能源化学(英文版) ›› 2019, Vol. 38 ›› Issue (11): 94-113.DOI: 10.1016/j.jechem.2019.01.005
Qingping Wua,b, Xuejun Zhoub, Jun Xua, Fahai Caoa, Chilin Lib
收稿日期:
2018-12-16
修回日期:
2019-01-03
出版日期:
2019-11-15
发布日期:
2020-12-18
通讯作者:
Fahai Cao, fhcao@ecust.edu.cn; Chilin Li, chilinli@mail.sic.ac.cn
基金资助:
Qingping Wua,b, Xuejun Zhoub, Jun Xua, Fahai Caoa, Chilin Lib
Received:
2018-12-16
Revised:
2019-01-03
Online:
2019-11-15
Published:
2020-12-18
Contact:
Fahai Cao, fhcao@ecust.edu.cn; Chilin Li, chilinli@mail.sic.ac.cn
Supported by:
摘要: Lithium-sulfur batteries (Li-S batteries) are promising candidates for the next generation high-energy rechargeable Li batteries due to their high theoretical specific capacity (1672 mAh g-1) and energy density (2500 Wh kg-1). The commercialization of Li-S batteries is impeded by several key challenges at cathode side, e.g. the insulating nature of sulfur and discharged products (Li2S2 and Li2S), the solubility of long-chain polysulfides and volume variation of sulfur cathode upon cycling. Recently, the carbonbased derivatives from metal-organic frameworks (MOFs) has emerged talent in their utilization as cathode hosts for Li-S batteries. They are not only highly conductive and porous to enable the acceleration of Li+/e- transfer and accommodation of volumetric expansion of sulfur cathode during cycling, but also enriched by controllable chemical active sites to enable the adsorption of polysulfides and promotion of their conversion reaction kinetics. In this review, based on the types of MOFs (e.g. ZIF-8, ZIF-67, Prussian blue, Al-MOF, MOF-5, Cu-MOF, Ni-MOF), the synthetic methods, formation process and morphology, structural superiority of MOFs-derived carbon frameworks along with their electrochemical performance as cathode host in Li-S batteries are summarized and discussed.
Qingping Wu, Xuejun Zhou, Jun Xu, Fahai Cao, Chilin Li. Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li-S batteries[J]. 能源化学(英文版), 2019, 38(11): 94-113.
Qingping Wu, Xuejun Zhou, Jun Xu, Fahai Cao, Chilin Li. Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li-S batteries[J]. Journal of Energy Chemistry, 2019, 38(11): 94-113.
[1] V.S. Arunachalam, E.L. Fleischer, MRS Bull. 33(2011) 264-288. [2] J.B. Goodenough, Energy Environ. Sci. 7(2014) 14-18. [3] T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Chem. Rev. 110(2010) 6474-6502. [4] Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev. 111(2011) 3577-3613. [5] S. Chu, A. Majumdar, Nature 488(2012) 294-303. [6] P. Zhang, M. Fujitsuka, T. Majima, J. Energy Chem. 25(2016) 917-926. [7] M. Armand, J.M. Tarascon, Nature 451(2008) 652-657. [8] B. Dunn, H. Kamath, J.M. Tarascon, Science 334(2011) 928-935. [9] M.K. Debe, Nature 