能源化学(英文) ›› 2018, Vol. 27 ›› Issue (1): 99-116.DOI: 10.1016/j.jechem.2017.10.026
Shuai Bia, Chenbao Lua, Wenbei Zhanga, Feng Qiub, Fan Zhanga
收稿日期:
2017-09-30
修回日期:
2017-10-22
出版日期:
2018-01-15
发布日期:
2018-01-13
通讯作者:
Feng Qiu, Fan Zhang
作者简介:
Shuai Bi received his B.S. degree in applied chemistry from Shanghai Jiao Tong University in June 2014;Chenbao Lu received his B.S. degree in Chemical Engineering and Technology from Nanjing University of Technology in June 2014 and received Master degree from Shanghai Jiao Tong University in March 2017;Wenbei Zhang received his Master degree in School of Chemistry and Chemical Engineering from Henan Normal University in June 2012
基金资助:
This work was financially supported by the National Natural Science Foundation of China (51403126, 21574080, 61306018 and 21504057), Shanghai Committee of Science and Technology (15JC1490500, 16JC1400703, and 17ZR1441700), Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment (SKLPEE-KF201702, Fuzhou University), State Key Laboratory of Supramolecular Structure and Materials (sklssm201732, Jinlin University).
Shuai Bia, Chenbao Lua, Wenbei Zhanga, Feng Qiub, Fan Zhanga
Received:
2017-09-30
Revised:
2017-10-22
Online:
2018-01-15
Published:
2018-01-13
Contact:
Feng Qiu, Fan Zhang
Supported by:
This work was financially supported by the National Natural Science Foundation of China (51403126, 21574080, 61306018 and 21504057), Shanghai Committee of Science and Technology (15JC1490500, 16JC1400703, and 17ZR1441700), Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment (SKLPEE-KF201702, Fuzhou University), State Key Laboratory of Supramolecular Structure and Materials (sklssm201732, Jinlin University).
摘要: Over the past decades, two-dimensional (2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed, due to their wide potential application in the fields of chemistry, physics, and materials science. As a new family of 2D nanomaterials, 2D polymerbased nanosheets, featuring excellent characters, such as tunable framework structures, light weight, flexibility, high specific surface, and good semiconducting properties, have been emerging as one kind of promising functional materials for optoelectronics, gas separation, catalysis and sensing, etc. In this review, the recent progress in synthetic approach and characterization of 2D polymer-based nanosheets were summarized, and their current advances in electrochemical energy storage and conversion including second batteries, supercapacitors, oxygen reduction and hydrogen evolution were discussed systematically.
Shuai Bi, Chenbao Lu, Wenbei Zhang, Feng Qiu, Fan Zhang. Two-dimensional polymer-based nanosheets for electrochemical energy storage and conversion[J]. 能源化学(英文), 2018, 27(1): 99-116.
Shuai Bi, Chenbao Lu, Wenbei Zhang, Feng Qiu, Fan Zhang. Two-dimensional polymer-based nanosheets for electrochemical energy storage and conversion[J]. Journal of Energy Chemistry, 2018, 27(1): 99-116.
