexible energy storage systems. Flexible supercapacitors and batteries as promising energy storage devices have attracted tremendous attention. As the key component of both supercapacitors and batteries, electrode materials with excellent flexibility should be considered to match with highly flexible energy storage devices. Owing to large surface area, good thermal and chemical stability, high conductivity and mechanical flexibility, graphene-based materials have been widely employed to serve as promising electrodes of flexible energy storage devices. Considerable efforts have been devoted to the fabrication of flexible graphene-based electrodes through a variety of strategies. Moreover, different configurations of energy storage devices based on these active materials are designed. This review highlights flexible graphene-based two-dimensional film and one-dimensional fiber supercapacitors and various batteries including lithium-ion, lithium-sulfur and other batteries. The challenges and promising perspectives of the graphene-based materials for flexible energy storage devices are also discussed.
Kena Chen, Qingrong Wang, Zhiqiang Niu, Jun Chen. Graphene-based materials for flexible energy storage devices[J]. 能源化学(英文), 2018, 27(1): 12-24.
Kena Chen, Qingrong Wang, Zhiqiang Niu, Jun Chen. Graphene-based materials for flexible energy storage devices[J]. Journal of Energy Chemistry, 2018, 27(1): 12-24.
[1] C.Z. Wu, X.L. Lu, L.L. Peng, K. Xu, X. Peng, J.L. Huang, G.H. Yu, Y. Xie, Nat. Commun. 4(2013) 2431.[2] S.Y. Lee, K.H. Choi, W.S. Choi, Y.H. Kwon, H.R. Jung, H.C. Shin, J.Y. Kim, Energy Environ. Sci. 6(2013) 2414-2423.[3] Q.F Zhang, E. Uchaker, S.L. Candelaria, G.Z. Cao, Chem. Soc. Rev. 42(2013) 3127-3171.[4] M. Armand, J.M. Tarascon, Nature 451(2008) 652-657.[5] C. Chen, J. Cao, Q.Q. Lu, X.Y. Wang, L. Song, Z.Q. Niu, J. Chen, Adv. Funct. Mater. 27(2016) 1604639.[6] Q.Q. Lu, X.Y. Wang, J. Cao, C. Chen, K.N. Chen, Z.F. Zhao, Z.Q. Niu, J. Chen, Energy Storage Mater. 8(2017) 77-84.[7] G.M. Zhou, F. Li, H.M. Cheng, Energy Environ. Sci. 7(2014) 1307-1338.[8] K. Takei, T. Takahashi, J.C. Ho, H. Ko, A.G. Gillies, P.W. Leu, R.S. Fearing, A. Javey, Nat. Mater. 9(2010) 821-826.[9] X.F. Wang, X.H. Lu, B. Liu, D. Chen, Y.X. Tong, G.Z. Shen, Adv. Mater. 26(2014) 4763-4782.[10] J.A. Rogers, T. Someya, Y.G. Huang, Science 327(2010) 1603-1607.[11] H. Nishide, K. Oyaizu, Science 334(2008) 737-738.[12] X.Y. Wang, Q.Q. Lu, C. Chen, M. Han, Q.R. Wang, H.X. Li, Z.Q. Niu, J. Chen, ACS Appl. Mater. Interfaces 10.1021/acsami.7b08833.[13] X. Peng, L.L. Peng, C.Z. Wu, Y. Xie, Chem. Soc. Rev. 43(2014) 3303-3323.[14] F.Y. Cheng, J. Liang, Z.L. Tao, J. Chen, Adv. Mater. 