能源化学(英文版) ›› 2019, Vol. 39 ›› Issue (12): 217-234.
Muhammad Zahir Iqbal, Assad-Ur Rehman, Saman Siddique
收稿日期:
2019-02-15
修回日期:
2019-02-24
出版日期:
2019-12-15
发布日期:
2020-12-18
通讯作者:
Muhammad Zahir Iqbal, zahir.upc@gmail.com
基金资助:
Muhammad Zahir Iqbal, Assad-Ur Rehman, Saman Siddique
Received:
2019-02-15
Revised:
2019-02-24
Online:
2019-12-15
Published:
2020-12-18
Contact:
Muhammad Zahir Iqbal, zahir.upc@gmail.com
Supported by:
摘要: Novel characteristics of graphene have captured great attention of researchers for energy technology applications. Incorporation of graphene related hybrid and composite materials have demonstrated high performance and durability for fuel cell energy conversion devices. This article overviews graphene based materials for fuel cell technology applications such as electrodes additives, bipolar plates and proton conducting electrolyte membrane. The graphene dispersion over electrodes has revealed enhanced exposure of electrochemically active surface area for improved electro-catalytic activity towards fuel oxidation and oxidant reduction reactions. The issue of device stack durability and degraded performance due to corrosion of bipolar plates is discussed by incorporating graphene based materials. In proton exchange membrane devices, graphene as an electrolyte has shown an excellent performance towards high ionic conductivity and power density. The graphene incorporation in fuel cell devices has exhibited commendable performance and has bright future for commercial applications.
Muhammad Zahir Iqbal, Assad-Ur Rehman, Saman Siddique. Prospects and challenges of graphene based fuel cells[J]. 能源化学(英文版), 2019, 39(12): 217-234.
Muhammad Zahir Iqbal, Assad-Ur Rehman, Saman Siddique. Prospects and challenges of graphene based fuel cells[J]. Journal of Energy Chemistry, 2019, 39(12): 217-234.
[1] Y. Sun, Q. Wu, G. Shi, Energy Environ. Sci. 4(2011) 1113-1132. [2] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, IEEE J. Photovolt. 4(2014) 96-99. [3] J.-T. Chen, C.-S. Hsu, Polym. Chem. 2(2011) 2707-2722. [4] X. Liu, F. Wang, Q. Wang, Phys. Chem. Chem. Phys. 14(2012) 7894-7911. [5] E.H. Yu, X. Wang, U. Krewer, L. Li, K. Scott, Energy Environ. Sci. 5(2012) 5668-5680. [6] Z.-Y. Shih, A.P. Periasamy, P.-C. Hsu, H.-T. Chang, Appl. Catal. B 132(2013) 363-369. [7] C. Zhang, R. Hao, H. Yin, F. Liu, Y. Hou, Nanoscale 4(2012) 7326-7329. [8] J. Hou, Z. Liu, P. Zhang, J. Power Sources 224(2013) 139-144. [9] D.-W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.-M. Cheng, I.R. Gentle, G.Q.M. Lu, J. Mater. Chem. A 1(2013) 9382-9394. [10] R. O'hayre, S.-W. Cha, F.B. Prinz, W. Colella, Fuel cell fundamentals, John Wiley & Sons, 2016. [11] M. Mathias, J. Roth, J. Fleming, W. Lehnert, W. Vielstich, A. Lamm, H. Gasteiger, W. Vielstich, HA Gasteiger, A. Lamm (Eds.), (2003) 3, Wiley, New York. [12] F. Barbir, PEM fuel cells:theory and practice, Academic Press, 2012. [13] W. Vielstich, A. Lamm, H. Yokokawa, H.A. Gasteiger, Handbook of fuel cells:fundamentals technology and applications, John Wiley & Sons, 2009. [14] A. Iwan, M. Malinowski, G. Pasciak, Renew. Sustain. Energy Rev. 49(2015) 954-967. [15] H.-J. Choi, S.-M. Jung, J.-M. Seo, D.W. Chang, L. Dai, J.