[1] J.N. Chheda, G.W. Huber, J.A. Dumesic, Angew. Chem. Int. Ed. 46(2007) 7164-7183.[2] Q. Zhao, M. Zhao, J. Qiu, W.Y. Lai, H. Pang, W. Huang, Small (2017), doi:10. 1002/smll.201701091.[3] P. Simon, Y. Gogotsi, Nat. Mater. 7(2008) 845-854.[4] G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41(2012) 797-828.[5] M. Pumera, Chem. Soc. Rev. 39(2010) 4146-4157.[6] J.Y. Oh, S. Rondeau-Gagné, Y.-C. Chiu, A. Chortos, F. Lissel, G.-J.N. Wang, B.C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W.-G. Bae, Y. Kim, L. Jin, J.W. Chung, J.B.H. Tok, Z. Bao, Nature 539(2016) 411-415.[7] H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari, L. Wang, H.J. Choi, T.D. Chung, N. Lu, T. Hyeon, S.H. Choi, D.-H. Kim, Nat. Nanotechnol. 11(2016) 566-572.[8] L. Liu, Y. Yu, C. Yan, K. Li, Z. Zheng, Nat. Commun. 6(2015) 7260.[9] Y. Park, J. Shim, S. Jeong, G.R. Yi, H. Chae, J.W. Bae, S.O. Kim, C. Pang, Adv. Mater. 29(2017), doi:10.1002/adma.201606453.[10] H.S. Kang, H.-T. Kim, J.-K. Park, S. Lee, Adv. Funct. Mater. 24(2014) 7273-7283.[11] S. Xu, D. Li, P. Wu, Adv. Funct. Mater. 25(2015) 1127-1136.[12] J. Wu, S. Ma, J. Sun, J.I. Gold, C. Tiwary, B. Kim, L. Zhu, N. Chopra, I.N. Odeh, R. Vajtai, A.Z. Yu, R. Luo, J. Lou, G. Ding, P.J. Kenis, P.M. Ajayan, Nat. Commum. 7(2016) 13869.[13] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(2004) 666-669.[14] A.K. Geim, K.S. Novoselov, Nat. Mater. 6(2007) 183-191.[15] F.W. Averill, J.R. Morris, V.R. Cooper, Phys. Rev. B 80(2009) 195411.[16] L. Liu, J. Park, D.A. Siegel, K.F. McCarty, K.W. Clark, W. Deng, L. Basile, J.C. Idrobo, A.-P. Li, G. Gu, Science 343(2014) 163-167.[17] J. Lu, K. Zhang, X.F. Liu, H. Zhang, T.C. Sum, A.H. Castro Neto, K.P. Loh, Nat. Commun. 4(2013) 2681.[18] Y. Liu, S. Bhowmick, B.I. Yakobson, Nano Lett. 11(2011) 3113-3116.[19] L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Nat. Nanotechnol. 9(2014) 372-377.[20] J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, Nat. Commun. 5(2014) 4475.[21] X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Nat. Nanotechnol. 10(2015) 517-521.[22] H. Liu, Y. Du, Y. Deng, P.D. Ye, Chem. Soc. Rev. 44(2015) 2732-2743.[23] M. Osada, T. Sasaki, Adv. Mater. 24(2012) 210-228.[24] L. Wang, Y. Zhu, C. Guo, X. Zhu, J. Liang, Y. Qian, ChemSusChem 7(2014) 87-91.[25] S.S. Chou, N. Sai, P. Lu, E.N. Coker, S. Liu, K. Artyushkova, T.S. Luk, B. Kaehr, C.J. Brinker, Nat. Commun. 6(2015) 8311.[26] J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, J. Am. Chem. Soc. 135(2013) 17881-17888.[27] K. Xu, P. Chen, X. Li, C. Wu, Y. Guo, J. Zhao, X. Wu, Y. Xie, Angew. Chem. Int. Ed. 52(2013) 10477-10481.[28] X. Yang, Z. Zhang, Y. Fu, Q. Li, Nanoscale 7(2015) 10198-10203.