486(2012) 43-51. [10] D. Bin, Y. Wen, Y. Wang, Y. Xia, J. Energy Chem. 27(2018) 1521-1535. [11] J.B. Goodenough, Acc. Chem. Res. 46(2013) 1053-1061. [12] Y. Tu, D. Deng, X. Bao, J. Energy Chem. 25(2016) 957-966. [13] P. Liu, Y. Wang, J. Liu, J. Energy Chem. 34(2019) 171-185. [14] Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Nat. Energy 1(2016) 16132. [15] H.J. Peng, J.Q. Huang, X.B. Cheng, Q. Zhang, Adv. Energy Mater. 7(2017) 1700260. [16] Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Angew. Chem. Int. Ed. 52(2013) 13186-13200. [17] Y. Son, J.-S. Lee, Y. Son, J.-H. Jang, J. Cho, Adv. Energy Mater. 5(2015) 1500110. [18] A. Rosenman, E. Markevich, G. Salitra, D. Aurbach, A. Garsuch, F.F. Chesneau, Adv. Energy Mater. 5(2015) 1500212. [19] R. Fang, S. Zhao, Z. Sun, D.W. Wang, H.M. Cheng, F. Li, Adv. Mater. 29(2017) 1606823. [20] X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Adv. Mater. 29(2017) 1601759. [21] L. Wang, T. Zhang, S. Yang, F. Cheng, J. Liang, J. Chen, J. Energy Chem. 22(2013) 72-77. [22] R. Zhang, X.B. Cheng, C.Z. Zhao, H.J. Peng, J.L. Shi, J.Q. Huang, J. Wang, F. Wei, Q. Zhang, Adv. Mater. 28(2016) 2155-2162. [23] X.B. Cheng, R. Zhang, C.Z. Zhao, F. Wei, J.G. Zhang, Q. Zhang, Adv. Sci. 3(2016) 1500213. [24] H.J. Peng, W.T. Xu, L. Zhu, D.W. Wang, J.Q. Huang, X.B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Adv. Funct. Mater. 26(2016) 6351-6358. [25] S. Jin, S. Xin, L. Wang, Z. Du, L. Cao, J. Chen, X. Kong, M. Gong, J. Lu, Y. Zhu, H. Ji, R.S. Ruoff, Adv. Mater. 28(2016) 9094-9102. [26] Y. Zhang, K. Li, H. Li, Y. Peng, Y. Wang, J. Wang, J. Zhao, J. Mater. Chem. A 5(2017) 97-101. [27] W. Yang, W. Yang, A. Song, L. Gao, G. Sun, G. Shao, J. Power Sour. 348(2017) 175-182. [28] S.S. Zhang, Electrochim. Acta 70(2012) 344-348. [29] J. Sun, Y. Sun, M. Pasta, G. Zhou, Y. Li, W. Liu, F. Xiong, Y. Cui, Adv. Mater. 28(2016) 9797-9803. [30] J. Balach, T. Jaumann, M. Klose, S. Oswald, J. Eckert, L. Giebeler, J. Power Sour. 303(2016) 317-324. [31] W. Bao, Z. Zhang, Y. Gan, X. Wang, J. Lia, J. Energy Chem. 22(2013) 790-794. [32] P. Bhattacharya, M.I. Nandasiri, D. Lv, A.M. Schwarz, J.T. Darsell, W.A. Henderson, D.A. Tomalia, J. Liu, J.-G. Zhang, J. Xiao, Nano Energy 19(2016) 176-186. [33] Z. Yuan, H.-J. Peng, J.-Q. Huang, X.-Y. Liu, D.-W. Wang, X.-B. Cheng, Q. Zhang, Adv. Funct. Mater. 24(2014) 6105-6112. [34] L. Ji, M. Rao, S. Aloni, L. Wang, E.J. Cairns, Y. Zhang, Energy Environ. Sci. 4(2011) 5053-5059. [35] Q. Zhu, Q. Zhao, Y. An, B. Anasori, H. Wang, B. Xu, Nano Energy 33(2017) 402-409. [36] Q. Zhao, Q. Zhu, J. Miao, Z. Guan, H. Liu, R. Chen, Y. An, F. Wu, B. Xu, ACS Appl. Mater. Interfaces 10(2018) 10882-10889. [37] X.-X. Peng, Y.-Q. Lu, L.-L. Zhou, T. Sheng, S.