-B. Baek, Nano Energy 1(2012) 534-551. [16] J. Larminie, A. Dicks, M.S. McDonald, Fuel cell systems explained, J. Wiley, Chichester, UK, 2003. [17] J.C. Li, P.X. Hou, C. Liu, Small 13(2017) 1702002. [18] C. Tang, M.-M. Titirici, Q. Zhang, J. Energy Chem. 26(2017) 1077-1093. [19] C. Tang, Q. Zhang, Adv. Mater. 29(2017) 1604103. [20] D.S. Hecht, L. Hu, G. Irvin, Adv. Mater. 23(2011) 1482-1513. [21] A.T. Ali, H. Ullah, P. Sudhagar, M.M.T. Asri, A. Devadoss, S. Sundaram, Chemical record, 16, New York, NY, 2016, pp. 1591-1634. [22] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(2004) 666-669. [23] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature 448(2007) 457-460. [24] K. Kim, Y. Zhao, H. Jang, S. Lee, J. Kim, K. Kim, J. Ahn, Nature 457(2009) 706. [25] E.-K. Choi, I.-Y. Jeon, S.-Y. Bae, H.-J. Lee, H.S. Shin, L. Dai, J.-B. Baek, Chem. Commun. 46(2010) 6320-6322. [26] Z.-S. Wu, W. Ren, L. Xu, F. Li, H.-M. Cheng, ACS Nano 5(2011) 5463-5471. [27] Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X.A. Chen, S. Huang, ACS Nano 6(2011) 205-211. [28] Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S.Z. Qiao, Angew. Chem. 125(2013) 3192-3198. [29] A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, ACS Nano 4(2010) 6337-6342. [30] D.-J. Xue, S. Xin, Y. Yan, K.-C. Jiang, Y.-X. Yin, Y.-G. Guo, L.-J. Wan, J. Am. Chem. Soc. 134(2012) 2512-2515. [31] Y. Mai, J. Tu, C. Gu, X. Wang, J. Power Sources 209(2012) 1-6. [32] B. Fuchsbichler, C. Stangl, H. Kren, F. Uhlig, S. Koller, J. Power Sources 196(2011) 2889-2892. [33] Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.-M. Cheng, ACS Nano 4(2010) 3187-3194. [34] G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G.Q. Lu, H.-M. Cheng, Chem. Mater. 22(2010) 5306-5313. [35] Y. Sun, X. Hu, W. Luo, Y. Huang, ACS Nano 5(2011) 7100-7107. [36] Z. Du, X. Yin, M. Zhang, Q. Hao, Y. Wang, T. Wang, Mater. Lett. 64(2010) 2076-2079. [37] X. Zhou, L.J. Wan, Y.G. Guo, Adv. Mater. 25(2013) 2152-2157. [38] N. Mahmood, C. Zhang, J. Jiang, F. Liu, Y. Hou, Chem. Eur. J 19(2013) 5183-5190. [39] N. Mahmood, C. Zhang, J. Jiang, F. Liu, Y. Hou, Chem.-A Eur. J. 19(2013) 5183-5190. [40] J. Xiao, X. Wang, X.Q. Yang, S. Xun, G. Liu, P.K. Koech, J. Liu, J.P. Lemmon, Adv. Funct. Mater. 21(2011) 2840-2846. [41] B. Luo, Y. Fang, B. Wang, J. Zhou, H. Song, L. Zhi, Energy Environ. Sci. 5(2012) 5226-5230. [42] N.-S. Choi, Y. Yao, Y. Cui, J. Cho, J. Mater. Chem. 21(2011) 9825-9840. [43] P. Chen, L. Guo, Y. Wang, J. Power Sources 222(2013) 526-532. [44] K. Zhang, L.L. Zhang, X. Zhao, J. Wu, Chem. Mater. 22(2010) 1392-1401. [45] E. Pollak, B. Geng, K.-J. Jeon, I.T. Lucas, T.J. Richardson, F. Wang, R. Kostecki, Nano Lett. 10(2010) 3386-3388. [46] H. Tang, S.P. Jiang, J. Phys. Chem. C 112(2008) 19748-19755. [47] X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41(2012) 666-686. [48] H. Wang, H. Li, X.Z. Yuan, Pem Fuel Cell Diagnostic Tools, CRC Press, Taylor and Francis Group, LLC Boca Raton London New York, 2012. [49] V.S. Bagotsky, Fuel cells:problems and solutions, John Wiley & Sons, 2012. [50] S.B. Schaevitz, Powering the wireless world with MEMS, in:Proc. SPIE, 2012. [51] F.C. Handbook, Inc., Albuquerque, NM, DOE/NETL-2004/1206, (2004). [52] G. Hoogers, Fuel