[29] L. Dou, A.B. Wong, Y. Yu, M. Lai, N. Kornienko, S.W. Eaton, A. Fu, C.G. Bischak, J. Ma, T. Ding, N.S. Ginsberg, L.-W. Wang, A.P. Alivisatos, P. Yang, Science 349(2015) 1518-1521.[30] X. Zhang, Z. Zhang, Z. Zhou, J. Energy Chem. (2017), doi:10.1016/j.jechem.2017. 08.004.[31] X. Song, J. Hu, H. Zeng, J. Mater. Chem. C 1(2013) 2952-2969.[32] X. Peng, L. Peng, C. Wu, Y. Xie, Chem. Soc. Rev. 43(2014) 3303-3323.[33] Y. Xue, B. Wu, Q. Bao, Y. Liu, Small 10(2014) 2975-2991.[34] H. Li, S. Pang, S. Wu, X. Feng, K. Müllen, C. Bubeck, J. Am. Chem. Soc. 133(2011) 9423-9429.[35] D. Wu, F. Zhang, H. Liang, X. Feng, Chem. Soc. Rev. 41(2012) 6160-6177.[36] S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Adv. Mater. 26(2014) 849-864.[37] S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Small 9(2013) 1173-1187.[38] S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, K. Müllen, Adv. Funct. Mater. 22(2012) 3634-3640.[39] X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, H. Dai, Science 324(2009) 768-771.[40] L. Panchakarla, K. Subrahmanyam, S. Saha, A. Govindaraj, H. Krishnamurthy, U. Waghmare, C. Rao, Adv. Mater. 21(2009) 4726-4730.[41] C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Adv. Mater. 25(2013) 4932-4937.[42] Y. Dong, Z.-S. Wu, W. Ren, H.-M. Cheng, X. Bao, Sci. Bull. 62(2017) 724-740.[43] X. Zhang, X. Cheng, Q. Zhang, J. Energy Chem. 25(2016) 967-984.[44] S. Buller, J. Strunk, J. Energy Chem. 25(2016) 171-190.[45] Z.S. Wu, X. Feng, H.-M. Cheng, Natl. Sci. Rev. 1(2014) 277-292.[46] Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51(2012) 68-89.[47] R. Gutzler, H. Walch, G. Eder, S. Kloft, W.M. Heckl, M. Lackinger, Chem. Commun. (2009) 4456-4458.[48] L. Grill, M. Dyer, L. Lafferentz, M. Persson, M.V. Peters, S. Hecht, Nat. Nanotechnol. 2(2007) 687-691.[49] L. Cardenas, R. Gutzler, J. Lipton-Duffin, C. Fu, J.L. Brusso, L.E. Dinca, M. Vondrá?ek, Y. Fagot-Revurat, D. Malterre, F. Rosei, Chem. Sci. 4(2013) 3263-3268.[50] M. Bieri, M.-T. Nguyen, O. Groning, J. Cai, M. Treier, K. Ai?-Mansour, P. Ruffieux, C.A. Pignedoli, D. Passerone, M. Kastler, J. Am. Chem. Soc. 132(2010) 16669-16676.[51] I. Levesque, J.R. Néabo, S. Rondeau-Gagné, C. Vigier-Carrière, M. Daigle, J.-F. Morin, Chem. Sci. 5(2014) 831-836.[52] R. Bhola, P. Payamyar, D.J. Murray, B. Kumar, A.J. Teator, M.U. Schmidt, S.M. Hammer, A. Saha, J. Sakamoto, A.D. Schlu?er, J. Am. Chem. Soc. 135 (2013) 14134-14141.[53] X.H. Liu, C.Z. Guan, D. Wang, L.J. Wan, Adv. Mater. 26(2014) 6912-6920.[54] E.L. Spitler, W.R. Dichtel, Nat. Chem. 2(2010) 672-677.[55] E.L. Spitler, B.T. Koo, J.L. Novotney, J.W. Colson, F.J. Uribe-Romo, G.D. Gutierrez, P. Clancy, W.R. Dichtel, J. Am. Chem. Soc. 133(2011) 19416-19421.[56] L. Stegbauer, K. Schwinghammer, B.V. Lotsch, Chem. Sci. 5(2014) 2789-2793.