能源化学(英文版) ›› 2020, Vol. 49 ›› Issue (10): 96-123.DOI: 10.1016/j.jechem.2020.01.023
Azeem Mustafaa,b, Bachirou Guene Lougoua,b,c, Yong Shuaia,b, Zhijiang Wangc, Heping Tana,b
收稿日期:
2019-12-05
修回日期:
2020-01-09
出版日期:
2020-10-15
发布日期:
2020-12-18
通讯作者:
Bachirou Guene Lougou, Yong Shuai
基金资助:
Azeem Mustafaa,b, Bachirou Guene Lougoua,b,c, Yong Shuaia,b, Zhijiang Wangc, Heping Tana,b
Received:
2019-12-05
Revised:
2020-01-09
Online:
2020-10-15
Published:
2020-12-18
Contact:
Bachirou Guene Lougou, Yong Shuai
Supported by:
摘要: The continuous consumption of fossil fuels causes two important impediments including emission of large concentrations of CO2 resulting in global warming and alarming utilization of energy assets.The conversion of greenhouse gas CO2 into solar fuels can be an expedient accomplishment for the solution of both problems,all together.CO2 reutilization into valuable fuels and chemicals is a great challenge of the current century.Owing to limitations in traditional approaches,there have been developed many novel technologies such as photochemical,biochemical,electrochemical,plasma-chemical and solar thermochemical.They are currently being used for CO2 capture,sequestration,and utilization to transform CO2 into valuable products such as syngas,methane,methanol,formic acid,as well as fossil fuel consumption reduction.This review summarizes different traditional and novel thermal technologies used in CO2 conversion with detailed information about their working principle,types,currently adopted methods,developments,conversion rates,products formed,catalysts and operating conditions.Moreover,a comparison of these novel technologies in terms of distinctive key features such as conversion rate,yield,use of earth metals,renewable energy,investment,and operating cost has been provided in order to have a useful review for future research direction.
Azeem Mustafa, Bachirou Guene Lougou, Yong Shuai, Zhijiang Wang, Heping Tan. Current technology development for CO2 utilization into solar fuels and chemicals: A review[J]. 能源化学(英文版), 2020, 49(10): 96-123.
Azeem Mustafa, Bachirou Guene Lougou, Yong Shuai, Zhijiang Wang, Heping Tan. Current technology development for CO2 utilization into solar fuels and chemicals: A review[J]. Journal of Energy Chemistry, 2020, 49(10): 96-123.
