能源化学(英文版) ›› 2019, Vol. 39 ›› Issue (12): 39-53.
Wei Zhanga, Daohao Lia, Longzhou Zhangb, Xilin Shea, Dongjiang Yanga,c
收稿日期:
2018-10-29
修回日期:
2019-01-21
出版日期:
2019-12-15
发布日期:
2020-12-18
通讯作者:
Xilin She, xlshe@qdu.edu.cn; Dongjiang Yang, d.yang@qdu.edu.cn
基金资助:
Wei Zhanga, Daohao Lia, Longzhou Zhangb, Xilin Shea, Dongjiang Yanga,c
Received:
2018-10-29
Revised:
2019-01-21
Online:
2019-12-15
Published:
2020-12-18
Contact:
Xilin She, xlshe@qdu.edu.cn; Dongjiang Yang, d.yang@qdu.edu.cn
Supported by:
摘要: Water splitting, as an advanced energy conversion technology, consists of two half reactions, including oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). However, the ideal electrocatalysts are noble metal based catalysts. Their high cost and scarcity in earth seriously restrict the large deployments. NiFe-based materials have attracted great attention in recent years due to their excellent catalytic properties for OER and HER. Nevertheless, their conductivity and electrochemical stability at high current density are unsatisfactory, resulting in ineffective water splitting due to high impedance and low stability. Recently, a series of catalysts coating NiFe-based materials on 3D nickel foam were found to be extremely stable under the circumstance of high current density. In this review, we summarized the recent advances of NiFe-based materials on nickel foam for OER and HER, respectively, and further provided the perspectives for their future development.
Wei Zhang, Daohao Li, Longzhou Zhang, Xilin She, Dongjiang Yang. NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions[J]. 能源化学(英文版), 2019, 39(12): 39-53.
Wei Zhang, Daohao Li, Longzhou Zhang, Xilin She, Dongjiang Yang. NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions[J]. Journal of Energy Chemistry, 2019, 39(12): 39-53.
[1] J.S. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.G. Park, S.D. Tilley, H.J. Fan, M. Gratzel, Science 345(2014) 1593-1596. [2] C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 137(2015) 4347-4357. [3] M. Gong, W. Zhou, M.C. Tsai, J.G. Zhou, M.Y. Guan, M.C. Lin, B. Zhang, Y.F. Hu, D.Y. Wang, J. Yang, S.J. Pennycook, B.J. Hwang, H.J. Dai, Nat. Commun. 5(2014) 4695. [4] J.H. Wang, W. Cui, Q. Liu, Z.C. Xing, A.M. Asiri, X.P. Sun, Adv. Mater. 28(2016) 215-230. [5] Y. Gu, S. Chen, J. Ren, Y.A. Jia, C.M. Chen, S. Komarneni, D.J. Yang, X.D. Yao, ACS Nano 12(2018) 245-253. [6] L.L. Feng, G.T. Yu, Y.Y. Wu, G.D. Li, H. Li, Y.H. Sun, T. Asefa, W. Chen, X.X. Zou, J. Am. Chem. Soc. 137(2015) 14023-14026. [7] C. Tang, N.Y. Cheng, Z.H. Pu, W. Xing, X.P. Sun, Angew. Chem. Int. Ed. 54(2015) 9351-9355. [8] Q. Liu, S. Gu, C.M. Li, J. Power Sources 299(2015) 342-346. [9] K. Mamtani, D. Jain, D. Dogu, V. Gustin, S. Gunduz, A.C. Co, U.S. Ozkan, Appl. Catal. B 220(2018) 88-97. [10] K.W. Wang, X.L. She, S. Chen, H.L. Liu, D.H. Li, Y. Wang, H.W. Zhang, D.J. Yang, X.D. Yao, J. Mater. Chem. A 6(2018) 5560-5565. [11] J. Wang, F. Xu, H.Y. Jin, Y.Q. Chen, Y. Wang, Adv. Mater. 