[57] S. Mitra, S. Kandambeth, B.P. Biswal, M.A. Khayum, C.K. Choudhury, M. Mehta, G. Kaur, S. Banerjee, A. Prabhune, S. Verma, S. Roy, U.K. Kharul, R. Banerjee, J. Am. Chem. Soc. 138(2016) 2823-2828.[58] A.P. Cote, A.I. Benin, N.W. Ockwig, M. O'keeffe, A.J. Matzger, O.M. Yaghi, Science 310(2005) 1166-1170.[59] X. Chen, M. Addicoat, E. Jin, H. Xu, T. Hayashi, F. Xu, N. Huang, S. Irle, D. Jiang, Sci. Rep. 5(2015) 14650.[60] T. Bauer, Z. Zheng, A. Renn, R. Enning, A. Stemmer, J. Sakamoto, A.D. Schlüter, Angew. Chem. Int. Ed. 50(2011) 7879-7884.[61] C. He, D. Wu, F. Zhang, M. Xue, X. Zhuang, F. Qiu, X. Feng, ChemPhysChem 14(2013) 2954-2960.[62] S. Shin, S. Lim, Y. Kim, T. Kim, T.-L. Choi, M. Lee, J. Am. Chem. Soc. 135(2013) 2156-2159.[63] Y. Zheng, H. Zhou, D. Liu, G. Floudas, M. Wagner, K. Koynov, M. Mezger, H.J. Butt, T. Ikeda, Angew. Chem. Int. Ed. 52(2013) 4845-4848.[64] B. Yu, X. Jiang, J. Yin, Macromolecules 47(2014) 4761-4768.[65] H. Qiu, Y. Gao, C.E. Boott, O.E.C. Gould, R.L. Harniman, M.J. Miles, S.E.D. Webb, M.A. Winnik, I. Manners, Science 352(2016) 697-701.[66] J.W. Colson, W.R. Dichtel, Nat. Chem. 5(2013) 453-465.[67] J. Sakamoto, J. van Heijst, O. Lukin, A.D. Schluter, Angew, Chem. Int. Ed. 48(2009) 1030-1069.[68] C.E. Boott, A. Nazemi, I. Manners, Angew. Chem. Int. Ed. 54(2015) 13876-13894.[69] S. Li, D. Wu, C. Cheng, J. Wang, F. Zhang, Y. Su, X. Feng, Angew. Chem. Int. Ed. 52(2013) 12105-12109.[70] C. Lu, S. Liu, F. Zhang, Y. Su, X. Zou, Z. Shi, G. Li, X. Zhuang, J. Mater. Chem. A 5(2017) 1567-1574.[71] N. Yanai, T. Uemura, M. Ohba, Y. Kadowaki, M. Maesato, M. Takenaka, S. Nishitsuji, H. Hasegawa, S. Kitagawa, Angew. Chem. Int. Ed. 47(2008) 9883-9886.[72] W. Zhang, J. Cui, C.A. Tao, Y. Wu, Z. Li, L. Ma, Y. Wen, G. Li, Angew. Chem. Int. Ed. 48(2009) 5864-5868.[73] P. Katekomol, J. Roeser, M. Bojdys, J. Weber, A. Thomas, Chem. Mater. 25(2013) 1542-1548.[74] S. Li, C. Cheng, H.W. Liang, X. Feng, A. Thomas, Adv. Mater. 29(2017), doi:10. 1002/adma.201700707.[75] S. Liu, P. Gordiichuk, Z.S. Wu, Z. Liu, W. Wei, M. Wagner, N. Mohamed-Noriega, D. Wu, Y. Mai, A. Herrmann, K. Mullen, X. Feng, Nat. Commun. 6(2015) 8817.[76] S.B. Alahakoon, C.M. Thompson, G. Occhialini, R.A. Smaldone, ChemSusChem 10(2017) 2116-2129.[77] A.K. Mandal, J. Mahmood, J.B. Baek, ChemNanoMat 3(2017) 373-391.[78] F. Qiu, W. Zhao, S. Han, X. Zhuang, H. Lin, F. Zhang, Polymers 8(2016) 191.[79] J. Zhang, C.M. Li, Chem. Soc. Rev. 41(2012) 7016-7031.[80] A. Walcarius, Chem. Soc. Rev. 42(2013) 4098-4140.[81] X. Zhuang, Y. Mai, D. Wu, F. Zhang, X. Feng, Adv. Mater. 27(2015) 403-427.[82] S. Xu, Y. Luo, B. Tan, Macromol. Rapid Commun. 34(2013) 471-484.[83] N.B. McKeown, P.M. Budd, Chem. Soc. Rev. 35(2006) 675-683.