23(2011) 1695-1715.[15] X.Q. Zhang, X.B. Cheng, Q. Zhang, J. Energy Chem. 25(2016) 967-984.[16] J.M. Tarascon, M. Armand, Nature 414(2001) 359-367.[17] H.L. Wang, L.F. Cui, Y. Yang, H.S. Casalongue, J.T. Robinson, Y.Y. Liang, Y. Cui, H.J. Dai, J. Am. Chem. Soc. 132(2010) 13978-13980.[18] P. Simon, Y. Gogotsi, B. Dunn, Science 343(2014) 1210-1211.[19] G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41(2012) 797-828.[20] Z.Q. Niu, L.L. Liu, L. Zhang, W.Y. Zhou, X.D. Chen, S.S. Xie, Adv. Energy Mater. 5(2015) 1500677.[21] D.P. Qi, Y. Liu, Z.Y. Liu, L. Zhang, X.D. Chen, Adv. Mater. 29(2017) 1602802.[22] N. Gao, X.S. Fang, Chem. Rev. 115(2015) 8294-8343.[23] X.L. Wang, G.Q. Shi, Energy Environ. Sci. 8(2015) 790-823.[24] J.Y. Kim, F. Kim, J.X. Huang, Mater. Today 13(2010) 28-38.[25] Y.L. Shao, M.F. El-Kady, L.J. Wang, Q.H. Zhang, Y.G. Li, H.Z. Wang, M.F. Mousavi, R.B. Kaner, Chem. Soc. Rev. 44(2015) 3639-3665.[26] Y. Dong, Z.S. Wu, W.C. Ren, H.M. Cheng, X.H. Bao, Sci. Bull. 62(2017) 724-740.[27] L.L. Liu, Z.Q. Niu, J. Chen, Chem. Soc. Rev. 45(2016) 4340-4363.[28] L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38(2009) 2520-2531.[29] H. Jiang, P.S. Lee, C.Z. Li, Energy Environ. Sci. 6(2013) 41-53.[30] Z.Q. Niu, W.Y. Zhou, J. Chen, G.X. Feng, H. Li, W.J. Ma, J.Z. Li, H.B. Dong, Y. R, D. Zhao, S.S. Xie, Energy Environ. Sci. 4(2011) 1440-1446.[31] Z.Q. Niu, W.J. Ma, J.Z. Li, H.B. Dong, Y. Ren, D. Zhao, W.Y. Zhou, S.S. Xie, Adv. Funct. Mater. 22(2012) 5209-5215.[32] J.I. Talpone, P.F. Puleston, J.J. More, R. Griñó, M.G. Cendoya, Int. J. Hydrogen Energy 37(2012) 10346-10353.[33] L.L. Liu, Z.Q. Niu, J. Chen, Nano Res. 10(2017) 1524-1544.[34] Y. Yue, H. Liang, Adv. Energy Mater. 7(2017) 1602545.[35] W. Liu, M.S. Song, B. Kong, Y. Cui, Adv. Mater. 29(2017) 1603436.[36] C. Zhang, X. Wang, Q.F. Liang, X.Z. Liu, Q.H. Weng, J.W. Liu, Y.J. Yang, Z.H. Dai, K.J. Ding, Y. Bando, J. Tang, D. Golberg, Nano Lett. 16(2016) 2054-2060.[37] N. Nitta, F.X. Wu, J.T. Lee, G. Yushin, Mater. Today 18(2015) 252-264.[38] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Nat. Mater. 11(2011) 19-29.[39] H.Q. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, D. Li, Adv. Mater. 20(2008) 3557-3561.[40] A.P. Yu, I. Roes, A. Davies, Z.W. Chen, Appl. Phys. Lett. 96(2010) 253105.[41] X.W. Yang, J.W. Zhu, L. Qiu, D. Li, Adv. Mater. 23(2011) 2833-2838.[42] G.K. Wang, X. Sun, F.Y. Lu, H.T. Sun, M.P. Yu, W.L. Jiang, C.S. Liu, J. Lian, Small 8(2012) 452-459.[43] Y.M. Wang, J.C. Chen, J.Y. Cao, Y. Liu, Y. Zhou, J.H. Ouyang, D.C. Jia, J. Power Sources 271(2014) 269-277.[44] K.Z. Gao, Z.Q. Shao, J. Li, X. Wang, X.Q. Peng, W.J. Wang, F.J. Wang, J. Mater. Chem. A 1(2013) 63-67.