29(2017) 1605838. [12] Y.X. Zhao, C. Chang, F. Teng, Y.F. Zhao, G.B. Chen, R. Shi, G.I.N. Waterhouse, W.F. Huang, T.R. Zhang, Adv. Energy Mater. 7(2017) 1700005. [13] M.M. Najafpour, S. Madadkhani, M. Tavahodi, Int. J. Hydrogen Energy 42(2017) 60-67. [14] T. Yoshinaga, M. Saruyama, A. Xiong, Y. Ham, Y.B. Kuang, R. Niishiro, S. Akiyama, M. Sakamoto, T. Hisatomi, K. Domen, T. Teranishi, Nanoscale 10(2018) 10420. [15] H.N. Ren, Z.H. Huang, Z.Y. Yang, S.J. Tang, F.Y. Kang, R.T. Lv, J. Energy Chem. 26(2017) 1217-1222. [16] J.T. Ren, Z.P. Hu, C. Chen, Y.P. Liu, Z.Y. Yuan, J. Energy Chem. 26(2017) 1196-1202. [17] Y.Y. Wu, Y.P. Liu, G.D. Li, X. Zou, X.R. Lian, D.J. Wang, L. Sun, T. Asefa, X.X. Zou, Nano Energy 35(2017) 161-170. [18] L. Zhang, B.R. Liu, N. Zhang, M.M. Ma, Nano Res. 11(2018) 323-333. [19] M.D. Zhang, Q.B. Dai, H.G. Zheng, M.D. Chen, L.M. Dai, Adv. Mater. 30(2018) 1705431. [20] Z.Q. Zhou, N. Mahmood, Y.C. Zhang, L. Pan, L. Wang, X.W. Zhang, J.J. Zou, J. Energy Chem. 26(2017) 1223-1230. [21] H. Li, P. Wen, Q. Li, C.C. Dun, J.H. Xing, C. Lu, S. Adhikari, L. Jiang, D.L. Carroll, S.M. Geyer, Adv. Energy Mater. 7(2017) 1700513. [22] X.J. She, J.J. Wu, H. Xu, J. Zhong, Y. Wang, Y.H. Song, K.Q. Nie, Y. Liu, Y.C. Yang, M.T.F. Rodrigues, R. Vajtai, J. Lou, D.L. Du, H.M. Li, P.M. Ajayan, Adv. Energy Mater. 7(2017) 1700025. [23] J. Deng, H.J. Zhang, Y. Zhang, P. Luo, L. Liu, Y. Wang, J. Power Sources 372(2017) 46-53. [24] L. Fang, Z.Q. Jiang, H.T. Xu, L. Liu, Y.X. Guan, X. Gu, Y. Wang, J. Catal. 357(2018) 238-246. [25] Y. Gao, F.X. Wu, H. Chen, J. Energy Chem. 26(2017) 428-432. [26] M. Li, T.T. Liu, X.J. Bo, M. Zhou, L.P. Guo, J. Mater. Chem. A 5(2017) 5413-5425. [27] P.T. Liu, D.Q. Gao, W. Xiao, L. Ma, K. Sun, P.X. Xi, D.S. Xue, J. Wang, Adv. Funct. Mater. 28(2018) 1706928. [28] T.T.H. Nguyen, J. Lee, J. Bae, B. Lim, Chem. Eur J. 24(2018) 4724-4728. [29] C. Tang, H.F. Wang, Q. Zhang, Accounts Chem. Res. 51(2018) 881-889. [30] C. Tang, H.S. Wang, H.F. Wang, Q. Zhang, G.L. Tian, J.Q. Nie, F. Wei, Adv. Mater. 27(2015) 4516-4522. [31] N.K. Chaudhari, H. Jin, B. Kim, K. Lee, Nanoscale 9(2017) 12231-12247. [32] J.L. He, B.B. Hu, Y. Zhao, Adv. Funct. Mater. 26(2016) 5998-6004. [33] N.K. Chaudhari, S. Chaudhari, J.S. Yu, Chemsuschem 7(2014) 3102-3111. [34] N.K. Chaudhari, M.S. Kim, T.S. Bae, J.S. Yu, Electrochim. Acta 114(2013) 60-67. [35] X.J. Chen, G.F. Zeng, T.T. Gao, Z.Y. Jin, Y.J. Zhang, H.Y. Yuan, D. Xiao, Electrochem. Commun. 