[84] T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J.M. Simmons, S. Qiu, G. Zhu, Angew. Chem. Int. Ed. 48(2009) 9457-9460.[85] Y.H. Kim, O.W. Webster, Macromolecules 25(1992) 5561-5572.[86] N. Spetseris, R.E. Ward, T.Y. Meyer, Macromolecules 31(1998) 3158-3161.[87] F. Qiu, C. Tu, Y. Chen, Y. Shi, L. Song, R. Wang, X. Zhu, B. Zhu, D. Yan, T. Han, Chem. Euro. J. 16(2010) 12710-12717.[88] S.Y. Ding, W. Wang, Chem. Soc. Rev. 42(2013) 548-568.[89] X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 41(2012) 6010-6022.[90] A. Nagai, Z. Guo, X. Feng, S. Jin, X. Chen, X. Ding, D. Jiang, Nat. Commun. 2(2011) 536.[91] S.-Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.-G. Song, C.-Y. Su, W. Wang, J. Am. Chem. Soc. 133(2011) 19816-19822.[92] F. Xu, H. Xu, X. Chen, D. Wu, Y. Wu, H. Liu, C. Gu, R. Fu, D. Jiang, Angew. Chem. Int. Ed. 54(2015) 6814-6818.[93] C.R. DeBlase, K.E. Silberstein, T.-T. Truong, H.D. Abruña, W.R. Dichtel, J. Am. Chem. Soc. 135(2013) 16821-16824.[94] A.M. Khattak, Z.A. Ghazi, B. Liang, N.A. Khan, A. Iqbal, L. Li, Z. Tang, J. Mater. Chem. A 4(2016) 16312-16317.[95] S. Chandra, D. Roy Chowdhury, M. Addicoat, T. Heine, A. Paul, R. Banerjee, Chem. Mater. 29(2017) 2074-2080.[96] S. Wang, Q. Wang, P. Shao, Y. Han, X. Gao, L. Ma, S. Yuan, X. Ma, J. Zhou, X. Feng, J. Am. Chem. Soc. 139(2017) 4258-4261.[97] N. Huang, P. Wang, D. Jiang, Nat. Rev. Mater. 1(2016) 16068.[98] X. Zhuang, W. Zhao, F. Zhang, Y. Cao, F. Liu, S. Bi, X. Feng, Polym. Chem. 7(2016) 4176-4181.[99] E. Jin, M. Asada, Q. Xu, S. Dalapati, M.A. Addicoat, M.A. Brady, H. Xu, T. Nakamura, T. Heine, Q. Chen, D. Jiang, Science 357(2017) 673-676.[100] J.X. Jiang, F. Su, A. Trewin, C.D. Wood, N.L. Campbell, H. Niu, C. Dickinson, A.Y. Ganin, M.J. Rosseinsky, Y.Z. Khimyak, A.I. Cooper, Angew. Chem. Int. Ed. 46(2007) 8574-8578.[101] Z. Xiang, Y. Xue, D. Cao, L. Huang, J.F. Chen, L. Dai, Angew. Chem. Int. Ed. 53(2014) 2433-2437.[102] Z. Xiang, D. Cao, Macromol. Rapid Commun. 33(2012) 1184-1190.[103] Z. Xiang, D. Cao, L. Huang, J. Shui, M. Wang, L. Dai, Adv Mater. 26(2014) 3315-3320.[104] Y. Su, Z. Yao, F. Zhang, H. Wang, Z. Mics, E. Cánovas, M. Bonn, X. Zhuang, X. Feng, Adv. Funct. Mater. 26(2016) 5893-5902.[105] H. Chen, W.-S. Hung, C.-H. Lo, S.-H. Huang, M.-L. Cheng, G. Liu, K.-R. Lee, J.-Y. Lai, Y.-M. Sun, C.-C. Hu, Macromolecules 40(2007) 7542-7557.[106] J.W. Colson, A.R. Woll, A. Mukherjee, M.P. Levendorf, E.L. Spitler, V.B. Shields, M.G. Spencer, J. Park, W.R. Dichtel, Science 332(2011) 228-231.[107] C.R. DeBlase, K. Hernandez-Burgos, K.E. Silberstein, G.G. Rodriguez-Calero, R.P. Bisbey, H.D. Abruna, W.R. Dichtel, ACS Nano 9(2015) 3178-3183.