-Y. Shen, H.-G. Liao, L. Huang, J.-T. Li, S.-G. Sun, Nano Energy 32(2017) 503-510. [38] L. Zhang, H. Huang, Y. Xia, C. Liang, W. Zhang, J. Luo, Y. Gan, J. Zhang, X. Tao, H.J. Fan, J. Mater. Chem. A 5(2017) 5905-5911. [39] Z. Zhang, L.L. Kong, S. Liu, G.R. Li, X.P. Gao, Adv. Energy Mater. 7(2017) 1602543. [40] M. Li, R. Carter, A. Douglas, L. Oakes, C.L. Pint, ACS Nano 11(2017) 4877-4884. [41] Y. Zhong, D. Chao, S. Deng, J. Zhan, R. Fang, Y. Xia, Y. Wang, X. Wang, X. Xia, J. Tu, Adv. Funct. Mater. (2018) 1706391. [42] B. Papandrea, X. Xu, Y. Xu, C.-Y. Chen, Z. Lin, G. Wang, Y. Luo, M. Liu, Y. Huang, L. Mai, X. Duan, Nano Res. 9(2016) 240-248. [43] C. Tang, M.-M. Titirici, Q. Zhang, J. Energy Chem. 26(2017) 1077-1093. [44] J. Lee, J. Kim, T. Hyeon, Adv. Mater. 18(2006) 2073-2094. [45] R.R. Salunkhe, Y.V. Kaneti, J. Kim, J.H. Kim, Y. Yamauchi, Acc. Chem. Res. 49(2016) 2796-2806. [46] Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Nat. Commun. 5(2014) 4759. [47] G. Zhou, Y. Zhao, C. Zu, A. Manthiram, Nano Energy 12(2015) 240-249. [48] X.T. Gao, Y. Xie, X.D. Zhu, K.N. Sun, X.M. Xie, Y.T. Liu, J.Y. Yu, B. Ding, Small 14(2018) 1870190. [49] X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, Nat. Commun. 6(2015) 5682. [50] Z. Li, J. Zhang, X.W. Lou, Angew. Chem. 127(2015) 13078-13082. [51] W. Tang, Z. Chen, B. Tian, H.W. Lee, X. Zhao, X. Fan, Y. Fan, K. Leng, C. Peng, M.H. Kim, M. Li, M. Lin, J. Su, J. Chen, H.Y. Jeong, X. Yin, Q. Zhang, W. Zhou, K.P. Loh, G.W. Zheng, J. Am. Chem. Soc. 139(2017) 10133-10141. [52] H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang, Q. Yao, G.W. Zheng, J.Y. Lee, Energy Environ. Sci. 10(2017) 1476-1486. [53] F. Liu, Q. Xiao, H.B. Wu, F. Sun, X. Liu, F. Li, Z. Le, L. Shen, G. Wang, M. Cai, Y. Lu, ACS Nano 11(2017) 2697-2705. [54] R. Wu, S. Chen, J. Deng, X. Huang, Y. Song, R. Gan, X. Wan, Z. Wei, J. Energy Chem. 27(2018) 1661-1667. [55] S.-K. Park, J.-K. Lee, Y.C. Kang, Adv. Funct. Mater. 27(2017) 1705264. [56] Z. Ma, S. Dou, A. Shen, L. Tao, L. Dai, S. Wang, Angew. Chem. Int. Ed. 54(2015) 1888-1892. [57] Q. Pang, J. Tang, H. Huang, X. Liang, C. Hart, K.C. Tam, L.F. Nazar, Adv. Mater. 27(2015) 6021-6028. [58] C. Jin, W. Zhang, Z. Zhuang, J. Wang, H. Huang, Y. Gan, Y. Xia, C. Liang, J. Zhang, X. Tao, J. Mater. Chem. A 5(2017) 632-640. [59] S. Yuan, J.L. Bao, L. Wang, Y. Xia, D.G. Truhlar, Y. Wang, Adv. Energy Mater. 6(2016) 1501733. [60] K. Mi, S. Chen, B. Xi, S. Kai, Y. Jiang, J. Feng, Y. Qian, S. Xiong, Adv. Funct. Mater. 27(2017) 1604265. [61] X. Bi, Y. Li, Z. Qiu, C. Liu, T. Zhou, S. Zhuo, J. Zhou, Materials 11(2018) 1072. [62] J. Zhang, Y. Shi, Y. Ding, L. Peng, W. Zhang, G. Yu, Adv. Energy Mater. 