[45] K.Z. Gao, Z.Q. Shao, X. Wu, X. Wang, Y.H. Zhang, W.J. Wang, F.J. Wang, Nanoscale 5(2013) 5307-5311.[46] Z.Q. Niu, J.J. Du, X.B. Cao, Y. Sun, W.Y. Zhou, H.H. Hng, J. Ma, X.D. Chen, S.S. Xie, Small 8(2012) 3201-3208.[47] J. Zhi, W. Zhao, X.Y. Liu, A.R. Chen, Z.Q. Liu, F.Q. Huang, Adv. Funct. Mater 24(2014) 2013-2019.[48] J. Cao, C. Chen, K.N. Chen, Q.Q. Lu, Q.R. Wang, P.F. Zhou, D.B. Liu, L. Song, Z.Q. Niu, J. Chen, J. Mater. Chem. A 5(2017) 15008-15016.[49] Z.Q. Niu, J. Chen, H.H. Hng, J. Ma, X.D. Chen, Adv. Mater. 24(2012) 4144-4150.[50] E. Kady, F. Maher, V. Strong, S. Dubin, R.B. Kaner, Science 335(2012) 1326-1330.[51] T. Chen, Y. Xue, A.K. Roy, L.M. Da, ACS Nano 8(2014) 1039-1046.[52] L.L. Liu, Z.Q. Niu, L. Zhang, W.Y. Zhou, X.D. Chen, S.S. Xie, Adv. Mater. 26(2014) 4855-4862.[53] U.N. Maiti, J. Lim, K.E. Lee, W.J. Lee, S.O. Kim, Adv. Mater. 26(2014) 615-619.[54] W. Gao, N. Singh, L. Song, Z. Liu, A.L. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, P.M. Ajayan, Nat. Nanotechnol. 6(2011) 496-500.[55] L.J. Wang, M.F. El-Kady, S. Dubin, J.Y. Hwang, Y.L. Shao, K. Marsh, B. McVerry, M.D. Kowal, M.F. Mousavi, R.B. Kaner, Adv. Energy Mater. 5(2015) 1500786.[56] M.F. El-Kady, R.B. Kaner, Nat. Commun. 4(2013) 1475.[57] N. Li, T. Lv, Y. Yao, H.L. Li, K. Liu, T. Chen, J. Mater.Chem. A 5(2017) 3267-3273.[58] J.Y. Hong, B.M. Bak, J.J. Wie, J. Kong, H.S. Park, Adv. Funct. Mater. 25(2015) 1053-1062.[59] Z. Weng, Y. Su, D.W. Wang, F. Li, J.H. Du, H.M. Cheng, Adv. Energy Mater. 1(2011) 917-922.[60] Y.R. Kang, Y.L. Li, F. Hou, Y.Y. Wen, D. Su, Nanoscale 4(2012) 3248-3253.[61] M. Sevilla, G.A. Ferrero, A.B. Fuertes, Energy Storage Mater. 5(2016) 33-42.[62] Q.Y. Liao, N. Li, S.X. Jin, G.W. Yang, C.X. Wang, ACS Nano 9(2015) 5310-5317.[63] G.H. Yu, L.B. Hu, M. Vosgueritchian, H.L. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z.N. Bao, Nano Lett. 11(2011) 2905-2911.[64] J. Ge, H.B. Yao, W. Hu, X.F. Yu, Y.X. Yan, L.B. Mao, H.H. Li, S.S. Li, S.H. Yu, Nano Energy 2(2013) 505-513.[65] Z.P. Li, Y.J. Mi, X.H. Liu, S. Liu, S.G. Yang, J.Q. Wang, J. Mater. Chem. 21(2011) 14706-14711.[66] C.Z. Yuan, L. Yang, L.R. Hou, J.Y. Li, Y.X. Sun, X.G. Zhang, L.F. Shen, X.J. Lu, S.L. Xiong, X.W. Lou, Adv. Funct. Mater. 22(2012) 2560-2566.[67] Z.W. Peng, J. Lin, R.Q. Ye, E.L. Samuel, J.M. Tour, ACS Appl. Mater. Interfaces 7(2015) 3414-3419.[68] W.W. Liu, C.X. Lu, X.L. Wang, R.Y.J. Tay, B.K. Tay, ACS Nano 9(2015) 1528-1542.[69] Z.W. Peng, R.Q. Ye, J.A. Mann, D. Zakhidov, Y.L. Li, P.R. Smalley, J. Lin, J.M. Tour, ACS Nano 9(2015) 5868-5875.[70] Z.Y. Liu, Z.S. Wu, S. Yang, R.H. Dong, X.L. Feng, K. Mullen, Adv. Mater. 