cell technology handbook, Wiley, Boca Ratón, New York, Washington. DC, 2003. [53] A.K. Mishra, T. Kuila, N.H. Kim, J.H. Lee, Polymer-Layered Silicate Nanocomposite Membranes for Fuel Cell Application, Handbook of Polymernanocomposites, Processing, Performance and Application, Springer, 2014, pp. 481-509. [54] R. Souzy, B. Ameduri, Prog. Polym. Sci. 30(2005) 644-687. [55] J. Ran, L. Wu, X. Lin, L. Jiang, T. Xu, RSC Adv. 2(2012) 4250-4257. [56] M.G. Dhara, S. Banerjee, Prog. Polym. Sci. 35(2010) 1022-1077. [57] C.H. Park, C.H. Lee, M.D. Guiver, Y.M. Lee, Prog. Polym. Sci. 36(2011) 1443-1498. [58] S. Bose, T. Kuila, T.X.H. Nguyen, N.H. Kim, K.-T. Lau, J.H. Lee, Prog. Polym. Sci. 36(2011) 813-843. [59] D.-J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, C.-S. Ha, Prog. Polym. Sci. 37(2012) 907-974. [60] M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Chem. Rev. 104(2004) 4587-4612. [61] J.A. Asensio, E.M. Sánchez, P. Gómez-Romero, Chem. Soc. Rev. 39(2010) 3210-3239. [62] Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, Prog. Polym. Sci. 34(2009) 449-477. [63] S. Zhang, Y. Shao, G. Yin, Y. Lin, J. Mater. Chem. A 1(2013) 4631-4641. [64] J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D.P. Wilkinson, J. Power Sources 160(2006) 872-891. [65] H. Zhang, P.K. Shen, Chem. Rev. 112(2012) 2780-2832. [66] D.P. Wilkinson, J. Zhang, R. Hui, J. Fergus, X. Li, Proton exchange membrane fuel cells:materials properties and performance, CRC Press, 2009. [67] F.C. Handbook, DEAM26-99FT40575, US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, Morgantown, West Virginia, USA, 2004. [68] J. Chmielowiec, G. Paściak, P. Bujło, Mater Sci-Poland 27(2009) 2. [69] J. Fergus, R. Hui, X. Li, D.P. Wilkinson, J. Zhang, Solid oxide fuel cells:materials properties and performance, CRC press, 2016. [70] A. Peigney, C. Laurent, E. Flahaut, R. Bacsa, A. Rousset, Carbon 39(2001) 507-514. [71] A.A. Green, M.C. Hersam, J. Phys. Chem. Lett. 1(2009) 544-549. [72] A.K. Geim, Science 324(2009) 1530-1534. [73] A.K. Geim, K.S. Novoselov, Nat. Mater. 6(2007) 183-191. [74] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459(2009) 820-823. [75] M. Craciun, S. Russo, M. Yamamoto, J.B. Oostinga, A. Morpurgo, S. Tarucha, Nat. Nanotechnol. 4(2009) 383-388. [76] Y. Lu, Y. Feng, J. Phys. Chem. C 113(2009) 20841-20844. [77] C. Stampfer, J. Güttinger, S. Hellmüller, F. Molitor, K. Ensslin, T. Ihn, Phys. Rev. Lett. 102(2009) 056403. [78] S. Park, R.S. Ruoff, Nat. Nanotechnol. 4(2009) 217-224. [79] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, Y.K. Gun'Ko, Nat. Nanotechnol. 3(2008) 563-568. [80] N. Behabtu, J.R. Lomeda, M.J. Green, A.L. Higginbotham, A. Sinitskii, D.V. Kosynkin, D. Tsentalovich, A.N.G. Parra-Vasquez, J. Schmidt, E. Kesselman, Nat. Nanotechnol. 5(2010) 406-411. [81] M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110(2009) 132-145. [82] Z. Berger, X. Song, X. Li, N.B. Wu, Science 312(2006) 1191. [83] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Nat. Nanotechnol. 5(2010) 574-578. [84] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446(2007) 60. [85] A. Shukla, R. Kumar, J. Mazher, A. Balan, Solid State Commun. 