7(2017) 1602876. [63] W. Ai, W. Zhou, Z. Du, Y. Chen, Z. Sun, C. Wu, C. Zou, C. Li, W. Huang, T. Yu, Energy Stor. Mater. 6(2017) 112-118. [64] O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423(2003) 705-714. [65] J. Yu, C. Mu, B. Yan, X. Qin, C. Shen, H. Xue, H. Pang, Mater. Horiz. 4(2017) 557-569. [66] K.M. Choi, H.M. Jeong, J.H. Park, Y.-B. Zhang, J.K. Kang, O.M. Yaghi, ACS Nano 8(2014) 7451-7457. [67] J. Nai, Y. Lu, L. Yu, X. Wang, X.W. Lou, Adv. Mater. 29(2017) 1703870. [68] G. Yilmaz, K.M. Yam, C. Zhang, H.J. Fan, G.W. Ho, Adv. Mater. 29(2017) 1606814. [69] J. Zhou, B. Wang, Chem. Soc. Rev. 46(2017) 6927-6945. [70] S. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu, X. Xiao, H. Xue, H. Pang, Adv. Energy Mater. 7(2017) 1602733. [71] J. Tang, Y. Yamauchi, Nat. Chem. 8(2016) 638-639. [72] H. Wang, Q.-L. Zhu, R. Zou, Q. Xu, Chem 2(2017) 52-80. [73] Y. Shi, X. Zhang, L. Wang, G. Liu, AlChE J. 60(2014) 2747-2751. [74] S. Fu, C. Zhu, J. Song, D. Du, Y. Lin, Adv. Energy Mater. 7(2017) 1700363. [75] B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou, X. Wang, Nat. Energy 1(2016) 15006. [76] S. Dang, Q.-L. Zhu, Q. Xu, Nat. Rev. Mater. 3(2017) 17075. [77] W. Zhang, X. Jiang, Y. Zhao, A. Carné-Sánchez, V. Malgras, J. Kim, J.H. Kim, S. Wang, J. Liu, J.-S. Jiang, Y. Yamauchi, M. Hu, Chem. Sci. 8(2017) 3538-3546. [78] X. Xu, J. Liu, J. Liu, L. Ouyang, R. Hu, H. Wang, L. Yang, M. Zhu, Adv. Funct. Mater. 28(2018) 1707573. [79] M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Adv. Mater. 30(2018) 1705431. [80] Y. He, Z. Chang, S. Wu, Y. Qiao, S. Bai, K. Jiang, P. He, H. Zhou, Adv. Energy Mater. (2018) 1802130. [81] B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 130(2008) 5390-5391. [82] M. Hu, J. Reboul, S. Furukawa, N.L. Torad, Q. Ji, P. Srinivasu, K. Ariga, S. Kitagawa, Y. Yamauchi, J. Am. Chem. Soc. 134(2012) 2864-2867. [83] G. Xu, P. Nie, H. Dou, B. Ding, L. Li, X. Zhang, Mater. Today 20(2017) 191-209. [84] X. Li, S. Zheng, L. Jin, Y. Li, P. Geng, H. Xue, H. Pang, Q. Xu, Adv. Energy Mater. 8(2018) 1800716. [85] K. Xi, S. Cao, X. Peng, C. Ducati, R.V. Kumar, A.K. Cheetham, Chem. Commun. 49(2013) 2192-2194. [86] G. Xu, B. Ding, L. Shen, P. Nie, J. Han, X. Zhang, J. Mater. Chem. A 1(2013) 4490-4496. [87] H.B. Wu, S. Wei, L. Zhang, R. Xu, H.H. Hng, X.W. Lou, Chem. Eur. J. 19(2013) 10804-10808. [88] K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'Keeffe, O.M. Yaghi, Proc. Natl. Acad. Sci. 103(2006) 10186-10191. [89] H. Wu, W. Zhou, T. Yildirim, J. Am. Chem. Soc. 129(2007) 5314-5315. [90] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, O.M. Yaghi, Science 319(2008) 939-943. [91] R. Czerw, M. Terrones, J.C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P.M. Ajayan, W. Blau, M. Rühle, D.L. Carroll, Nano Lett. 1(2001) 457-460. [92] J.D. Wiggins-Camacho, K.J. Stevenson, J. Phys. Chem. C 113(2009) 19082-19090. [93] J.