[1] H.Balat,E.Kırtay,Int.J.Hydrogen Energy 35(14)(2010)7416-7426. [2] S.C.Roy,O.K.Varghese,M.Paulose,C.A.Grimes,ACS Nano 4(3)(2010)1259-1278. [3] S.Das,W.W.Daud,RSC Adv.4(40)(2014)20856-20893. [4] L.Jaeglé,L.Steinberger,R.V.Martin,K.Chance,Faraday Discuss 130(2005)407-423. [5] W.J.Ong,M.M.Gui,S.-P.Chai,A.R.Mohamed,RSC Adv.3(14)(2013)4505-4509. [6] J.L.Sawin,F.Sverrisson,K.Seyboth,R.Adib,H.E.Murdock,C.Lins,A.Brown,S.E.Di Domenico,D.Kielmanowicz,L.E.Williamson,R.Jawahar,Renewables 2016:Global Status Report,2016.https://inis.iaea.org/search/search.aspx?orig_q=RN:47082519. [7] L.Kong,Z.Jiang,T.Xiao,L.Lu,M.O.Jones,P.P.Edwards,Chem.Commun.47(19)(2011)5512-5514. [8] M.Aresta,A.Dibenedetto,A.Angelini,Chem.Rev.114(3)(2013)1709-1742. [9] U.Bossel,Proc.IEEE 94(10)(2006)1826-1837. [10] A.Goeppert,M.Czaun,J.-P.Jones,G.S.Prakash,G.A.Olah,Chem.Soc.Rev.43(23)(2014)7995-8048. [11] G.A.Olah,A.Goeppert,G.S.Prakash,J.Org.Chem.74(2)(2008)487-498. [12] W.Wang,S.Wang,X.Ma,J.Gong,Chem.Soc.Rev.40(7)(2011)3703-3727. [13] R.K.Pachauri,M.R.Allen,V.R.Barros,J.Broome,W.Cramer,R.Christ,J.A.Church,L.Clarke,Q.Dahe,P.Dasgupta,Climate change 2014:synthesis report,in:Contribution of Working Groups I,II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,IPCC,2014. [14] D.Töbelmann,T.Wendler,J.Clean.Prod.(2019)118787. [15] S.Adams,C.Nsiah,Sci.Total Environ.693(2019)133288. [16] S.Hernández,M.A.Farkhondehfal,F.Sastre,M.Makkee,G.Saracco,N.Russo,Green Chem.19(10)(2017)2326-2346. [17] J.Albo,M.Alvarez-Guerra,P.Castaño,A.Irabien,Green Chem.17(4)(2015)2304-2324. [18] M.K.Lam,K.T.Lee,Int.J.Greenh.Gas Con.14(2013)169-176. [19] Z.H.Lee,S.Sethupathi,K.T.Lee,S.Bhatia,A.R.Mohamed,Renew.Sust.Energ.Rev.28(2013)71-81. [20] Y.Wang,Q.Liu,J.Sun,J.Lei,Y.Ju,H.Jin,Energy Convers.Manage 133(2017)118-126. [21] D.J.Darensbourg,S.J.Wilson,Green Chem.14(10)(2012)2665-2671. [22] G.Fiorani,W.Guo,A.W.Kleij,Green Chem.17(3)(2015)1375-1389. [23] M.North,R.Pasquale,C.Young,Green Chem.12(9)(2010)1514-1539. [24] M.Aresta,A.Dibenedetto,J.Brazi.Chem.Soc.25(12)(2014)2215-2228. [25] M.E.Boot-Handford,J.C.Abanades,E.J.Anthony,M.J.Blunt,S.Brandani,N.Mac Dowell,J.R.Fernández,M.