28(2016) 2122-2217.[71] Z.Q. Niu, L. Zhang, L.L. Liu, B.W. Zhu, H.B. Dong, X.D. Chen, Adv. Mater. 25(2013) 4035-4042.[72] Z.S. Wu, K. Parvez, S. Li, S. Yang, Z.Y. Liu, S.H. Liu, X.L. Feng, K. Mullen, Adv. Mater. 27(2015) 4054-4061.[73] Z.S. Wu, K. Parvez, A. Winter, H. Vieker, X.J. Liu, S. Han, A. Turchanin, X.L. Feng, K. Mullen, Adv. Mater. 26(2014) 4552-4558.[74] Z.S. Wu, K. Parvez, X. Feng, K. Mullen, Nat. Commun. 4(2013) 2487.[75] S.H. Zheng, X.Y. Tang, Z.S. Wu, Y.Z. Tan, S. Wang, C.L. Sun, H.M. Cheng, X.H. Bao, ACS Nano 11(2017) 2171-2179.[76] M.F. El-Kady, M. Ihns, M. Li, J.Y. Hwang, M.F. Mousavi, L. Chaney, A.T. Lech, R.B. Kaner, Proc. Natl. Acad. Sci. USA 112(2015) 4233-4238.[77] F.S. Wen, C.X. Hao, J.Y. Xiang, L.M. Wang, H. Hou, Z.B. Su, W.T. Hu, Z.Y. Liu, Carbon 75(2014) 236-243.[78] J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Science 328(2010) 480-483.[79] L.L. Peng, X. Peng, B.R. Liu, C.Z. Wu, Y. Xie, G.H. Yu, Nano Lett. 13(2013) 2151-2157.[80] R.Z. Li, R. Peng, K.D. Kihm, S. Bai, D. Bridges, U. Tumuluri, Z. Wu, T. Zhang, G. Compagnini, Z. Feng, A. Hu, Energy Environ. Sci. 9(2016) 1458-1467.[81] X.F. Wang, B.F. Liu, R. Liu, Q.F. Wang, X.J. Hou, D. Chen, R.M. Wang, G.Z. Shen, Angew. Chem., Int. Ed. 53(2014) 1849-1853.[82] Y.R. Li, K.X. Sheng, W.J. Yuan, G.Q. Shi, Chem. Commun. 49(2013) 291-293.[83] C.R. Zhu, P.H. Yang, D.L. Chao, X.L. Wang, X. Zhang, S. Chen, B.K. Tay, H. Huang, H. Zhang, W.J. Mai, H.J. Fan, Adv. Mater. 27(2015) 4566-4571.[84] X. Li, X.B. Zang, Z. Li, X.M. Li, P.X. Li, P.Z. Sun, X. Lee, R.J. Zhang, Z.H. Huang, K.L. Wang, D.H. Wu, F.Y. Kang, H.W. Zhu, Adv. Funct. Mater 23(2013) 4862-4869.[85] X.M. Li, T.S. Zhao, K.L. Wang, Y. Yang, J.Q. Wei, F.Y. Kang, D.H. Wu, H.W. Zhu, Langmuir 27(2011) 12164-12171.[86] X.M. Li, T.S. Zhao, Q. Chen, P.X. Li, K.L. Wang, M.L. Zhong, J.Q. Wei, D.H. Wu, B.Q. Wei, H.W. Zhu, Phys. Chem. Chem. Phys. 15(2013) 17752-17757.[87] G.Z. Sun, X. Zhang, R.Z. Lin, J. Yang, H. Zhang, P. Chen, Angew. Chem., Int. Ed. 54(2015) 4651-4656.[88] Y.W. Ma, P. Li, J.W. Sedloff, X. Zhang, H.B. Zhang, J. Liu, ACS Nano 9(2015) 1352-1359.[89] H.H. Cheng, Z.L. Dong, C.G. Hu, Y. Zhao, Y. Hu, L.T. Qu, N. Chen, L.M. Dai, Nanoscale 5(2013) 3428-3434.[90] D.S. Yu, K.L. Goh, Q. Zhang, L. Wei, H. Wang, W.C. Jiang, Y. Chen, Adv. Mater. 26(2014) 6790-6797.[91] Y.N. Meng, Y. Zhao, C.G. Hu, H.H. Cheng, Y. Hu, Z.P. Zhang, G.Q. Shi, L.T. Qu, Adv. Mater. 25(2013) 2326-2331.[92] Y. Liang, Z. Wang, J. Huang, H.H. Cheng, F. Zhao, Y. Hu, L. Jiang, L.T. Qu, J. Mater. Chem. A 3(2015) 2547-2551.[93] H. Sun, X. You, J. Deng, X.L. Chen, Z.B. Yang, J. Ren, H.S. Peng, Adv. Mater. 26(2014) 2868-2873.