149(2009) 718-721. [86] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, Science 312(2006) 1191-1196. [87] A.G. Cano-Marquez, F.J. Rodríguez-Macías, J. Campos-Delgado, C.G. Espinosa-González, F. Tristán-López, D. Ramírez-González, D.A. Cullen, D.J. Smith, M. Terrones, Y.I. Vega-Cantú, Nano Lett. 9(2009) 1527-1533. [88] S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, Nano Lett. 7(2007) 3394-3398. [89] L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Adv. Funct. Mater. 19(2009) 2782-2789. [90] M. Zhou, Y. Zhai, S. Dong, Anal. Chem. 81(2009) 5603-5613. [91] R.L. McCreery, Chem. Rev. 108(2008) 2646-2687. [92] D.A. Brownson, D.K. Kampouris, C.E. Banks, J. Power Sources 196(2011) 4873-4885. [93] D. Wei, J. Kivioja, Nanoscale 5(2013) 10108-10126. [94] E. Antolini, Appl. Catal. B 123(2012) 52-68. [95] L. Dai, Acc. Chem. Res. 46(2012) 31-42. [96] C. Xu, B. Xu, Y. Gu, Z. Xiong, J. Sun, X. Zhao, Energy Environ. Sci. 6(2013) 1388-1414. [97] Y. Wang, F. Wei, H. Xu, X.-W. Shi, Prog. Electromagn. Res. 135(2013) 261-269. [98] S. Khilari, S. Pandit, M.M. Ghangrekar, D. Pradhan, D. Das, Ind. Eng. Chem. Res. 52(2013) 11597-11606. [99] D.R. Kauffman, A. Star, Analyst 135(2010) 2790-2797. [100] Z. Yang, H. Nie, X.A. Chen, X. Chen, S. Huang, J. Power Sources 236(2013) 238-249. [101] Q. Wang, X. Wang, Z. Chai, W. Hu, Chem. Soc. Rev. 42(2013) 8821-8834. [102] L. Gong, Z. Yang, K. Li, J. Ge, C. Liu, W. Xing, J. Energy Chem. (2018). [103] F. Li, T. Zhang, H. Zhou, Energy Environ. Sci. 6(2013) 1125-1141. [104] G. Wu, N.H. Mack, W. Gao, S. Ma, R. Zhong, J. Han, J.K. Baldwin, P. Zelenay, ACS Nano 6(2012) 9764-9776. [105] C. Zhang, R. Hao, H. Liao, Y. Hou, Nano Energy 2(2013) 88-97. [106] L. Zhu, D. Susac, M. Teo, K. Wong, P. Wong, R. Parsons, D. Bizzotto, K. Mitchell, S. Campbell, J. Catal. 258(2008) 235-242. [107] L. Ren, K.S. Hui, K.N. Hui, J. Mater. Chem. A 1(2013) 5689-5694. [108] S.J. Aravind, S. Ramaprabhu, ACS Appl. Mater. Interfaces 4(2012) 3805-3810. [109] S. Park, Y. Shao, H. Wan, P.C. Rieke, V.V. Viswanathan, S.A. Towne, L.V. Saraf, J. Liu, Y. Lin, Y. Wang, Electrochem. Commun. 13(2011) 258-261. [110] Y.S. Yun, D. Kim, Y. Tak, H.-J. Jin, Synth. Metals 161(2011) 2460-2465. [111] L. Qu, Y. Liu, J.-B. Baek, L. Dai, ACS Nano 4(2010) 1321-1326. [112] L. Feng, Y. Chen, L. Chen, ACS Nano 5(2011) 9611-9618. [113] Q. Liu, J. Zhang, Langmuir 29(2013) 3821-3828. [114] Q. He, Q. Li, S. Khene, X. Ren, F.E. López-Suárez, D. Lozano-Castelló, A. Bueno-López, G. Wu, J. Phys. Chem. C 117(2013) 8697-8707. [115] Y. Jiang, Y. Lu, X. Lv, D. Han, Q. Zhang, L. Niu, W. Chen, ACS Catal. 3(2013) 1263-1271. [116] R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang, C. Wang, V.V. Viswanathan, S. Park, I.A. Aksay, Y. Lin, J. Am. Chem. Soc. 133(2011) 2541-2547. [117] B. Seger, P.V. Kamat, J. Phys. Chem. C 113(2009) 7990-7995. [118] D. Perivoliotis, N. Tagmatarchis, Carbon 118(2017) 493-510. [119] M. Kiani, J. Zhang, Y. Luo, C. Jiang, J. Fan, G. Wang, J. Chen, R. Wang, J. Energy Chem. 27(2018) 1124-1139. [120] S. Wang, D. Yu, L. Dai, D.W. Chang, J.-B. Baek, ACS Nano 5(2011) 6202-6209. [121] J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, M. Ye, Chem. Mater. 