-C.Ferrari,R.Gross,J.P.Hallett,Energy Env.Sci.7(1)(2014)130-189. [26] A.Goeppert,M.Czaun,G.S.Prakash,G.A.Olah,Energy Env.Sci.5(7)(2012)7833-7853. [27] P.Markewitz,W.Kuckshinrichs,W.Leitner,J.Linssen,P.Zapp,R.Bongartz,A.Schreiber,T.E.Müller,Energy Env.Sci.5(6)(2012)7281-7305. [28] J.A.Martens,A.Bogaerts,N.De Kimpe,P.A.Jacobs,G.B.Marin,K.Rabaey,M.Saeys,S.Verhelst,Chem Sus Chem.10(6)(2017)1039-1055. [29] M.Mikkelsen,M.Jørgensen,F.C.Krebs,Energy Env.Sci.3(1)(2010)43-81. [30] E.A.Quadrelli,G.Centi,J.L.Duplan,S.Perathoner,Chem.Sus.Chem.4(9)(2011)1194-1215. [31] M.Aresta,A.Dibenedetto,A.Angelini,Physical and Eng.Sci.371(1996)(2013)20120111. [32] B.Metz,O.Davidson,H.de Coninck,M.Loos,L.Meyer,Carbon Dioxide Capture and Storage:IPCC Special Report,Cambridge University Press,Cambridge,UK,2005. [33] F.A.Rahman,M.M.A.Aziz,R.Saidur,W.A.W.A.Bakar,M.Hainin,R.Putrajaya,N.A.Hassan,Renew.Sust.Energ.Rev.71(2017)112-126. [34] J.Mack,B.Endemann,Energy Policy 38(2)(2010)735-743. [35] S.Bouzalakos,M.Mercedes,Developments and Innovation in Carbon Dioxide(CO2)Capture and Storage Technology 1(2010)1-24,doi:10.1533/9781845699574.1. [36] J.H.Han,Y.C.Ahn,J.U.Lee,I.B.Lee,Korean J.Chem.Eng.29(8)(2012)975-984. [37] G.A.Olah,A.Goeppert,G.K.S.Prakash,J.Org.Chem.74(2)(2009)487-498. [38] A.A.Olajire,Energy 35(6)(2010)2610-2628. [39] H.Yang,Z.Xu,M.Fan,R.Gupta,R.B.Slimane,A.E.Bland,I.Wright,J.Environ.sci.20(1)(2008)14-27. [40] H.Herzog,D.Golomb,Encyclopedia Energy 1(6562)(2004)277-287. [41] K.H.Kaggerud,O.Bolland,T.Gundersen,App.Therm.Eng.26(13)(2006)1345-1352. [42] K.Damen,M.van Troost,A.Faaij,W.Turkenburg,Prog.Energy Combust.Sci.32(2)(2006)215-246. [43] D.Y.Leung,G.Caramanna,M.M.Maroto-Valer,Renew.Sust.Energ.Rev.39(2014)426-443. [44] M.Kanniche,R.Gros-Bonnivard,P.Jaud,J.Valle-Marcos,J.-M.Amann,C.Bouallou,App.Therm.Eng.30(1)(2010)53-62. [45] A.S.Bhown,B.C.Freeman,Env.Sci.Tech.45(20)(2011)8624-8632. [46] H.Chalmers,J.Gibbins,Proceed.Instit.Mech.Eng.,Part C J.Mech.Eng.Sci.224(3)(2010)505-518. [47] M.Anwar,A.Fayyaz,N.Sohail,M.Khokhar,M.Baqar,W.Khan,K.Rasool,M.Rehan,A.Nizami,J.Env.Manage.226(2018)131-144. [48] W.M.Haynes,CRC Handbook of Chemistry and Physics,CRC Press,2014. [49] Z.Jiang,T.Xiao,V.á.Kuznetsov,P.á.Edwards,Philos.Trans.R.Soc.A Math.Phy.Eng.Sci.368(1923)(2010)3343-3364. [50] H.J.Freund,M.W.Roberts,Surf.Sci.Rep.25(8)(1996)225-273. [51] R.Snoeckx,A.Bogaerts,Chem.Soc.Rev.46(19)(2017)5805-5863. [52] N.Itoh,M.A.Sanchez,W.C.Xu,K.Haraya,M.Hongo,J.Membrane Sci.77(2-3)(1993)245-253. [53] Y.Nigara,B.Cales,Bull.Chem.Soc.Jpn.59(6)(1986)1997-2002. [54] Y.Fan,J.Y.Ren,W.Onstot,J.Pasale,T.T.Tsotsis,F.N.Egolfopoulos,Ind.Eng.Chem.Res.42(12)(2003)2618-2626. [55] H.Jun,M.Careem,A.Arof,Renew.Sust.Energy Rev.22(2013)148-167. [56] F.Fisher,H.Tropsch,Brennst.