74(2017) 42-47. [36] Y.J. Chen, Z.Y. Ren, H.Y. Fu, X. Zhang, G.H. Tian, H.G. Fu, Small 14(2018) 1800763. [37] S.C. Du, Z.Y. Ren, J. Zhang, J. Wu, W. Xi, J.Q. Zhu, H.G. Fu, Chem. Commun. 51(2015) 8066-8069. [38] C. Hang, J. Zhang, J.W. Zhu, W.Q. Li, Z.K. Kou, Y.H. Huang, Adv. Energy. Mater. 8(2018) 1703539. [39] L. Sun, T. Wang, L. Zhang, Y.J. Sun, K.W. Xu, Z.F. Dai, F. Ma, J. Power Sources 377(2018) 142-150. [40] J. Wang, H.X. Zhong, Z.L. Wang, F.L. Meng, X.B. Zhang, ACS Nano 10(2016) 2342-2348. [41] T.Y. Ma, S. Dai, S.Z. Qiao, Mater. Today 19(2016) 265-273. [42] M.Y. Gao, C. Yang, Q.B. Zhang, J.R. Zeng, X.T. Li, Y.X. Hua, C.Y. Xu, P. Dong, J. Mater. Chem. A 5(2017) 5797-5805. [43] X. Gao, J. Li, R. Du, J.Y. Zhou, M.Y. Huang, R. Liu, J. Li, Z.Q. Xie, L.Z. Wu, Z.F. Liu, J. Zhang, Adv. Mater. 29(2017) 1605308. [44] N. Jiang, B. You, M.L. Sheng, Y.J. Sun, Angew. Chem. Int. Ed. 54(2015) 6251-6254. [45] N. Jiang, B. You, M.L. Sheng, Y.J. Sun, Chemcatchem 8(2016) 106-112. [46] M. Blasco-Ahicart, J. Soriano-Lopez, J.R. Galan-Mascaros, Chemelectrochem 4(2017) 3296-3301. [47] T. Butburee, Y. Bai, H.J. Wang, H.J. Chen, Z.L. Wang, G. Liu, J. Zou, P. Khemthong, G.Q.M. Lu, L.Z. Wang, Adv. Mater. 30(2018) 1705666. [48] G.M. Wang, H.Y. Wang, Y.C. Ling, Y.C. Tang, X.Y. Yang, R.C. Fitzmorris, C.C. Wang, J.Z. Zhang, Y. Li, Nano Lett. 11(2011) 3026-3033. [49] Z.W. Wang, X.L. Li, H. Ling, C.K. Tan, L.P. Yeo, A.C. Grimsdale, A.I.Y. Tok, Small 14(2018) 1800395. [50] A. Landman, H. Dotan, G.E. Shter, M. Wullenkord, A. Houaijia, A. Maljusch, G.S. Grader, A. Rothschild, Nat. Mater. 16(2017) 646-651. [51] H.Y. Li, S.M. Chen, X.F. Jia, B. Xu, H.F. Lin, H.Z. Yang, L. Song, X. Wang, Nat. Commun. 8(2017) 15377. [52] L. Zhou, M.F. Shao, M. Wei, X. Duan, J. Energy Chem. 26(2017) 1094-1106. [53] L. Zhou, M.F. Shao, C. Zhang, J.W. Zhao, S. He, D.M. Rao, M. Wei, D.G. Evans, X. Duan, Adv. Mater. 29(2017) 1604080. [54] Y.P. Liu, X. Liang, L. Gu, Y. Zhang, G.D. Li, X.X. Zou, J.S. Chen, Nat. Commun. 9(2018) 2609. [55] X. Liu, B. You, Y.J. Sun, ACS Sustain. Chem. Eng. 5(2017) 4778-4784. [56] C.C. Du, M.X. Shang, J.X. Mao, W.B. Song, J. Mater. Chem. A 5(2017) 15940-15949. [57] J.Z. Li, G.D. Wei, Y.K. Zhu, Y.L. Xi, X.X. Pan, Y. Ji, I.V. Zatovsky, W. Han, J. Mater. Chem. A 5(2017) 14828-14837. [58] L. Yang, Z.L. Guo, J. Huang, Y.N. Xi, R.J. Gao, G. Su, W. Wang, L.X. Cao, B.H. Dong, Adv. Mater. 29(2017) 1704574. [59] C.Z. Yuan, L. Yang, L.R. Hou, L.F. Shen, X.G. Zhang, X.W. Lou, Energy Environ. Sci. 5(2012) 7883-7887. [60] A. Sivanantham, P. Ganesan, S. Shanmugam, Adv. Funct. Mater. 