-J. Chen, R.-M. Yuan, J.-M. Feng, Q. Zhang, J.-X. Huang, G. Fu, M.-S. Zheng, B. Ren, Q.-F. Dong, Chem. Mater. 27(2015) 2048-2055. [94] R. Chen, T. Zhao, T. Tian, S. Cao, P.R. Coxon, K. Xi, D. Fairen-Jimenez, R. Vasant Kumar, A.K. Cheetham, APL Mater. 2(2014) 124109. [95] H. Pan, J. Chen, R. Cao, V. Murugesan, N.N. Rajput, K.S. Han, K. Persson, L. Estevez, M.H. Engelhard, J.-G. Zhang, K.T. Mueller, Y. Cui, Y. Shao, J. Liu, Nat. Energy 2(2017) 813-820. [96] C. Xu, Y. Wu, X. Zhao, X. Wang, G. Du, J. Zhang, J. Tu, J. Power Sour. 275(2015) 22-25. [97] G. Zhou, L. Li, C. Ma, S. Wang, Y. Shi, N. Koratkar, W. Ren, F. Li, H.-M. Cheng, Nano Energy 11(2015) 356-365. [98] M. Xiang, H. Wu, H. Liu, J. Huang, Y. Zheng, L. Yang, P. Jing, Y. Zhang, S. Dou, H. Liu, Adv. Funct. Mater. 27(2017) 1702573. [99] C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, Chem. Rev. 117(2017) 6225-6331. [100] F. Pei, L. Lin, D. Ou, Z. Zheng, S. Mo, X. Fang, N. Zheng, Nat. Commun. 8(2017) 482. [101] J. Gao, J. Li, Y. Chen, Z. Zuo, Y. Li, H. Liu, Y. Li, Nano Energy 43(2018) 192-199. [102] Y. Jiang, H. Liu, X. Tan, L. Guo, J. Zhang, S. Liu, Y. Guo, J. Zhang, H. Wang, W. Chu, ACS Appl. Mater. Interfaces 9(2017) 25239-25249. [103] Z. Li, L. Yin, ACS Appl. Mater. Interfaces 7(2015) 4029-4038. [104] X. Li, Q. Sun, J. Liu, B. Xiao, R. Li, X. Sun, J. Power Sour. 302(2016) 174-179. [105] H.J. Peng, Q. Zhang, Angew. Chem. Int. Ed. 54(2015) 11018-11020. [106] G. Zhou, E. Paek, G.S. Hwang, A. Manthiram, Nat. Commun. 6(2015) 7760. [107] W. Cai, G. Li, D. Luo, G. Xiao, S. Zhu, Y. Zhao, Z. Chen, Y. Zhu, Y. Qian, Adv. Energy Mater. 8(2018) 1802561. [108] X. Gu, C.-j. Tong, C. Lai, J. Qiu, X. Huang, W. Yang, B. Wen, L.-m. Liu, Y. Hou, S. Zhang, J. Mater. Chem. A 3(2015) 16670-16678. [109] F. Zheng, Y. Yang, Q. Chen, Nat. Commun. 5(2014) 5261. [110] J. Zhang, M. Huang, B. Xi, K. Mi, A. Yuan, S. Xiong, Adv. Energy Mater. 8(2018) 1701330. [111] Q. Pang, D. Kundu, L.F. Nazar, Mater. Horiz. 3(2016) 130-136. [112] M. Zhang, C. Yu, C. Zhao, X. Song, X. Han, S. Liu, C. Hao, J. Qiu, Energy Storage Mater. 5(2016) 223-229. [113] H. Xu, A. Manthiram, Nano Energy 33(2017) 124-129. [114] Y.-J. Li, J.-M. Fan, M.-S. Zheng, Q.-F. Dong, Energy Environ. Sci. 9(2016) 1998-2004. [115] J. He, Y. Chen, W. Lv, K. Wen, C. Xu, W. Zhang, Y. Li, W. Qin, W. He, ACS Nano 10(2016) 10981-10987. [116] Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.-M. Cheng, F. Li, Nat. Commun. 8(2017) 14627. [117] Z. Li, J. Zhang, B. Guan, D. Wang, L.-M. Liu, X.W. Lou, Nat. Commun. 