-Chem.9(1928). [57] W.Lewis,E.Gilliland,W.A.Reed,Ind.Eng.Chem.41(6)(1949)1227-1237. [58] R.Reitmeier,K.Atwood,H.Bennett,H.Baugh,Ind.Eng.Chem.40(4)(1948)620-626. [59] N.J.Rostrup,Google Patents,1974. [60] A.J.Brungs,A.P.York,J.B.Claridge,C.Márquez-Alvarez,M.L.Green,Catal.Lett.70(3-4)(2000)117-122. [61] S.Wang,G.Lu,G.J.Millar,Energy Fuels 10(4)(1996)896-904. [62] M.Alvarez-Galvan,N.Mota,M.Ojeda,S.Rojas,R.Navarro,J.Fierro,Catal.Today 171(1)(2011)15-23. [63] M.Gharibi,F.T.Zangeneh,F.Yaripour,S.Sahebdelfar,Appl.Catal.A General 443(2012)8-26. [64] V.Havran,M.P.Dudukovic,C.S.Lo,Ind.Eng.Chem.Res.50(12)(2011)7089-7100. [65] J.H.Lunsford,Catal.Today 63(2-4)(2000)165-174. [66] J.Ross,A.Van Keulen,M.Hegarty,K.Seshan,Catal.Today 30(1-3)(1996)193-199. [67] B.Vora,J.Q.Chen,A.Bozzano,B.Glover,P.Barger,Catal.Today 141(1-2)(2009)77-83. [68] J.Zaman,Fuel Process.Tech.58(2-3)(1999)61-81. [69] S.G.Jadhav,P.D.Vaidya,B.M.Bhanage,J.B.Joshi,Chem.Eng.Res.Des.92(11)(2014)2557-2567. [70] L.Torrente-Murciano,D.Mattia,M.Jones,P.Plucinski,J.CO2 Util.6(2014)34-39. [71] G.J.C.Prieto,Chem.Sus.Chem.10(6)(2017)1056-1070. [72] J.E.L.Russell,R.Chianelli,G.Alexander Mills,Catal.Today 22(2)(1994)361-396. [73] A.N.Pour,J.Karimi,M.Housaindokht,M.J.R.K.Hashemian,Reac.Kinet.Mech.Cat.122(1)(2017)605-624. [74] L.S.G.Yunnan,Z.Zhenqing,T.Hengcong,S.Zhenyu,J.Phy.Chem.34(8)(2018)858-872. [75] S.N.Riduan,Y.Zhang,Dalton Trans.39(14)(2010)3347-3357. [76] J.Tollefson,Nature 462(7276)(2009)966-967. [77] J.N.Park,E.W.McFarland,J.Catal.266(1)(2009)92-97. [78] N.Shehzad,M.Tahir,K.Johari,T.Murugesan,M.Hussain,J.CO2 Util.26(2018)98-122. [79] M.Tahir,N.S.Amin,Renew.Sust.Energy Rev.25(2013)560-579. [80] A.Pichon,Energy Mater(2010). [81] W.Tu,Y.Zhou,Z.Zou,Adv.Mater.26(27)(2014)4607-4626. [82] M.Tahir,N.S.Amin,Energy Convers.Manage.76(2013)194-214. [83] H.Abdullah,M.M.R.Khan,H.R.Ong,Z.Yaakob,J.CO2 Util.22(2017)15-32. [84] Y.Zheng,L.Lin,B.Wang,X.Wang,Angew.Chem.Int.54(44)(2015)12868-12884. [85] P.Niu,Y.Yang,C.Y.Jimmy,G.Liu,H.M.Cheng,Chem.Commun.50(74)(2014)10837-10840. [86] Y.Wang,X.Bai,H.Qin,F.Wang,Y.Li,X.Li,S.Kang,Y.Zuo,L.Cui,ACS Appl.Mater.Interfaces 8(27)(2016)17212-17219. [87] Z.Li,Y.Zhou,J.Zhang,W.Tu,Q.Liu,T.Yu,Z.Zou,Cryst.Growth