[108] H. Yang, S. Zhang, L. Han, Z. Zhang, Z. Xue, J. Gao, Y. Li, C. Huang, Y. Yi, H. Liu, Y. Li, ACS Appl, Mater. Interfaces 8(2016) 5366-5375.[109] W. Liu, X. Luo, Y. Bao, Y.P. Liu, G.-H. Ning, I. Abdelwahab, L. Li, C.T. Nai, Z.G. Hu, D. Zhao, B. Liu, S.Y. Quek, K.P. Loh, Nat. Chem. 9(2017) 563-570.[110] H. Sahabudeen, H. Qi, B.A. Glatz, D. Tranca, R. Dong, Y. Hou, T. Zhang, C. Kuttner, T. Lehnert, G. Seifert, U. Kaiser, A. Fery, Z. Zheng, X. Feng, Nat. Commun. 7(2016) 13461.[111] L. Yuan, B. Yao, B. Hu, K. Huo, W. Chen, J. Zhou, Energy & Environ. Sci. 6(2013) 470-476.[112] A. Razaq, L. Nyholm, M. Sjödin, M. Strømme, A. Mihranyan, Adv. Energy Mater. 2(2012) 445-454.[113] W.L. Zhang, B.J. Park, H.J. Choi, Chem. Commun. 46(2010) 5596-5598.[114] J. Xu, K. Wang, S.Z. Zu, B.H. Han, Z. Wei, ACS Nano 4(2010) 5019-5026.[115] J.H. Zhu, M.J. Chen, H.L. Qu, X. Zhang, H.G. Wei, Z.P. Luo, H.A. Colorado, S.Y. Wei, Z.H. Guo, Polymer 53(2012) 5953-5964.[116] C.Z. Yuan, L.H. Zhang, L.R. Hou, J.D. Lin, G. Pang, RSC Adv. 4(2014) 24773-24776.[117] G. Qi, L. Huang, H. Wang, Chem. Commun. 48(2012) 8246-8248.[118] D. Li, Y. Li, Y. Feng, W. Hu, W. Feng, J. Mater. Chem. A 3(2015) 2135-2143.[119] Y. Zhang, X. Zhuang, Y. Su, F. Zhang, X. Feng, J. Mater. Chem. A 2(2014) 7742-7746.[120] X. Zhuang, F. Zhang, D. Wu, X. Feng, Adv. Mater. 26(2014) 3081-3086.[121] W. Zhao, Z. Hou, Z. Yao, X. Zhuang, F. Zhang, X. Feng, Polym. Chem. 6(2015) 7171-7178.[122] X. Zhuang, F. Zhang, D. Wu, N. Forler, H. Liang, M. Wagner, D. Gehrig, M.R. Hansen, F. Laquai, X. Feng, Angew. Chem. Int. Ed. 52(2013) 9668-9672.[123] C. Cao, X. Zhuang, Y. Su, Y. Zhang, F. Zhang, D. Wu, X. Feng, Polym. Chem. 5(2014) 2057-2064.[124] Y. Su, Y. Liu, P. Liu, D. Wu, X. Zhuang, F. Zhang, X. Feng, Angew. Chem. Int. Ed. 54(2015) 1812-1816.[125] X. Zhuang, D. Gehrig, N. Forler, H. Liang, M. Wagner, M.R. Hansen, F. Laquai, F. Zhang, X. Feng, Adv. Mater. 27(2015) 3789-3796.[126] J. Shan, Y. Liu, Y. Su, P. Liu, X. Zhuang, D. Wu, F. Zhang, X. Feng, J. Mater. Chem. A 4(2016) 314-320.[127] K. Yuan, X. Zhuang, H. Fu, G. Brunklaus, M. Forster, Y. Chen, X. Feng, U. Scherf, Angew. Chem. Int. Ed. 55(2016) 6858-6863.[128] F. Qiu, Y. Huang, X. Zhu, Macromol. Chem. Phys 217(2016) 266-283.[129] S. Liu, J. Zhang, R. Dong, P. Gordiichuk, T. Zhang, X. Zhuang, Y. Mai, F. Liu, A. Herrmann, X. Feng, Angew. Chem. Int. Ed. 55(2016) 12516-12521.[130] S. Liu, F. Wang, R. Dong, T. Zhang, J. Zhang, X. Zhuang, Y. Mai, X. Feng, Adv. Mater. 28(2016) 8365-8370.[131] M. Armand, S. Grugeon, H. Vezin, S. Laruelle, P. Ribiere, P. Poizot, J.M. Tarascon, Nat. Mater. 8(2009) 120-125.[132] S.W. Lee, N. Yabuuchi, B.M. Gallant, S. Chen, B.-S. Kim, P.T. Hammond, Y. Shao-Horn, Nat. Nanotechnol. 5(2010) 531-537.