21(2009) 3514-3520. [122] B.P. Vinayan, R. Nagar, N. Rajalakshmi, S. Ramaprabhu, Adv. Funct. Mater. 22(2012) 3519-3526. [123] Z. Liu, H. Nie, Z. Yang, J. Zhang, Z. Jin, Y. Lu, Z. Xiao, S. Huang, Nanoscale 5(2013) 3283-3288. [124] H. Li, W. Kang, L. Wang, Q. Yue, S. Xu, H. Wang, J. Liu, Carbon 54(2013) 249-257. [125] J. Xu, G. Dong, C. Jin, M. Huang, L. Guan, ChemSusChem 6(2013) 493-499. [126] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 323(2009) 760-764. [127] Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I.A. Aksay, Y. Lin, J. Mater. Chem. 20(2010) 7491-7496. [128] C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Adv. Mater. 25(2013) 4932-4937. [129] Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, J. Am. Chem. Soc. 134(2012) 9082-9085. [130] S. Wang, N. Omidvar, E. Marx, H. Xin, ACS Comb. Sci. 20(2018) 567-572. [131] Y. Zhang, H. Liu, H. Wu, Z. Sun, L. Qian, Mater. Des. 96(2016) 323-328. [132] S.-S. Li, J.-J. Lv, L.-N. Teng, A.-J. Wang, J.-R. Chen, J.-J. Feng, ACS Appl. Mater. Interfaces 6(2014) 10549-10555. [133] S. Bai, C. Wang, W. Jiang, N. Du, J. Li, J. Du, R. Long, Z. Li, Y. Xiong, Nano Res. 8(2015) 2789-2799. [134] S. Guo, S. Sun, J. Am. Chem. Soc. 134(2012) 2492-2495. [135] C.V. Rao, A.L.M. Reddy, Y. Ishikawa, P.M. Ajayan, Carbon 49(2011) 931-936. [136] Z.-R. Liu, B.-L. Wang, Z. Lei, J.-P. Yang, X.-A. Li, New Carbon Mater. 27(2012) 250-257. [137] W.-K. Suh, P. Ganesan, B. Son, H. Kim, S. Shanmugam, Int. J. Hydrog. Energy 41(2016) 12983-12994. [138] Y. Zheng, S. Zhao, S. Liu, H. Yin, Y.-Y. Chen, J. Bao, M. Han, Z. Dai, ACS Appl. Mater. Interfaces 7(2015) 5347-5357. [139] J.-J. Lv, S.-S. Li, A.-J. Wang, L.-P. Mei, J.-J. Feng, J.-R. Chen, Z. Chen, J. Power Sources 269(2014) 104-110. [140] J.-J. Lv, S.-S. Li, A.-J. Wang, L.-P. Mei, J.-R. Chen, J.-J. Feng, Electrochim. Acta 136(2014) 521-528. [141] M. Liu, Y. Lu, W. Chen, Adv. Funct. Mater. 23(2013) 1289-1296. [142] H. Yin, H. Tang, D. Wang, Y. Gao, Z. Tang, ACS Nano 6(2012) 8288-8297. [143] M. Govindhan, A. Chen, J. Power Sources 274(2015) 928-936. [144] S.S. Kim, Y.R. Kim, T.D. Chung, B.H. Sohn, Adv. Funct. Mater. 24(2014) 2764-2771. [145] R. Zhang, W. Chen, J. Mater. Chem. A 1(2013) 11457-11464. [146] S. Guo, S. Zhang, L. Wu, S. Sun, Angew. Chem. 124(2012) 11940-11943. [147] M. Wang, J. Huang, M. Wang, D. Zhang, W. Zhang, W. Li, J. Chen, Electrochem. Commun. 34(2013) 299-303. [148] X.-Y. Yan, X.-L. Tong, Y.-F. Zhang, X.-D. Han, Y.-Y. Wang, G.-Q. Jin, Y. Qin, X.-Y. Guo, Chem. Commun. 48(2012) 1892-1894. [149] M. Yun, M.S. Ahmed, S. Jeon, J. Power Sources 293(2015) 380-387. [150] F.-B. Wang, J. Wang, L. Shao, Y. Zhao, X.-H. Xia, Electrochem. Commun. 38(2014) 82-85. [151] L. Xin, F. Yang, S. Rasouli, Y. Qiu, Z.-F. Li, A. Uzunoglu, C.-J. Sun, Y. Liu, P. Ferreira, W. Li, ACS Catal. 6(2016) 2642-2653. [152] H. Yin, S. Liu, C. Zhang, J. Bao, Y. Zheng, M. Han, Z. Dai, ACS Appl. Mater. Interfaces 6(2014) 2086-2094. [153] K.-W. Nam, J. Song, K.-H. Oh, M.-J. Choo, H. Park, J.