[94] L. Kou, T.Q. Huang, B.N. Zheng, Y. Han, X.L. Zhao, K. Gopalsamy, H.Y. Sun, C. Gao, Nat. Commun. 5(2014) 3754.[95] Y. Hu, H.H. Cheng, F. Zhao, N. Chen, L. Jiang, Z.H. Feng, L.T. Qu, Nanoscale 6(2014) 6448-6451.[96] D.S. Yu, K. Goh, H. Wang, L. Wei, W.C. Jiang, Q. Zhang, L.M. Dai, Y. Chen, Nat. Nanotechnol. 9(2014) 555-562.[97] Q. Chen, Y.N. Meng, C.G. Hu, Y. Zhao, H.B. Shao, N. Chen, L.T. Qu, J. Power Sources 247(2014) 32-39.[98] X.T. Ding, Y. Zhao, C.G. Hu, Y. Hu, Z.L. Dong, N. Chen, Z.P. Zhang, L.T. Qu, J. Mater. Chem. A 2(2014) 12355-12360.[99] L. Wen, F. Li, H.M. Cheng, Adv. Mater. 28(2016) 4306-4337.[100] Y. Li, L.B. Kong, M.C. Liu, W.B. Zhang, L. Kang, J. Energy Chem. 26(2017) 494-500.[101] X. Zhang, Z.H. Zhang, Z. Zhou, J. Energy Chem. DOI:10.1016/j/jechem.2017. 1008.1004.[102] O.C. Compton, B. Jain, D.A. Dikin, A. Abouimrane, K. Amine, S.T. Nguyen, ACS Nano 6(2011) 4380-4391.[103] C.Y. Wang, D. Li, C.O. Too, G.G. Wallace, Chem. Mater. 21(2009) 2604-2606.[104] X. Zhao, C.M. Hayner, M.C. Kung, H.H. Kung, ACS Nano 5(2011) 8739-8749.[105] Y.H. Hu, X.F. Li, D.S. Geng, M. Cai, R.Y. Li, X.L. Sun, Electrochim. Acta 91(2013) 227-233.[106] S.H. Lee, S.D. Seo, K.S. Park, H.W. Shim, D.W. Kim, Mater. Chem. Phys. 135(2012) 309-316.[107] R. Mukherjee, A.V. Thomas, A. Krishnamurthy, N. Koratkar, ACS Nano 6(2012) 7867-7878.[108] A. Abouimrane, O.C. Compton, K. Amine, S.T. Nguyen, J. Phys. Chem. C 114(2010) 12800-12804.[109] Y.H. Hu, X.F. Li, J.J. Wang, R.Y. Li, X.L. Sun, J. Power Sources 237(2013) 41-46.[110] S.Y. Yin, Y.Y. Zhang, J.H. Kong, C.J. Zou, C.M. Li, X.H. Lu, J. Ma, F.Y. Ch. Boey, X.D. Chen, ACS Nano 5(2011) 3831-3838.[111] F. Liu, S. Song, D. Xue, H. Zhang, Adv. Mater. 24(2012) 1089-1094.[112] B. Wang, X.L. Li, X.F. Zhang, B. Luo, M.H. Jin, M.H. Liang, S.A. Dayeh, S.T. Picraux, L.J. Zhi, ACS Nano 7(2013) 1437-1445.[113] J.F. Liang, Y. Zhao, L. Guo, L.D. Li, ACS Appl. Mater. Interfaces 4(2012) 5742-5748.[114] X. Wang, X.Q. Cao, L. Bourgeois, H. Guan, S.M. Chen, Y.T. Zhong, D.M. Tang, H.Q. Li, T.Y. Zhai, L. Li, Y.S. Bando, D. Golberg, Adv. Funct. Mater 22(2012) 2682-2690.[115] D.H. Wang, R. Kou, D.W. Choi, Z.G. Yang, Z.M. Nie, J. Li, L.V. Saraf, D.H. Hu, J.G. Zhang, G.L. Graff, J. Liu, M.A. Pope, I.A. Aksay, ACS Nano 4(2010) 1587-1595.[116] Y.H. Ding, H.M. Ren, Y.Y. Huang, F.H. Chang, P. Zhang, Mater. Res. Bull. 48(2013) 3713-3716.[117] X.L. Yang, K.C. Fan, Y.H. Zhu, J.H. Shen, X. Jiang, P. Zhao, S.R. Luan, C.Z. Li, ACS Appl. Mater. Interfaces 5(2013) 997-1002.[118] T.C. Jiang, F.X. Bu, X.X. Feng, I. Shakir, G.L. Hao, Y.X. Xu, ACS Nano 11(2017) 5140-5147.[119] S.K. Park, C.Y. Seong, S. Yoo, Y.Z. Piao, Energy 99(2016) 266-273.