26(2016) 4661-4672. [61] C. Tang, H.F. Wang, X.L. Zhu, B.Q. Li, Q. Zhang, Part. Part. Syst. Char 33(2016) 473-486. [62] J.S. Wang, J. Liu, B. Zhang, H.Z. Wan, Z.S. Li, X. Ji, K. Xu, C. Chen, D. Zha, L. Miao, J.J. Jiang, Nano Energy 42(2017) 98-105. [63] D. Voiry, M. Chhowalla, Y. Gogotsi, N.A. Kotov, Y. Li, R.M. Penner, R.E. Schaak, P.S. Weiss, ACS Nano 12(2018) 9635-9638. [64] J.L. Liu, Y. Zheng, Z.Y. Wang, Z.G. Lu, A. Vasileff, S.Z. Qiao, Chem. Commun. 54(2018) 463-466. [65] K.M. Xiao, L. Zhou, M.F. Shao, M. Wei, J. Mater. Chem. A 6(2018) 7585-7591. [66] S. Jiang, Y. Liu, W. Xie, M. Shao, J. Energy Chem. 000(2018) 1-5. [67] B. Wang, C. Tang, H.F. Wang, X. Chen, R. Cao, Q. Zhang, Adv. Mater. (2018) e1805658. [68] H. Li, X.L. Zhao, H.L. Liu, S. Chen, X.F. Yang, C.X. Lv, H.W. Zhang, X.L. She, D.J. Yang, Small 14(2018) 1802824. [69] W. Zhang, Y. Zou, H. Liu, S. Chen, X. Wang, H. Zhang, X. She, D. Yang, Nano Energy 56(2019) 813-822. [70] J. Bao, X.D. Zhang, B. Fan, J.J. Zhang, M. Zhou, W.L. Yang, X. Hu, H. Wang, B.C. Pan, Y. Xie, Angew. Chem. Int. Ed. 54(2015) 7399-7404. [71] J.T. Zhang, Z.H. Zhao, Z.H. Xia, L.M. Dai, Nat. Nanotechnol. 10(2015) 444-452. [72] N. Danilovic, R. Subbaraman, K.C. Chang, S.H. Chang, Y.J. Kang, J. Snyder, A.P. Paulikas, D. Strmcnik, Y.T. Kim, D. Myers, V.R. Stamenkovic, N.M. Markovic, Angew. Chem. Int. Ed. 53(2014) 14016-14021. [73] R. Forgie, G. Bugosh, K.C. Neyerlin, Z.C. Liu, P. Strasser, Electrochem. Solid St. 13(2010) D36-D39. [74] F.J. Li, Y. Chen, D.M. Tang, Z.L. Jian, C. Liu, D. Golberg, A. Yamada, H.S. Zhou, Energy Environ. Sci. 7(2014) 1648-1652. [75] T. Reier, M. Oezaslan, P. Strasser, ACS Catal. 2(2012) 1765-1772. [76] S. Chen, J.J. Duan, W. Han, S.Z. Qiao, Chem. Commun. 50(2014) 207-209. [77] S. Chen, G.X. Liu, H. Yadegari, H.H. Wang, S.Z. Qiao, J. Mater. Chem. A 3(2015) 2559-2563. [78] C. Tang, H.F. Wang, H.S. Wang, F. Wei, Q. Zhang, J. Mater. Chem. A 4(2016) 3210-3216. [79] F. Yan, C. Zhu, S. Wang, Y. Zhao, X. Zhang, C. Li, Y. Chen, J. Mater. Chem. A 4(2016) 6048-6055. [80] X.T. Yuan, H.X. Ge, X. Wang, C.L. Dong, W.J. Dong, M.S. Riaz, Z.W. Xu, J.X. Zhang, F.Q. Huang, ACS Energy Lett. 2(2017) 1208-1213. [81] Y.F. Zhao, B. Sun, X.D. Huang, H. Liu, D.W. Su, K.N. Sun, G.X. Wang, J. Mater. Chem. A 3(2015) 5402-5408. [82] M. Bernicke, B. Eckhardt, A. Lippitz, E. Ortel, D. Bernsmeier, R. Schmack, R. Kraehnert, Chemistryselect 1(2016) 482-489. [83] J. Wang, K. Li, H.X. Zhong, D. Xu, Z.L. Wang, Z. Jiang, Z.J. Wu, X.B. Zhang, Angew. Chem. Int. Ed. 54(2015) 10530-10534. [84] R. Xu, R. Wu, Y.M. Shi, J.F. Zhang, B. Zhang, Nano Energy 24(2016) 103-110. [85] W.X. Zhu, X.Y. Yue, W.T. Zhang, S.X. Yu, Y.H. Zhang, J. Wang, J.L. Wang, Chem Commun. 52(2016) 1486-1489. [86] B.M. Hunter, W. Hieringer, J.R. Winkler, H.B. Gray, A.M. Muller, Energy Environ. Sci. 9(2016) 1734-1743. [87] X.G. Liu, X. Wang, X.T. Yuan, W.J. Dong, F.Q. Huang, J. Mater. Chem. A 4(2016) 167-172. [88] Z. Lu, W.W. Xu, W. Zhu, Q. Yang, X.D. Lei, J.F. Liu, Y.P. Li, X.M. Sun, X. Duan, Chem Commun. 