-K. Park, J.W. Choi, Carbon 50(2012) 3739-3747. [154] S. Xu, P. Wu, J. Mater. Chem. A 2(2014) 13682-13690. [155] Q. Zhang, Q. Ren, Y. Miao, J. Yuan, K. Wang, F. Li, D. Han, L. Niu, Talanta 89(2012) 391-395. [156] J. Ma, A. Habrioux, Y. Luo, G. Ramos-Sanchez, L. Calvillo, G. Granozzi, P.B. Balbuena, N. Alonso-Vante, J. Mater. Chem. A 3(2015) 11891-11904. [157] K. Jukk, N. Kongi, P. Rauwel, L. Matisen, K. Tammeveski, Electrocatalysis 7(2016) 428-440. [158] K. Jukk, N. Kongi, L. Matisen, T. Kallio, K. Kontturi, K. Tammeveski, Electrochim. Acta 137(2014) 206-212. [159] K. Parvez, S. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng, K. Müllen, ACS Nano 6(2012) 9541-9550. [160] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 10(2011) 780. [161] M. Chen, J. Liu, W. Zhou, J. Lin, Z. Shen, Sci. Rep. 5(2015) 10389. [162] S. Dou, L. Tao, J. Huo, S. Wang, L. Dai, Energy Environ. Sci. 9(2016) 1320-1326. [163] K. Zhao, W. Gu, L. Zhao, C. Zhang, W. Peng, Y. Xian, Electrochim. Acta 169(2015) 142-149. [164] A. Marinkas, F. Arena, J. Mitzel, G.M. Prinz, A. Heinzel, V. Peinecke, H. Natter, Carbon 58(2013) 139-150. [165] S. Woo, J. Lee, S.-K. Park, H. Kim, T.D. Chung, Y. Piao, J. Power Sources 222(2013) 261-266. [166] Y.-C. Yong, X.-C. Dong, M.B. Chan-Park, H. Song, P. Chen, ACS Nano 6(2012) 2394-2400. [167] S.M. Choi, M.H. Seo, H.J. Kim, W.B. Kim, Carbon 49(2011) 904-909. [168] Y. Lu, Y. Jiang, H. Wu, W. Chen, J. Phys. Chem. C 117(2013) 2926-2938. [169] S. Guo, S. Dong, E. Wang, ACS Nano 4(2009) 547-555. [170] L. Zhao, Z.-B. Wang, J.-L. Li, J.-J. Zhang, X.-L. Sui, L.-M. Zhang, Electrochim. Acta 189(2016) 175-183. [171] L. Zhao, X.-L. Sui, J.-L. Li, J.-J. Zhang, L.-M. Zhang, Z.-B. Wang, ACS Appl. Mater. Interfaces 8(2016) 16026-16034. [172] M. Terrones, P. Ajayan, F. Banhart, X. Blase, D. Carroll, J.-C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, Appl. Phys. A 74(2002) 355-361. [173] W. Wong, W.R.W. Daud, A.B. Mohamad, A.A.H. Kadhum, K.S. Loh, E. Majlan, Int. J. Hydrog. Energy 38(2013) 9370-9386. [174] L. Zhao, X.-L. Sui, J.-L. Li, J.-J. Zhang, L.-M. Zhang, Z.-B. Wang, Catal. Commun. 86(2016) 46-50. [175] C. Venkateswara Rao, C.R. Cabrera, Y. Ishikawa, J. Phys. Chem. C 115(2011) 21963-21970. [176] L. Gao, W. Yue, S. Tao, L. Fan, Langmuir 29(2013) 957-964. [177] L.-S. Zhang, X.-Q. Liang, W.-G. Song, Z.-Y. Wu, Phys. Chem. Chem. Phys. 12(2010) 12055-12059. [178] Y. Li, L. Tang, J. Li, Electrochem. Commun. 11(2009) 846-849. [179] Y. Li, W. Gao, L. Ci, C. Wang, P.M. Ajayan, Carbon 48(2010) 1124-1130. [180] J.-D. Qiu, G.-C. Wang, R.-P. Liang, X.-H. Xia, H.-W. Yu, J. Phys. Chem. C 115(2011) 15639-15645. [181] H. Qiu, X. Dong, B. Sana, T. Peng, D. Paramelle, P. Chen, S. Lim, ACS Appl. Mater. Interfaces 5(2013) 782-787. [182] T. Maiyalagan, X. Dong, P. Chen, X. Wang, J. Mater. Chem. 22(2012) 5286-5290. [183] X.-W. Liu, J.-J. Mao, P.-D. Liu, X.-W. Wei, Carbon 49(2011) 477-483. [184] P. Kundu, C. Nethravathi, P.A. Deshpande, M. Rajamathi, G. Madras, N. Ravishankar, Chem. Mater. 23(2011) 2772-2780. [185] E. Yoo, T. Okada, T. Akita, M. Kohyama, I. Honma, J. Nakamura, J. Power Sources 196(2011) 110-115. [186] E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Nano Lett. 9(2009) 2255-2259. [187] L. Zhao, X.-L. Sui, J.-Z. Li, J.-J. Zhang, L.-M. Zhang, G.-S. Huang, Z.-B. Wang, Appl. Catal. B 231(2018) 224-233. [188] H. Ji, M. Li, Y. Wang, F. Gao, Electrochem. Commun. 