[133] P.G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed. 47(2008) 2930-2946.[134] F. Xu, S. Jin, H. Zhong, D. Wu, X. Yang, X. Chen, H. Wei, R. Fu, D. Jiang, Sci. Rep. 5(2015) 8225.[135] D.-H. Yang, Z.-Q. Yao, D. Wu, Y.-H. Zhang, Z. Zhou, X.-H. Bu, J. Mater. Chem. A 4(2016) 18621-18627.[136] L. Huang, G. Cao, ChemistrySelect 2(2017) 1728-1733.[137] D.A. Vazquez-Molina, G.S. Mohammad-Pour, C. Lee, M.W. Logan, X. Duan, J.K. Harper, F.J. Uribe-Romo, J. Am. Chem. Soc. 138(2016) 9767-9770.[138] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Nat. Mater. 11(2012) 19-29.[139] A. Manthiram, Y. Fu, Y.S. Su, Acc. Chem. Res. 46(2013) 1125-1134.[140] Y. Yang, G. Zheng, Y. Cui, Chem. Soc. Rev. 42(2013) 3018-3032.[141] H. Liao, H. Wang, H. Ding, X. Meng, H. Xu, B. Wang, X. Ai, C. Wang, J. Mater. Chem. A 4(2016) 7416-7421.[142] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 114(2014) 11636-11682.[143] H. Wang, Z. Wu, F. Meng, D. Ma, X. Huang, L. Wang, X. Zhang, ChemSusChem 6(2013) 56-60.[144] C.R. Mulzer, L. Shen, R.P. Bisbey, J.R. McKone, N. Zhang, H.D. Abruna, W.R. Dichtel, ACS Cent. Sci. 2(2016) 667-673.[145] H. Wang, H. Dai, Chem. Soc. Rev. 42(2013) 3088-3113.[146] S. Liu, S. Sun, X.-Z. You, Nanoscale 6(2014) 2037-2045.[147] M.K. Debe, Nature 486(2012) 43.[148] H. Liang, X. Zhuang, S. Brüller, X. Feng, K. Müllen, Nat. Commun. 5(2014) 4973.[149] W. Yang, T.-P. Fellinger, M. Antonietti, J. Am. Chem. Soc. 133(2010) 206-209.[150] L. Qu, Y. Liu, J.-B. Baek, L. Dai, ACS Nano 4(2010) 1321-1326.[151] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 323(2009) 760-764.[152] M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Science 324(2009) 71-74.[153] R. Liu, C. von Malotki, L. Arnold, N. Koshino, H. Higashimura, M. Baumgarten, K. Müllen, J. Am. Chem. Soc. 133(2011) 10372-10375.[154] J. Kibsgaard, T.F. Jaramillo, Angew. Chem. Int. Ed. 53(2014) 14433-14437.[155] H. Liang, S. Bruller, R. Dong, J. Zhang, X. Feng, K. Mullen, Nat. Commun. 6(2015) 7992.[156] X. Zou, Y. Zhang, Chem. Soc. Rev. 44(2015) 5148-5180.[157] C. Lu, D. Tranca, J. Zhang, F.N. Rodri Guez Hernandez, Y. Su, X. Zhuang, F. Zhang, G. Seifert, X. Feng, ACS Nano 11(2017) 3933-3942. |
[1] | Dong Chen, Jingwei Shen, Xue Li, Shun-an Cao, Ting Li, Wei Luo, fei Xu. Ni0.85Se hexagonal nanosheets as an advanced conversion cathode for Mg secondary batteries[J]. 能源化学(英文版), 2020, 48(9): 226-232. |
[2] | Ying Zheng, Ting Deng, Wei Zhang, Weitao Zheng. Optimizing the micropore-to-mesopore ratio of carbon-fiber-cloth creates record-high specific capacitance[J]. 能源化学(英文版), 2020, 47(8): 210-216. |
[3] | Zhao Liu, Jing Li, Shiji Xue, Shunfa Zhou, Konggang Qu, Ying Li, Weiwei Cai. Pt/Mo2C heteronanosheets for superior hydrogen evolution reaction[J]. 能源化学(英文版), 2020, 47(8): 317-323. |