[120] T. Hu, X. Sun, H.T. Sun, M.P. Yu, F.Y. Lu, C.S. Liu, J. Lian, Carbon 51(2013) 322-326.[121] H.M. Ren, Y.H. Ding, F.H. Chang, X. He, J.Q. Feng, C.F. Wang, Y. Jiang, P. Zhang, Appl. Surf. Sci 263(2012) 54-57.[122] Y. Wang, G.Z. Cao, Adv. Mater. 20(2008) 2251-2269.[123] M.S. Whittingham, Chem. Rev. 104(2004) 4271-4301.[124] Y. Sun, S.B. Yang, L.P. Lv, I. Lieberwirth, L.C. Zhang, C.X. Ding, C.H. Chen, J. Power Sources 241(2013) 168-172.[125] Y. Qian, A. Vu, W. Smyrl, A. Stein, J. Electrochem. Soc. 159(2012) A1135-A1140.[126] J.W. Lee, S.Y. Lim, H.M. Jeong, T.H. Hwang, J.K. Kang, J.W. Choi, Energy Environ. Sci. 5(2012) 9889.[127] H. Gwon, H.S. Kim, K.U. Lee, D.H. Seo, Y.C. Park, Y.S. Lee, B.T. Ahn, K. Kang, Energy Environ. Sci. 4(2011) 1277-1283.[128] X. Zhao, C.M. Hayner, M.C. Kung, H.H. Kung, Chem. Commun. 48(2012) 9909-9911.[129] D. Wei, P. Andrew, H.F. Yang, Y.Y. Jiang, F.H. Li, C.S. Shan, W.D. Ruan, D.X. Han, L. Niu, C. Bower, T. Ryhänen, M. Rouvala, G.A.J. Amaratunga, A. Ivaska, J. Mater. Chem. 21(2011) 9762-9767.[130] L. Noerochim, J.Z. Wang, D. Wexler, Z. Chao, H.K. Liu, J. Power Sources 228(2013) 198-205.[131] Y. Liu, X.Z. Wang, Y.F. Dong, Y.C. Tang, L.X. Wang, D.Z. Jia, Z.B. Zhao, J.S. Qiu, Chem. Commun. 52(2016) 12825-12828.[132] L.L. Yan, M. Xiao, S.J. Wang, D.M. Han, Y.Z. Meng, J. Energy Chem. 26(2017) 522-529.[133] G. Hu, C. Xu, Z. Sun, S. Wang, H.M. Cheng, F. Li, W. Ren, Adv. Mater. 28(2016) 1603-1609.[134] Y. Chen, S.T. Lu, X.H. Wu, J. Liu, J. Phys. Chem. C 119(2015) 10288-10294.[135] J. Cao, C. Chen, Q. Zhao, N. Zhang, Q.Q. Lu, X.Y. Wang, Z.Q. Niu, J. Chen, Adv. Mater. 28(2016) 9629-9636.[136] S.W. Luo, M.J. Yao, S. Lei, P.Z. Yan, X.T. Wei, X.T. Wang, L.L. Liu, Z.Q. Niu, Nanoscale 9(2017) 4646-4651.[137] G.M. Zhou, L. Li, C.Q. Ma, S.G. Wang, Y. Shi, N. Koratkar, W.C. Ren, F. Li, H.M. Cheng, Nano Energy 11(2015) 356-365.[138] G.M. Zhou, S.F. Pei, L. Li, D.W. Wang, S.G. Wang, K. Huang, L.C. Yin, F. Li, H.M. Cheng, Adv. Mater. 26(2014) 625-631.[139] C. Wang, X.S. Wang, Y.J. Wang, J.T. Chen, H.H. Zhou, Y.H. Huang, Nano Energy 11(2015) 678-686.[140] H.W. Chen, C.H. Wang, Y.F. Dai, S.Q. Qiu, J.L. Yang, W. Lu, L.W. Chen, Nano Lett. 15(2015) 5443-5448.[141] K.N. Chen, J. Cao, Q.Q. Lu, Q.R. Wang, M.J. Yao, M.M. Han, Z.Q. Niu, J. Chen, Nano Res. doi:10.1007/s12274-017-1749-2.[142] J. Jin, Z.Y. Wen, G.Q. Ma, Y. Lu, Y.M. Cui, M.F. Wu, X. Liang, X.W. Wu, RSC Adv. 3(2013) 2558-2560.[143] L. Zhu, H.J. Peng, J.Y. Liang, J.Q. Huang, C.M. Chen, X.F. Guo, W.C. Zhu, P. Li, Q. Zhang, Nano Energy 11(2015) 746-755.[144] R.J. Chen, T. Zhao, J. Lu, F. Wu, L. Li, J.Z. Chen, G.Q. Tan, Y.S. Ye, K. Amine, Nano Lett. 13(2013) 4642-4649.