50(2014) 6479-6482. [89] R. Chen, G.Z. Sun, C.J. Yang, L.P. Zhang, J.W. Miao, H.B. Tao, H.B. Yang, J.Z. Chen, P. Chen, B. Liu, Nanoscale Horiz. 1(2016) 156-160. [90] K. Fan, H. Chen, Y.F. Ji, H. Huang, P.M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F.S. Li, Y. Luo, L.C. Sun, Nat. Commun. 7(2016) 11981. [91] S.M. Yin, WG. Tu, Y. Sheng, Y.H. Du, K. Markus, B. Armando, R. Xu, Adv. Mater. 30(2018) 1705106. [92] M. Gorlin, P. Chernev, J.F. de Araujo, T. Reier, S. Dresp, B. Paul, R. Krahnert, H. Dau, P. Strasser, J Am Chem Soc. 138(2016) 5603-5614. [93] Z.H. Li, M.F. Shao, H.L. An, Z.X. Wang, S.M. Xu, M. Wei, D.G. Evans, X. Duan, Chem. Sci. 6(2015) 6624-6631. [94] X. Long, S. Xiao, Z.L. Wang, X.L. Zheng, S.H. Yang, Chem. Commun. 51(2015) 1120-1123. [95] H.X. Liu, Y.R. Wang, X.Y. Lu, Y. Hu, G.Y. Zhu, R.P. Chen, L.B. Ma, H.F. Zhu, Z.X. Tie, J. Liu, Z. Jin, Nano Energy 35(2017) 350-357. [96] Z.Y. Lu, L. Qian, Y. Tian, Y.P. Li, X.M. Sun, X. Duan, Chem. Commun. 52(2016) 908-911. [97] G.B. Chen, T. Wang, J. Zhang, P. Liu, H.J. Sun, X.D. Zhuang, M.W. Chen, X.L. Feng, Adv. Mater. 30(2018) 1706279. [98] P.S. Li, X.X. Duan, Y. Kuang, Y.P. Li, G.X. Zhang, W. Liu, X.M. Sun, Adv. Energy Mater. 8(2018) 1703341. [99] X. Zou, Y.P. Liu, G.D. Li, Y.Y. Wu, D.P. Liu, W. Li, H.W. Li, D.J. Wang, Y. Zhang, X.X. Zou, Adv. Mater. 29(2017) 1700404. [100] Y. Yang, L.N. Dang, M.J. Shearer, H.Y. Sheng, W.J. Li, J. Chen, P. Xiao, Y.H. Zhang, R.J. Hamers, S. Jin, Adv. Energy Mater. 8(2018) 1703189. [101] D.J. Zhou, Z. Cai, Y.M. Bi, W.L. Tian, M. Luo, Q. Zhang, Q. Zhang, Q.X. Xie, J.D. Wang, Y.P. Li, Y. Kuang, X. Duan, M. Bajdich, S. Siahrostami, X.M. Sun, Nano Res. 11(2018) 1358-1368. [102] N. Han, F.P. Zhao, Y.G. Li, J. Mater. Chem. A 3(2015) 16348-16353. [103] S. Nayak, L. Mohapatra, K. Parida, J. Mater. Chem. A 3(2015) 18622-18635. [104] F. Song, X.L. Hu, Nat. Commun. 5(2014) 4477. [105] S.H. Zou, M.S. Burke, M.G. Kast, J. Fan, N. Danilovic, S.W. Boettcher, Chem. Mater. 27(2015) 8011-8020. [106] D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise, M.J. Cheng, D. Sokaras, T.C. Weng, R. Alonso-Mori, R.C. Davis, J.R. Bargar, J.K. Norskov, A. Nilsson, A.T. Bell, J. Am. Chem. Soc. 137(2015) 1305-1313. [107] X.D. Jia, Y.F. Zhao, G.B. Chen, L. Shang, R. Shi, X.F. Kang, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Adv. Energy Mater. 6(2016) 1502585. [108] K. Xu, P.Z. Chen, X.L. Li, Y. Tong, H. Ding, X.J. Wu, W.S. Chu, Z.M. Peng, C.Z. Wu, Y. Xie, J. Am. Chem. Soc. 137(2015) 4119-4125. [109] B. Zhang, C.H. Xiao, S.M. Xie, J. Liang, X. Chen, Y.H. Tang, Chem. Mater. 