24(2012) 17-20. [189] X. Yang, Q. Yang, J. Xu, C.-S. Lee, J. Mater. Chem. 22(2012) 8057-8062. [190] Y. Lu, Y. Jiang, W. Chen, Nanoscale 6(2014) 3309-3315. [191] S. Zhang, Y. Shao, H.-G. Liao, J. Liu, I.A. Aksay, G. Yin, Y. Lin, Chem. Mater. 23(2011) 1079-1081. [192] Y. Hu, H. Zhang, P. Wu, H. Zhang, B. Zhou, C. Cai, Phys. Chem. Chem. Phys. 13(2011) 4083-4094. [193] G. Yang, Y. Li, R.K. Rana, J.-J. Zhu, J. Mater. Chem. A 1(2013) 1754-1762. [194] Y.-S. Wang, S.-Y. Yang, S.-M. Li, H.-W. Tien, S.-T. Hsiao, W.-H. Liao, C.-H. Liu, K.-H. Chang, C.-C.M. Ma, C.-C. Hu, Electrochim. Acta 87(2013) 261-269. [195] H. Li, X. Zhang, H. Pang, C. Huang, J. Chen, J. Solid State Electrochem. 14(2010) 2267-2274. [196] Z. Yan, M. Wang, B. Huang, R. Liu, J. Zhao, Int. J. Electrochem. Sci. 8(2013) 149-158. [197] B. Luo, S. Xu, X. Yan, Q. Xue, J. Electrochem. Soc. 160(2013) F262-F268. [198] B. Luo, S. Xu, X. Yan, Q. Xue, Electrochem. Commun. 23(2012) 72-75. [199] Y. Hu, P. Wu, Y. Yin, H. Zhang, C. Cai, Appl. Catal. B 111(2012) 208-217. [200] Y. Hu, P. Wu, H. Zhang, C. Cai, Electrochim. Acta 85(2012) 314-321. [201] Z. Ji, G. Zhu, X. Shen, H. Zhou, C. Wu, M. Wang, New J. Chem. 36(2012) 1774-1780. [202] S. Anandan, A. Manivel, M. Ashokkumar, Fuel Cells 12(2012) 956-962. [203] F. Han, X. Wang, J. Lian, Y. Wang, Carbon 50(2012) 5498-5504. [204] L. Feng, G. Gao, P. Huang, X. Wang, C. Zhang, J. Zhang, S. Guo, D. Cui, Nanoscale Res. Lett. 6(2011) 551. [205] C. Hu, H. Cheng, Y. Zhao, Y. Hu, Y. Liu, L. Dai, L. Qu, Adv. Mater. 24(2012) 5493-5498. [206] X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, J. Am. Chem. Soc. 133(2011) 3693-3695. [207] J. Yang, C. Tian, L. Wang, H. Fu, J. Mater. Chem. 21(2011) 3384-3390. [208] Y. Zhao, L. Zhan, J. Tian, S. Nie, Z. Ning, Electrochim. Acta 56(2011) 1967-1972. [209] S. Bong, S. Uhm, Y.-R. Kim, J. Lee, H. Kim, Electrocatalysis 1(2010) 139-143. [210] Y. Jiang, Y. Lu, F. Li, T. Wu, L. Niu, W. Chen, Electrochem. Commun. 19(2012) 21-24. [211] R. Awasthi, R. Singh, Carbon 51(2013) 282-289. [212] R. Awasthi, R. Singh, Int. J. Hydrog. Energy 37(2012) 2103-2110. [213] R. Awasthi, R.N. Singh, Catal. Sci. Technol. 2(2012) 2428-2432. [214] M.H. Seo, S.M. Choi, J.K. Seo, S.H. Noh, W.B. Kim, B. Han, Appl. Catal. B 129(2013) 163-171. [215] Y.H. Lee, S. Noh, J.-H. Lee, S.-H. Chun, S.W. Cha, I. Chang, Int. J. Hydrog. Energy 42(2017) 27350-27353. [216] Y. Sim, J. Kwak, S.-Y. Kim, Y. Jo, S. Kim, S.Y. Kim, J.H. Kim, C.-S. Lee, J.H. Jo, S.-Y. Kwon, J. Mater. Chem. A (2018). [217] B.K. Kakati, A. Ghosh, A. Verma, Int. J. Hydrog. Energy 38(2013) 9362-9369. [218] X. Jiang, L.T. Drzal, J. Power Sources 218(2012) 297-306. [219] Y.-S. Ye, M.-Y. Cheng, X.-L. Xie, J. Rick, Y.-J. Huang, F.-C. Chang, B.-J. Hwang, J. Power Sources 239(2013) 424-432. [220] L. García-Cruz, C. Casado-Coterillo, Á. Irabien, V. Montiel, J. Iniesta, C 2(2016) 10. [221] S. Zhang, D. Li, J. Kang, G. Ma, Y. Liu, J. Appl. Polym. Sci. 135(2018) 46443. [222] Z. Zakaria, S.K. Kamarudin, S. Timmiati, M. Masdar, J. Appl. Polym. Sci. 136(2019) 46928. [223] H.R. Jang, M. Vinothkannan, A.R. Kim, D.J. Yoo, Bull. Korean Chem. Soc. 39(2018) 715-721. |