[4] | Qinghuiqiang Xiao, Gaoran Li, Minjie Li, Ruiping Liu, Haibo Li, Pengfei Ren, Yue Dong, Ming Feng, Zhongwei Chen. Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 44(5): 61-67. |
[5] | Daxiong Wu, Caiyun Wang, Mingguang Wu, Yunfeng Chao, Pengbin He, Jianmin Ma. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage[J]. 能源化学(英文版), 2020, 43(4): 24-32. |
[6] | Peiyuan Guan, Lu Zhou, Zhenlu Yu, Yuandong Sun, Yunjian Liu, Feixiang Wu, Yifeng Jiang, Dewei Chu. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J]. 能源化学(英文版), 2020, 43(4): 220-235. |
[7] | Yuan Li, Chunshao Mo, Jing Li, Dingshan Yu. Pyrazine-nitrogen-rich exfoliated C4N nanosheets as efficient metal-free polymeric catalysts for oxygen reduction reaction[J]. 能源化学(英文版), 2020, 49(10): 243-247. |
[8] | Wenlong Zhang, Haihui Zhou, Zhongyuan Huang, Songlin Li, Chuqing Wang, Huanxin Li, Zhanheng Yan, Teng Hou, Yafei Kuang. 3D hierarchical microspheres constructed by ultrathin MoS2-C nanosheets as high-performance anode material for sodium-ion batteries[J]. 能源化学(英文版), 2020, 49(10): 307-315. |
[9] | Ming Wang, Shunyuan Tan, Shuting Kan, Yufeng Wu, Shangbin Sang, Kaiyu Liu, Hongtao Liu. In-situ assembly of TiO2 with high exposure of (001) facets on three-dimensional porous graphene aerogel for lithium-sulfur battery[J]. 能源化学(英文版), 2020, 49(10): 316-322. |
[10] | Xuelei Li, Liubing Jin, Dawei Song, Hongzhou Zhang, Xixi Shi, Zhenyu Wang, Lianqi Zhang, Lingyun Zhu. LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery[J]. 能源化学(英文版), 2020, 40(1): 39-45. |
[11] | Jianbo Wu, Xiaohua Huang, Xinhui Xia. Exploring NiCo2S4 nanosheets arrays by hydrothermal conversion for enhanced high-rate batteries[J]. 能源化学(英文), 2019, 28(8): 132-137. |
[12] | Xiao Yang, Qian-Qian Chen, Chuan-Jun Wang, Chun-Chao Hou, Yong Chen. Substrate participation ultrafast synthesis of amorphous NiFe nanosheets on iron foam at room temperature toward highly efficient oxygen evolution reaction[J]. 能源化学(英文), 2019, 28(8): 197-203. |
[13] | Xiaodan Jia, Xin Zhang, Jiaqing Zhao, Yufei Zhao, Yunxuan Zhao, Geoffrey I. N. Waterhouse, Run Shi, Li-Zhu Wu, Chen-Ho Tung, Tierui Zhang. Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation[J]. 能源化学(英文), 2019, 28(7): 57-63. |
[14] | Yuhui Tian, Li Xu, Jian Bao, Junchao Qian, Huaneng Su, Huaming Li, Haidong Gu, Cheng Yan, Henan Li. Hollow cobalt oxide nanoparticles embedded in nitrogen-doped carbon nanosheets as an efficient bifunctional catalyst for Zn-air battery[J]. 能源化学(英文), 2019, 28(6): 59-66. |
[15] | Yanmei Li, Xiao Han, Tingfeng Yi, Yanbing He, Xifei Li. Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes[J]. 能源化学(英文), 2019, 28(4): 54-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||