7(2016) 13065. [118] T. Chen, Z. Zhang, B. Cheng, R. Chen, Y. Hu, L. Ma, G. Zhu, J. Liu, Z. Jin, J. Am. Chem. Soc. 139(2017) 12710-12715. [119] Z. Li, C. Li, X. Ge, J. Ma, Z. Zhang, Q. Li, C. Wang, L. Yin, Nano Energy 23(2016) 15-26. [120] J. Xu, W. Zhang, Y. Chen, H. Fan, D. Su, G. Wang, J. Mater. Chem. A 6(2018) 2797-2807. [121] J. He, Y. Chen, A. Manthiram, Energy Environ. Sci. 11(2018) 2560-2568. [122] J. He, Y. Chen, A. Manthiram, iScience 4(2018) 36-43. [123] N. Cheng, L. Ren, X. Xu, Y. Du, S.X. Dou, Adv. Energy Mater. 8(2018) 1801257. [124] B. Wang, A.P. Côté, H. Furukawa, M. O'Keeffe, O.M. Yaghi, Nature 453(2008) 207-211. [125] R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O'Keeffe, O.M. Yaghi, J. Am. Chem. Soc. 131(2009) 3875-3877. [126] G. Zhong, D. Liu, J. Zhang, J. Mater. Chem. A 6(2018) 1887-1899. [127] N.L. Torad, R.R. Salunkhe, Y. Li, H. Hamoudi, M. Imura, Y. Sakka, C.-C. Hu, Y. Yamauchi, Chem. Eur. J. 20(2014) 7895-7900. [128] J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, J. Am. Chem. Soc. 137(2015) 1572-1580. [129] K. Chen, Z. Sun, R. Fang, Y. Shi, H.-M. Cheng, F. Li, Adv. Funct. Mater. 28(2018) 1707592. [130] S. Liu, J. Li, X. Yan, Q. Su, Y. Lu, J. Qiu, Z. Wang, X. Lin, J. Huang, R. Liu, B. Zheng, L. Chen, R. Fu, D. Wu, Adv. Mater. 30(2018) e1706895. [131] H. Buser, D. Schwarzenbach, W. Petter, A. Ludi, Inorg. Chem. 16(1977) 2704-2710. [132] F. Herren, P. Fischer, A. Ludi, W. Hälg, Inorg. Chem. 19(1980) 956-959. [133] L. Han, X.-Y. Yu, X.W. Lou, Adv. Mater. 28(2016) 4601-4605. [134] P. Nie, L. Shen, H. Luo, B. Ding, G. Xu, J. Wang, X. Zhang, J. Mater. Chem. A 2(2014) 5852-5857. [135] Y. You, X.-L. Wu, Y.-X. Yin, Y.-G. Guo, Energy Environ. Sci. 7(2014) 1643-1647. [136] J. Nai, X.W. Lou, Adv. Mater. 30(2018) 1706825. [137] E.P. Alsaç, E. Ülker, S.V.K. Nune, Y. Dede, F. Karadas, Chem. Eur. J. 24(2018) 4856-4863. [138] Y. Peng, B. Li, Y. Wang, X. He, J. Huang, J. Zhao, ACS Appl. Mater. Interfaces 9(2017) 4397-4403. [139] D. Su, M. Cortie, G. Wang, Adv. Energy Mater. 7(2017) 1602014. [140] S.S. Kaye, J.R. Long, J. Am. Chem. Soc. 127(2005) 6506-6507. [141] H. Pang, W. Wang, Z. Yan, H. Zhang, X. Li, J. Chen, J. Zhang, B. Zhang, RSC Adv. 2(2012) 9614-9618. [142] X.-Y. Yu, Y. Feng, B. Guan, X.W. Lou, U. Paik, Energy Environ. Sci. 9(2016) 1246-1250. [143] F. Ma, Q. Li, T. Wang, H. Zhang, G. Wu, Sci. Bull. 62(2017) 358-368. [144] D. Su, M. Cortie, H. Fan, G. Wang, Adv. Mater. 29(2017) 1700587. [145] L. Hu, C. Dai, H. Liu, Y. Li, B. Shen, Y. Chen, S.-J. Bao, M. Xu, Adv. Energy Mater. 