Des.12(3)(2012)1476-1481. [88] J.Sun,J.Zhang,M.Zhang,M.Antonietti,X.Fu,X.Wang,Nat.Commun.3(2012)1139. [89] P.Yaashikaa,P.S.Kumar,S.J.Varjani,A.Saravanan,J.CO2 Util.33(2019)131-147. [90] M.A.Scibioh,B.Viswanathan,Carbon Dioxide to Chemicals and Fuels,Elsevier,2018. [91] N.Sutin,C.Creutz,E.Fujita,Comment.Inorg.Chem.19(2)(1997)67-92. [92] Q.Xiang,B.Cheng,J.Yu,Angew.Chem.Int.Ed.54(39)(2015)11350-11366. [93] V.P.Indrakanti,J.D.Kubicki,H.H.Schobert,Energy Env.Sci.2(7)(2009)745-758. [94] M.A.Méndez,P.Voyame,H.H.Girault,Angew.Chem.Int.Ed.50(32)(2011)7391-7394. [95] C.W.Machan,S.A.Chabolla,J.Yin,M.K.Gilson,F.A.Tezcan,C.P.Kubiak,J.Am.Chem.Soc.136(41)(2014)14598-14607. [96] V.S.Thoi,N.Kornienko,C.G.Margarit,P.Yang,C.J.Chang,J.Am.Chem.Soc.135(38)(2013)14413-14424. [97] D.Hong,Y.Tsukakoshi,H.Kotani,T.Ishizuka,T.Kojima,J.Am.Chem.Soc.139(19)(2017)6538-6541. [98] H.Ishida,T.Terada,K.Tanaka,T.Tanaka,Inorg.Chem.29(5)(1990)905-911. [99] Y.Tamaki,T.Morimoto,K.Koike,O.Ishitani,Proceed.Nat.Acad.Sci.109(39)(2012)15673-15678. [100] M.D.Sampson,A.D.Nguyen,K.A.Grice,C.E.Moore,A.L.Rheingold,C.P.Kubiak,J.Am.Chem.Soc.136(14)(2014)5460-5471. [101] J.Chauvin,F.Lafolet,S.Chardon-Noblat,A.Deronzier,M.Jakonen,M.Haukka,Chem.Eur.J.17(15)(2011)4313-4322. [102] C.M.Bolinger,N.Story,B.P.Sullivan,T.J.Meyer,Inorg.Chem.27(25)(1988)4582-4587. [103] J.Hawecker,J.-M.Lehn,R.Ziessel,J.Chem.Soc.Chemi.Commun.(9)(1983)536-538. [104] M.N.Collomb-Dunand-Sauthier,A.Deronzier,R.Ziessel,J.Organomet.Chem.444(1-2)(1993)191-198. [105] J.M.Kelly,C.M.O'Connell,J.G.Vos,J.Chem.Soc.,Dalton.Trans.(2)(1986)253-258. [106] R.Ziessel,J.Hawecker,J.M.Lehn,Helvetica Chim.Acta.69(5)(1986)1065-1084. [107] R.O.Reithmeier,S.Meister,B.Rieger,A.Siebel,M.Tschurl,U.Heiz,E.Herdtweck,Dalton.Trans.43(35)(2014)13259-13269. [108] K.Mochizuki,S.Manaka,I.Takeda,T.Kondo,Inorg.Chem.35(18)(1996)5132-5136. [109] A.A.Khan,M.Tahir,J.CO2 Utili.29(2019)205-239. [110] Y.Kuramochi,O.Ishitani,Inorg.Chem.55(11)(2016)5702-5709. [111] C.Costentin,M.Robert,J.-M.Savéant,Chem.Soc.Rev.42(6)(2013)2423-2436. [112] J.M.Savéant,Chem.Rev.108(7)(2008)2348-2378. [113] B.S.Kwak,K.Vignesh,N.K.Park,H.J.Ryu,J.I.Baek,M.J.F.Kang,Fuel 143(2015)570-576. [114] I.A.Shkrob,T.W.Marin,H.He,P.Zapol,J.Phys.Chem.C 116(17)(2012)9450-9460. [115] W.N.Wang,J.Soulis,Y.J.Yang,P.Biswas,Aerosol Air Qua.Res.14(2)(2014)533-549. [116] G.Liu,L.Wang,H.G.Yang,H.