[1] | Ju Fu, Wenbin Kang, Xiaodong Guo, Hao Wen, Tianbiao Zeng, Ruoxin Yuan,chuhong Zhang. 3D hierarchically porous NiO/Graphene hybrid paper anode for long-life and high rate cycling flexible Li-ion batteries[J]. 能源化学(英文版), 2020, 47(8): 172-179. |
[2] | Shijie Zhang, Peng Zhang, Ruohan Hou,bin Li, Yongshang Zhang, Kangli Liu, Xilai Zhang, Guosheng Shao. In situ sulfur-doped graphene nanofiber network as efficient metal-free electrocatalyst for polysulfides redox reactions in lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 47(8): 281-290. |
[3] | Hanyan Xu, Hao Chen, Haiwen Lai, Zheng Li, Xiaozhong Dong, Shengying Cai, Xingyuan Chu, Chao Gao. Capacitive charge storage enables an ultrahigh cathode capacity in aluminum-graphene battery[J]. 能源化学(英文版), 2020, 45(6): 40-44. |
[4] | Ruibai Cang, Ke Ye, Kai Zhu, Jun Yan, Jinling Yin, Kui Cheng, Guiling Wang, Dianxue Cao. Organic 3D interconnected graphene aerogel as cathode materials for high-performance aqueous zinc ion battery[J]. 能源化学(英文版), 2020, 45(6): 52-58. |
[5] | Dian Jiao, Ziang Ma, Jisi Li, Yajing Han, Jing Mao, Tao Ling, Shizhang Qiao. Test factors affecting the performance of zinc-air battery[J]. 能源化学(英文版), 2020, 44(5): 1-7. |
[6] | Tianshuai Wang, Jiewen Xiao, Xiyu Cao, Yanchen Fan, Qianfan Zhang. Interface effect on promoting reversible conversion for Na2Se in the metal selenide as sodium ion batteries[J]. 能源化学(英文版), 2020, 44(5): 8-12. |
[7] | Yixing Shen, Yuhang Li, Guangxing Yang, Qiao Zhang, Hong Liang, Feng Peng. Lignin derived multi-doped (N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells[J]. 能源化学(英文版), 2020, 44(5): 106-114. |
[8] | Daxiong Wu, Caiyun Wang, Mingguang Wu, Yunfeng Chao, Pengbin He, Jianmin Ma. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage[J]. 能源化学(英文版), 2020, 43(4): 24-32. |
[9] | Ruoyi Deng, Zhangxun Xia, Ruili Sun, Suli Wang, Gongquan Sun. Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells[J]. 能源化学(英文版), 2020, 43(4): 33-39. |
[10] | Yingqi Xu, Weifeng Zhang, Yaguang Li, Pengfei Lu, Zhong-Shuai Wu. A general bimetal-ion adsorption strategy to prepare nickel single atom catalysts anchored on graphene for efficient oxygen evolution reaction[J]. 能源化学(英文版), 2020, 43(4): 52-57. |
[11] | Yanhong Feng, Suhua Chen, Jue Wang, Bingan Lu. Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor[J]. 能源化学(英文版), 2020, 43(4): 129-138. |
[12] | Chao Wang, Yinxiang Zeng, Xiang Xiao, Shijia Wu, Guobin Zhong, Kaiqi Xu, Zengfu Wei, Wei Su, Xihong Lu. γ -MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery[J]. 能源化学(英文版), 2020, 43(4): 182-187. |
[13] | Kimal Chandula Wasalathilake, Henan Li, Li Xu, Cheng Yan. Recent advances in graphene based materials as anode materials in sodium-ion batteries[J]. 能源化学(英文版), 2020, 42(3): 91-107. |
[14] | Ming Lu, Bingsen Zhang, Wei Zhang, Weitao Zheng. Breaking the lithium storage limit via independent bilayer units within 2D layer materials[J]. 能源化学(英文版), 2020, 41(2): 1-2. |
[15] | Qingying Zhao, Huanqiao Li, Xiaoming Zhang, Shansheng Yu, Suli Wang, Gongquan Sun. Platinum in-situ catalytic oleylamine combustion removal process for carbon supported platinum nanoparticles[J]. 能源化学(英文版), 2020, 41(2): 120-125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||