28(2016) 6934-6941. [110] P.Z. Chen, K. Xu, Z.W. Fang, Y. Tong, J.C. Wu, X.L. Lu, X. Peng, H. Ding, C.Z. Wu, Y. Xie, Angew. Chem. Int. Ed. 54(2015) 14710-14714. [111] Y.Y. Wang, C. Xie, Z.Y. Zhang, D.D. Liu, R. Chen, S.Y. Wang, Adv. Funct. Mater. 28(2018) 1870119. [112] P.Z. Chen, T.P. Zhou, M.X. Zhang, Y. Tong, C.G. Zhong, N. Zhang, L.D. Zhang, C.Z. Wu, Y. Xie, Adv. Mater. 29(2017) 1701584. [113] Y.S. Jin, X. Yue, H.Y. Du, K. Wang, S.L. Huang, P.K. Shen, J. Mater. Chem. A 6(2018) 5592-5597. [114] M. Jiang, Y.J. Li, Z.Y. Lu, X.M. Sun, X. Duan, Inorg. Chem. Front 3(2016) 630-634. [115] Y. Wang, B. Kong, D.Y. Zhao, H.T. Wang, C. Selomulya, Nano Today 15(2017) 26-55. [116] J. Masud, S. Umapathi, N. Ashokaan, M. Nath, J. Mater. Chem. A 4(2016) 9750-9754. [117] Y. Yan, B. Zhao, S.C. Yi, X. Wang, J. Mater. Chem. A 4(2016) 13005-13010. [118] Z. Zhang, B.P. Lu, J.H. Hao, W.S. Yang, J.L. Tang, Chem. Commun. 50(2014) 11554-11557. [119] H.W. Man, C.S. Tsang, M.M. Li, J. Mo, B. Huang, L.Y.S. Lee, Y.C. Leung, K.Y. Wong, S.C.E. Tsang, Chem. Commun. (Camb.) 54(2018) 8630-8633. [120] Y.J. Li, H.C. Zhang, M. Jiang, Q. Zhang, P.L. He, X.M. Sun, Adv. Funct. Mater. 27(2017) 1702513. [121] P.Y. Wang, Z.H. Pu, Y.H. Li, L. Wu, Z.K. Tu, M. Jiang, Z.K. Kou, I.S. Arniinu, S.C. Mu, ACS Appl. Mater. Inter. 9(2017) 26001-26007. [122] H. Liang, A.N. Gandi, C. Xia, M.N. Hedhili, D.H. Anjum, U. Schwingenschlogl, H.N. Alshareef, ACS Energy Lett. 2(2017) 1035-1042. [123] J.H. Yu, G.Z. Cheng, W. Luo, J. Mater. Chem. A 5(2017) 11229-11235. [124] L.S. Peng, S.S.A. Shah, Z.D. Wei, Chinese J. Catal. 39(2018) 1575-1593. [125] N.Y. Cheng, Q. Liu, A.M. Asiri, W. Xing, X.P. Sun, J. Mater. Chem. A 3(2015) 23207-23212. [126] J.H. Yu, G.Z. Cheng, W. Luo, J. Mater. Chem. A 5(2017) 15838-15844. [127] P. Ganesan, A. Sivanantham, S. Shanmugam, J. Mater. Chem. A 4(2016) 16394-16402. [128] X.W. Zhou, Y.L. Gan, J.J. Du, D.N. Tian, R.H. Zhang, C.Y. Yang, Z.X. Dai, J. Power Sources 232(2013) 310-322. [129] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q.X. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110(2010) 6446-6473. [130] X. Long, G.X. Li, Z.L. Wang, H.Y. Zhu, T. Zhang, S. Xiao, W.Y. Guo, S.H. Yang, J. Am. Chem. Soc. 137(2015) 11900-11903. [131] R. Subbaraman, D. Tripkovic, D. Strmcnik, K.C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, N.M. Markovic, Science 334(2011) 1256-1260. [132] R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N.M. Markovic, Nat. Mater. 11(2012) 550-557. [133] P. Zhang, J.J. Zhang, J.L. Gong, Chem. Soc. Rev. 43(2014) 4395-4422. [134] X.X. Zou, X.X. Huang, A. Goswami, R. Silva, B.R. Sathe, E. Mikmekova, T. Asefa, Angew. Chem. Int. Ed. 53(2014) 4372-4376. [135] J. Lu, T.L. Xiong, W.J. Zhou, L.J. Yang, Z.H. Tang, S.W. Chen, ACS Appl. Mater. Inter. 