[145] F. Wu, J. Qian, R.J. Chen, T. Zhao, R. Xu, Y. Ye, W.H. Li, L. Li, J. Lu, K. Amine, Nano Energy 12(2015) 742-749.[146] J.R. He, Y.F. Chen, P.J. Li, F. Fu, Z.G. Wang, W.L. Zhang, J. Mater. Chem. A 3(2015) 18605-18610.[147] G.M. Zhou, L. Li, D.W. Wang, X.Y. Shan, S.F. Pei, F. Li, H.M. Cheng, Adv. Mater. 27(2015) 641-647.[148] X. Fang, W. Weng, J. Ren, H.S. Peng, Adv. Mater. 28(2016) 491-496.[149] R.Q. Liu, Y.J. Liu, J. Chen, Q. Kang, L.L. Wang, W.X. Zhou, Z.D. Huang, X.J. Lin, Y. Li, P. Li, X.M. Feng, G. Wu, Y.W. Ma, W. Huang, Nano Energy 33(2017) 325-333.[150] W.G. Chong, J.Q. Huang, Z.L. Xu, X.Y. Qin, X.Y. Wang, J.K. Kim, Adv. Funct. Mater. 27(2017) 1604815.[151] Y.C. Tu, D.H. Deng, X.H. Bao, J. Energy Chem. 25(2016) 957-966.[152] M. Seredych, K. László, E. Rodríguez Castellón, T.J. Bandosz, J. Energy Chem. 25(2016) 236-245.[153] L. Yao, H.X. Zhong, C.W. Deng, X.F. Li, H.M. Zhang, J. Energy Chem. 25(2016) 153-157.[154] T. Cetinkaya, S. Ozcan, M. Uysal, M.O. Guler, H. Akbulut, J. Power Sources 267(2014) 140-147.[155] D.Y. Kim, M. Kim, D.W. Kim, J. Suk, O.O. Park, Y. Kang, Carbon 93(2015) 625-635.[156] H.R. An, Y. Li, Y. Gao, C. Cao, J.K. Han, Y.Y. Feng, W. Feng, Carbon 116(2017) 338-346.[157] X. Deng, K.Y. Xie, L. Li, W. Zhou, J. Sunarso, Z.P. Shao, Carbon 107(2016) 67-73.[158] L. David, R. Bhandavat, G. Singh, ACS Nano 8(2014) 1759-1770.[159] G.B. Xu, Y. Tian, X.L. Wei, L.W. Yang, P.K. Chu, J. Power Sources 337(2017) 180-188.[160] Y. Liu, Y.Z. Yang, X.Z. Wang, Y.F. Dong, Y.C. Tang, Z.F. Yu, Z.B. Zhao, J.S. Qiu, ACS Appl. Mater. Interfaces 9(2017) 15484-15491.[161] Y. Zhang, Y.S. Huang, G.H. Yang, F.X. Bu, K. Li, I. Shakir, Y.X. Xu, ACS Appl. Mater. Interfaces 9(2017) 15549-15556.[162] H.S. Li, Y. Ding, H. Ha, Y. Shi, L. Peng, X.G. Zhang, C.J. Ellison, G.H. Yu, Adv. Mater. 29(2017) 1700898. |
[1] | Jia Liu,dan Li, Ying Wang, Siqi Zhang, Ziye Kang, Haiming Xie, Liqun Sun. MoO2 nanoparticles/carbon textiles cathode for high performance flexible Li-O2 battery[J]. 能源化学(英文版), 2020, 47(8): 66-71. |
[2] | Ju Fu, Wenbin Kang, Xiaodong Guo, Hao Wen, Tianbiao Zeng, Ruoxin Yuan,chuhong Zhang. 3D hierarchically porous NiO/Graphene hybrid paper anode for long-life and high rate cycling flexible Li-ion batteries[J]. 能源化学(英文版), 2020, 47(8): 172-179. |
[3] | Shijie Zhang, Peng Zhang, Ruohan Hou,bin Li, Yongshang Zhang, Kangli Liu, Xilai Zhang, Guosheng Shao. In situ sulfur-doped graphene nanofiber network as efficient metal-free electrocatalyst for polysulfides redox reactions in lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 47(8): 281-290. |