8(2018) 1800709. [146] P. Wang, Z. Zhang, X. Yan, M. Xu, Y. Chen, J. Li, J. Li, K. Zhang, Y. Lai, J. Mater. Chem. A 6(2018) 14178-14187. [147] Z. Kang, K. Jiao, R. Peng, Z. Hu, S. Jiao, RSC Adv. 7(2017) 11872-11879. [148] Y. Liu, X. Zhou, T. Ding, C. Wang, Q. Yang, Nanoscale 7(2015) 18004-18009. [149] Z. Li, L. Yin, Nanoscale 7(2015) 9597-9606. [150] X. Yang, N. Yan, W. Zhou, H. Zhang, X. Li, H. Zhang, J. Mater. Chem. A 3(2015) 15314-15323. [151] C. Li, Z. Xi, S. Dong, X. Ge, Z. Li, C. Wang, L. Yin, Energy Storage Mater. 12(2018) 341-351. [152] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Nature 402(1999) 276-279. [153] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O.M. Yaghi, Science 295(2002) 469-472. [154] H.-L. Jiang, B. Liu, Y.-Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, J. Am. Chem. Soc. 133(2011) 11854-11857. [155] I.A. Khan, Y. Qian, A. Badshah, M.A. Nadeem, D. Zhao, ACS Appl. Mater. Interfaces 8(2016) 17268-17275. [156] G. Zou, X. Jia, Z. Huang, S. Li, H. Liao, H. Hou, L. Huang, X. Ji, Electrochim. Acta 196(2016) 413-421. [157] S. Cai, X. Wang, M. Chen, J. Liu, Q. Lu, S. Wei, J. Electrochem. Soc. 163(2016) A2922-A2929. [158] W. Bao, D. Su, W. Zhang, X. Guo, G. Wang, Adv. Funct. Mater. 26(2016) 8746-8756. [159] G. Sun, X. Zhang, R. Lin, J. Yang, H. Zhang, P. Chen, Angew. Chem. Int. Ed. 54(2015) 4651-4656. [160] Y. Zhao, W. Wu, J. Li, Z. Xu, L. Guan, Adv. Mater. 26(2014) 5113-5118. [161] Q. Li, Z. Zhang, Z. Guo, Y. Lai, K. Zhang, J. Li, Carbon 78(2014) 1-9. [162] X. Yang, Y. Yu, N. Yan, H. Zhang, X. Li, H. Zhang, J. Mater. Chem. A 4(2016) 5965-5972. [163] Y. Liu, G. Li, J. Fu, Z. Chen, X. Peng, Angew. Chem. Int. Ed. 56(2017) 6176-6180. [164] G. Hu, C. Xu, Z. Sun, S. Wang, H.M. Cheng, F. Li, W. Ren, Adv. Mater. 28(2016) 1603-1609. [165] L. Hu, C. Dai, J.-M. Lim, Y. Chen, X. Lian, M. Wang, Y. Li, P. Xiao, G. Henkelman, M. Xu, Chem. Sci. 9(2018) 666-675. [166] J. Cheng, D. Zhao, L. Fan, X. Wu, M. Wang, H. Wu, B. Guan, N. Zhang, K. Sun, Chem. Eur. J. 24(2018) 13253-13258. [167] A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O'Keeffe, O.M. Yaghi, Acc. Chem. Res. 43(2010) 58-67. [168] C. Zhao, C. Shen, F. Xin, Z. Sun, W. Han, Mater. Lett. 137(2014) 52-55. |
[1] | Wenjing Dong, di Wang, Xiaoyun Li, Yuan Yao, Xu Zhao, Zhao Wang, Hong-En Wang, Yu Li, Lihua Chen, dong Qian, bao-Lian Su. Bronze TiO2 as a cathode host for lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 48(9): 259-266. |
[2] | James E.Knoop, Seongki Ahn. Recent advances in nanomaterials for high-performance Li-S batteries[J]. 能源化学(英文版), 2020, 47(8): 86-106. |
[3] | Lishun Meng, Yuan Yao, Jing Liu, Zhao Wang,dong Qian, Liuchun Zheng,bao-Lian Su, Hong-En Wang. MoSe2 nanosheets as a functional host for lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 47(8): 241-247. |