8(2016) 5065-5069. [136] T.T. Liu, X. Ma, D.N. Liu, S. Hao, G. Du, Y.J. Ma, A.M. Asiri, X.P. Sun, L. Chen, ACS Catal. 7(2017) 98-102. [137] Y.Q. Sun, L.F. Hang, Q. Shen, T. Zhang, H.L. Li, X.M. Zhang, X.J. Lyu, Y. Li, Nanoscale 9(2017) 16674-16679. [138] Y.M. Shi, Y. Xu, S.F. Zhuo, J.F. Zhang, B. Zhang, ACS Appl. Mater. Inter 7(2015) 2376-2384. [139] Z.Z. Ma, R.X. Li, M. Wang, H.J. Meng, F. Zhang, X.Q. Bao, B. Tang, X.G. Wang, Electrochim. Acta 219(2016) 194-203. [140] C. Ray, S.C. Lee, B.J. Jin, A. Kundu, J.H. Park, S.C. Jun, ACS Sustain. Chem. Eng. 6(2018) 6146-6156. [141] N.A. Assuncao, M.J. Giz, G. Tremiliosi-Filho, E.R. Gonzalez, J. Electrochem Soc. 144(1997) 2794-2800. [142] J.H. Xing, H. Li, M.M.C. Cheng, S.M. Geyer, K.Y.S. Ng, J. Mater. Chem. A 4(2016) 13866-13873. [143] C.H. Xiao, B. Zhang, D. Li, Electrochim. Acta 242(2017) 260-267. [144] J.R. Hu, Y.Q. Ou, Y.H. Li, D. Gao, Y.H. Zhang, P. Xiao, ACS Sustain. Chem. Eng. 6(2018) 11724-11733. [145] C. Tang, R. Zhang, W.B. Lu, L.B. He, X. Jiang, A.M. Asiri, X.P. Sun, Adv. Mater. 29(2017) 1602441. [146] Z.J. Chen, G.X. Cao, L.Y. Gan, H. Dai, N. Xu, M.J. Zang, H.B. Dai, H. Wu, P. Wang, ACS Catal. 8(2018) 8866-8872. [147] B. You, Y.J. Sun, Adv. Energy Mater. 6(2016) 1502333. [148] J.T. Ren, Z.Y. Yuan, ACS Sustain. Chem. Eng. 5(2017) 7203-7210. [149] N. Yang, C. Tang, K.Y. Wang, G. Du, A.M. Asiri, X.P. Sun, Nano Res. 9(2016) 3346-3354. [150] G. Zhang, Y.S. Feng, W.T. Lu, D. He, C.Y. Wang, Y.K. Li, X.Y. Wang, F.F. Cao, ACS Catal. 8(2018) 5431-5441. [151] B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jorgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Norskov, J. Am. Chem. Soc. 127(2005) 5308-5309. [152] X. Shang, J.F. Qin, J.H. Lin, B. Dong, J.Q. Chi, Z.Z. Liu, L. Wang, Y.M. Chai, C.G. Liu, J. Colloid Interf Sci. 523(2018) 121-132. [153] L. Zhou, M.G. Shao, J.B. Li, S. Jiang, M. Wei, X. Duan, Nano Energy 41(2017) 583-590. [154] B. Liu, Y.F. Zhao, H.Q. Peng, Z.Y. Zhang, C.K. Sit, M.F. Yuen, T.R. Zhang, C.S. Lee, W.J. Zhang, Adv. Mater. 29(2017) 1606521. |
[1] | C.Cannilla, G.Bonura, S.Maisano, L.Frusteri, M.Migliori, G.Giordano, S.Todaro, f.Frusteri. Zeolite-assisted etherification of glycerol with butanol for biodiesel oxygenated additives production[J]. 能源化学(英文版), 2020, 48(9): 136-144. |
[2] | Hongcheng Gao, Shunlian Ning, Jiasui Zou, Shuang Men, Yuan Zhou, Xiujun Wang, Xiongwu Kang. The electrocatalytic activity of BaTiO3 nanoparticles towards polysulfides enables high-performance lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 48(9): 208-216. |
[3] | Ziqun Wang, Longfeng Li, Mingzhu Liu, Tifang Miao, Xiangju Ye, Sugang Meng, Shifu Chen, Xianliang Fu. A new phosphidation route for the synthesis of NiPx and their cocatalytic performances for photocatalytic hydrogen evolution over g-C3N4[J]. 能源化学(英文版), 2020, 48(9): 241-249. |