-M.Cheng,G.Q.Lu,J.Mater.Chem.20(5)(2010)831-843. [117] A.Bachmeier,F.Armstrong,Curr.Opin.Chem.Biol.25(2015)141-151. [118] J.G.M.Winkelman,O.Voorwinde,M.Ottens,A.Beenackers,L.Janssen,Chem.Eng.Sci.57(19)(2002)4067-4076. [119] I.Ganesh,Mater.Sci.App.2(10)(2011)1407. [120] M.Khalil,J.Gunlazuardi,T.A.Ivandini,A.Umar,Renew.Sust.Energy Rev.113(2019)109246. [121] G.Sahara,O.Ishitani,Inorg.Chem.54(11)(2015)5096-5104. [122] Y.Yamazaki,H.Takeda,O.Ishitani,J.Photoch,Photobio.C 25(2015)106-137. [123] G.Kyriakou,M.B.Boucher,A.D.Jewell,E.A.Lewis,T.J.Lawton,A.E.Baber,H.L.Tierney,M.Flytzani-Stephanopoulos,E.C.H.Sykes,Science 335(6073)(2012)1209-1212. [124] W.Liu,L.Zhang,W.Yan,X.Liu,X.Yang,S.Miao,W.Wang,A.Wang,T.Zhang,Chem.Sci.7(9)(2016)5758-5764. [125] A.Wang,J.Li,T.Zhang,Nat.Rev.Chem.2(6)(2018)65-81. [126] A.Nakada,K.Koike,K.Maeda,O.Ishitani,Green Chem.18(1)(2016)139-143. [127] B.Kumar,M.Llorente,J.Froehlich,T.Dang,A.Sathrum,C.P.Kubiak,Annu.Rev.Phys.Chem.63(2012)541-569. [128] Q.Yi,W.Li,J.Feng,K.Xie,Chem.Soc.Rev.44(15)(2015)5409-5445. [129] J.Shi,Y.Jiang,Z.Jiang,X.Wang,X.Wang,S.Zhang,P.Han,C.Yang,Chem.Soc.Rev.44(17)(2015)5981-6000. [130] T.W.Woolerton,S.Sheard,E.Reisner,E.Pierce,S.W.Ragsdale,F.A.Armstrong,J.Am.Chem.Soc.132(7)(2010)2132-2133. [131] A.Parkin,J.Seravalli,K.A.Vincent,S.W.Ragsdale,F.A.Armstrong,J.Am.Chem.Soc.129(34)(2007)10328-10329. [132] C.K.Savile,J.J.Lalonde,Curr.Opin.Biotech.22(6)(2011)818-823. [133] I.M.Machado,S.Atsumi,J.Biotech.162(1)(2012)50-56. [134] E.Jacob-Lopes,C.H.G.Scoparo,L.M.C.F.Lacerda,T.T.Franco,Chem.Eng.Process.Process Intensif.48(1)(2009)306-310. [135] A.Scragg,A.Illman,A.Carden,S.Shales,Biomass Bioenerg.23(1)(2002)67-73. [136] M.G.de Morais,J.A.V.Costa,Energy Convers.Manage.48(7)(2007)2169-2173. [137] H.J.Ryu,K.K.Oh,Y.S.Kim,J.Ind.Eng.Che.15(4)(2009)471-475. [138] S.Y.Chiu,M.T.Tsai,C.Y.Kao,S.C.Ong,C.S.Lin,Eng.Life Sci.9(3)(2009)254-260. [139] L.Cheng,L.Zhang,H.Chen,C.Gao,Sep.Purif.Tech.50(3)(2006)324-329. [140] L.-H.Fan,Y.-T.Zhang,L.Zhang,H.-L.Chen,J.Membrane Sci.325(1)(2008)336-345. [141] N.Sakai,Y.Sakamoto,N.Kishimoto,M.Chihara,I.Karube,Energy Convers.Manage.36(6-9)(1995)693-696. [142] S.Chae,E.Hwang,H.-S.Shin,Bioresource Tech.97(2)(2006)322-329. [143] H.-F.Jin,B.-R.Lim,K.Lee,J.Environ.Sci.Heal.A 41(12)(2006)2813-2824. [144] M.Negoro,N.Shioji,K.Miyamoto,Y.Micira,App.Biochem.Biotech.28(1)(1991)877. [145] M.G.De Morais,J.A.V.Costa,Biotech.Lett.29(9)(2007)1349-1352. [146] C.Yoo,S.