[4] | Puxuan Yan, Meilin Huang,benzhi Wang, Zixia Wan, Mancai Qian, Hu Yan, Tayirjan Taylor Isimjan, Jianniao Tian, Xiulin Yang. Oxygen defect-rich double-layer hierarchical porous Co3O4 arrays as high-efficient oxygen evolution catalyst for overall water splitting[J]. 能源化学(英文版), 2020, 47(8): 299-306. |
[5] | Shengyu Zhao, Xiaohui Tian, Yingke Zhou, Ben Ma, Angulakshmi Natarajan. Three-dimensionally interconnected Co9S8/MWCNTs composite cathode host for lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 46(7): 22-29. |
[6] | Huifa Shi, Zhenhua Sun, Wei Lv, Shujie Xiao, Huicong Yang, Ying Shi, Ke Chen, Shaogang Wang, Bingsen Zhang, Quan-Hong Yang, Feng Li. Efficient polysulfide blocker from conductive niobium nitride@graphene for Li-S batteries[J]. 能源化学(英文版), 2020, 45(6): 135-141. |
[7] | Tian-Tian Chen, Rui Wang, Lin-Ke Li, Zhong-Jun Li, Shuang-Quan Zang. MOF-derived Co9S8/MoS2 embedded in tri-doped carbon hybrids for efficient electrocatalytic hydrogen evolution[J]. 能源化学(英文版), 2020, 44(5): 90-96. |
[8] | Junfeng Wu, Siyu Ding, Shihai Ye, Chao Lai. Grafting polymeric sulfur onto carbon nanotubes as highly-active cathode for lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 42(3): 27-33. |
[9] | Tianqi Guo, Yingze Song, Zhongti Sun, Yuhan Wu, Yu Xia, Yayun Li, Jianhui Sun, Kai Jiang, Shixue Dou, Jingyu Sun. Bio-templated formation of defect-abundant VS2 as a bifunctional material toward high-performance hydrogen evolution reactions and lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 42(3): 34-42. |
[10] | Bolan Gan, Kaikai Tang, Yali Chen, Dandan Wang, Na Wang, Wenxian Li, Yong Wang, Hao Liu, Guoxiu Wang. Concrete-like high sulfur content cathodes with enhanced electrochemical performance for lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 42(3): 174-179. |
[11] | Meng Li, Xiaojun Liu, Qian Li, Zhaoqing Jin, Weikun Wang, Anbang Wang, Yaqin Huang, Yusheng Yang. P4S10 modified lithium anode for enhanced performance of lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 41(2): 27-33. |
[12] | Xiwen Wang, Yuqing Tan, Guohong Shen, Shiguo Zhang. Recent progress in fluorinated electrolytes for improving the performance of Li-S batteries[J]. 能源化学(英文版), 2020, 41(2): 149-170. |
[13] | Mohammed-Ibrahim Jamesh. Recent advances on flexible electrodes for Na-ion batteries and Li-S batteries[J]. 能源化学(英文), 2019, 28(5): 15-44. |
[14] | Kranthi Kumar Gangu, Suresh Maddil, Saratchandra Babu Mukkamala, Sreekantha B Jonnalagadda. Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage:A review[J]. 能源化学(英文), 2019, 28(3): 132-144. |
[15] | Fatma M. Ismail, Daniel O'Neil, Tareq Youssef, Souad A. Elfeky. Ultrafast laser dynamics of metal organic frameworks/TiO2 nano-arrays hybrid composites for energy conversion applications[J]. 能源化学(英文), 2019, 28(2): 88-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||