[4] | Jia Liu, Dan Li, Siqi Zhang, Ying Wang, Guiru Sun, Zhao Wang, Haiming Xie, Liqun Sun. Hierarchical N-doped carbon nanocages/carbon textiles as a flexible O2 electrode for Li-O2 batteries[J]. 能源化学(英文版), 2020, 46(7): 94-98. |
[5] | Deyu Xin, Shujie Tie, Xiaojia Zheng, Jianguo Zhu, Wen-Hua Zhang. Defect passivation through electrostatic interaction for high performance flexible perovskite solar cells[J]. 能源化学(英文版), 2020, 46(7): 173-177. |
[6] | Hanyan Xu, Hao Chen, Haiwen Lai, Zheng Li, Xiaozhong Dong, Shengying Cai, Xingyuan Chu, Chao Gao. Capacitive charge storage enables an ultrahigh cathode capacity in aluminum-graphene battery[J]. 能源化学(英文版), 2020, 45(6): 40-44. |
[7] | Ruibai Cang, Ke Ye, Kai Zhu, Jun Yan, Jinling Yin, Kui Cheng, Guiling Wang, Dianxue Cao. Organic 3D interconnected graphene aerogel as cathode materials for high-performance aqueous zinc ion battery[J]. 能源化学(英文版), 2020, 45(6): 52-58. |
[8] | Yue Zhao, Jiafeng He, Meizhen Dai, Depeng Zhao, Xiang Wu, Baodan Liu. Emerging CoMn-LDH@MnO2 electrode materials assembled using nanosheets for flexible and foldable energy storage devices[J]. 能源化学(英文版), 2020, 45(6): 67-73. |
[9] | Tianshuai Wang, Jiewen Xiao, Xiyu Cao, Yanchen Fan, Qianfan Zhang. Interface effect on promoting reversible conversion for Na2Se in the metal selenide as sodium ion batteries[J]. 能源化学(英文版), 2020, 44(5): 8-12. |
[10] | Daxiong Wu, Caiyun Wang, Mingguang Wu, Yunfeng Chao, Pengbin He, Jianmin Ma. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage[J]. 能源化学(英文版), 2020, 43(4): 24-32. |
[11] | Yingqi Xu, Weifeng Zhang, Yaguang Li, Pengfei Lu, Zhong-Shuai Wu. A general bimetal-ion adsorption strategy to prepare nickel single atom catalysts anchored on graphene for efficient oxygen evolution reaction[J]. 能源化学(英文版), 2020, 43(4): 52-57. |
[12] | Chao Wang, Yinxiang Zeng, Xiang Xiao, Shijia Wu, Guobin Zhong, Kaiqi Xu, Zengfu Wei, Wei Su, Xihong Lu. γ -MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery[J]. 能源化学(英文版), 2020, 43(4): 182-187. |
[13] | Kimal Chandula Wasalathilake, Henan Li, Li Xu, Cheng Yan. Recent advances in graphene based materials as anode materials in sodium-ion batteries[J]. 能源化学(英文版), 2020, 42(3): 91-107. |
[14] | Ming Lu, Bingsen Zhang, Wei Zhang, Weitao Zheng. Breaking the lithium storage limit via independent bilayer units within 2D layer materials[J]. 能源化学(英文版), 2020, 41(2): 1-2. |
[15] | Na Liu, Zhenghui Pan, Xiaoyu Ding, Jie Yang, Guoguang Xu, Linge Li, Qi Wang, Meinan Liu, Yuegang Zhang. In-situ growth of vertically aligned nickel cobalt sulfide nanowires on carbon nanotube fibers for high capacitance all-solid-state asymmetric fiber-supercapacitors[J]. 能源化学(英文版), 2020, 41(2): 209-215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||