[4] | Yuhang Li, Yexiang Tong, feng Peng. Metal-free carbocatalysis for electrochemical oxygen reduction reaction: Activity origin and mechanism[J]. 能源化学(英文版), 2020, 48(9): 308-321. |
[5] | Ziyue Zhou, Wenping Si, Pengyi Lu, Wenlei Guo, Lei Wang, Tao Zhang,feng Hou, Ji Liang. A flexible CNT@nickel silicate composite film for high-performance sodium storage[J]. 能源化学(英文版), 2020, 47(8): 29-37. |
[6] | Teng Lv, Wei Weng, Jing Zhou,dong Gu, Wei Xiao. Effects of K and Mn promoters over Fe2O3 on Fischer-Tropsch synthesis[J]. 能源化学(英文版), 2020, 47(8): 118-127. |
[7] | Jianing Liang, Yun Lu, Jie Wang, Xupo Liu, Ke Chen, Weihao Ji, Ye Zhu,deli Wang. Well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron sphere with fast electrochemical kinetics for cathodic lithium storage[J]. 能源化学(英文版), 2020, 47(8): 188-195. |
[8] | Junbiao Wu, Yu Wang, Yaopeng Zhang, Hao Meng, Yan Xu, Yide Han, Zhuopeng Wang, Yanfeng Dong, Xia Zhang. Highly safe and ionothermal synthesis of Ti3C2 MXene with expanded interlayer spacing for enhanced lithium storage[J]. 能源化学(英文版), 2020, 47(8): 203-209. |
[9] | Jiugen Qiu, Baobing Huang, Yuchuan Liu, Dongyang Chen, Zailai Xie. Glucose-derived hydrothermal carbons as energy storage booster for vanadium redox flow batteries[J]. 能源化学(英文版), 2020, 45(6): 31-39. |
[10] | Mingtao Yan, Huiyuan Geng, Peng Jiang, Xinhe Bao. Glass-like electronic and thermal transport in crystalline cubic germanium selenide[J]. 能源化学(英文版), 2020, 45(6): 83-90. |
[11] | Jie Zhu, Peiwen Wu, Linlin Chen, Jing He, Yingcheng Wu, Chao Wang, Yanhong Chao, Linjie Lu, Minqiang He, Wenshuai Zhu, Huaming Li. 3D-printing of integrated spheres as a superior support of phosphotungstic acid for deep oxidative desulfurization of fuel[J]. 能源化学(英文版), 2020, 45(6): 91-97. |
[12] | Zhikai Li, Tao Yang, Shaojun Yuan, Yongxiang Yin, Edwin J. Devid, Qiang Huang, Daniel Auerbach, Aart W. Kleyn. Boudouard reaction driven by thermal plasma for efficient CO2 conversion and energy storage[J]. 能源化学(英文版), 2020, 45(6): 128-134. |
[13] | Chongrong Zhang, Hui Li, Shixuan Wang, Yuliang Cao, Hanxi Yang, Xinping Ai, Faping Zhong. A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries[J]. 能源化学(英文版), 2020, 44(5): 33-40. |
[14] | Munjeong Jang, Byeong Soo Shin, Young Suk Jo, Jeong Won Kang, Sang Kyu Kwak, Chang Won Yoon, Hyangsoo Jeong. A study on hydrogen uptake and release of a eutectic mixture of biphenyl and diphenyl ether[J]. 能源化学(英文版), 2020, 42(3): 11-16. |
[15] | Xiaodong Hong, Rui Wang, Yue Liu, Jiawei Fu, Ji Liang, Shixue Dou. Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries[J]. 能源化学(英文版), 2020, 42(3): 144-168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||