-Y.Jun,J.-Y.Lee,C.-Y.Ahn,H.-M.Oh,Bioresource Tech.101(1)(2010)S71-S74. [147] S.-H.Ho,W.-M.Chen,J.-S.Chang,Bioresource Tech.101(22)(2010)8725-8730. [148] M.G.De Morais,J.A.V.Costa,J.Biotech.129(3)(2007)439-445. [149] A.Melis,Energy Env.Sci.5(2)(2012)5531-5539. [150] A.S.Agarwal,Y.Zhai,D.Hill,N.Sridhar,Chem.Sus.Chem.4(9)(2011)1301-1310. [151] W.Tang,A.A.Peterson,A.S.Varela,Z.P.Jovanov,L.Bech,W.J.Durand,S.Dahl,J.K.Nørskov,I.Chorkendorff,Phy.Chem.Chem.Phy.14(1)(2012)76-81. [152] E.Barton Cole,P.S.Lakkaraju,D.M.Rampulla,A.J.Morris,E.Abelev,A.B.Bocarsly,J.Am.Chem.Soc.132(33)(2010)11539-11551. [153] S.Ma,P.J.Kenis,Curr.Opin.Chem.Eng.2(2)(2013)191-199. [154] A.A.Peterson,F.Abild-Pedersen,F.Studt,J.Rossmeisl,J.K.Nørskov,Energy Env.Sci.3(9)(2010)1311-1315. [155] J.Wu,F.G.Risalvato,F.-S.Ke,P.Pellechia,X.-D.Zhou,J.Electrochem.Soc.159(7)(2012)F353-F359. [156] H.-R.M.Jhong,F.R.Brushett,L.Yin,D.M.Stevenson,P.J.Kenis,J.Electrochem.Soc.159(3)(2012)B292-B298. [157] B.C.Marepally,C.Ampelli,C.Genovese,T.Saboo,S.Perathoner,F.M.Wisser,L.Veyre,J.Canivet,E.A.Quadrelli,G.Centi,Chem.Sus.Chem.10(22)(2017)4442-4446. [158] C.Ampelli,C.Genovese,M.Errahali,G.Gatti,L.Marchese,S.Perathoner,G.Centi,J.App.Electrochem 45(7)(2015)701-713. [159] S.Prince-Richard,M.Whale,N.Djilali,Int.J.Hydrogen Energy 30(11)(2005)1159-1179. [160] S.Kaneco,R.Iwao,K.Iiba,K.Ohta,T.Mizuno,Energy 23(12)(1998)1107-1112. [161] C.Ampelli,C.Genovese,G.Centi,R.Passalacqua,S.Perathoner,Top.Catal.59(8-9)(2016)757-771. [162] F.Urbain,P.Tang,N.M.Carretero,T.Andreu,L.G.Gerling,C.Voz,J.Arbiol,J.R.Morante,Energy Env.Sci.10(10)(2017)2256-2266. [163] Y.Oh,H.Vrubel,S.Guidoux,X.Hu,Chem.Commun.50(29)(2014)3878-3881. [164] R.Chaplin,A.Wragg,J.App.Electrochem.33(12)(2003)1107-1123. [165] M.Azuma,K.Hashimoto,M.Hiramoto,M.Watanabe,T.Sakata,J.Electrochem.Soc.137(6)(1990)1772-1778. [166] B.A.Rosen,A.Salehi-Khojin,M.R.Thorson,W.Zhu,D.T.Whipple,P.J.Kenis,R.I.Masel,Science 334(6056)(2011)643-644. [167] J.Lee,J.Lim,C.-W.Roh,H.S.Whang,H.Lee,J.CO2 Util.31(2019)244-250. [168] T.Hatsukade,K.P.Kuhl,E.R.Cave,D.N.Abram,T.F.Jaramillo,Phy.Chem.Chem.Phy.16(27)(2014)13814-13819. [169] S.Y.Lee,H.Jung,N.-K.Kim,H.-S.Oh,B.K.Min,Y.J.Hwang,J.Am.Chem.Soc.140(28)(2018)8681-8689. [170] E.L.Clark,A.T.Bell,J.Am.Chem.Soc.140(22)(2018)7012-7020. [171] S.Ren,D.Joulié,D.Salvatore,K.Torbensen,M.Wang,M.Robert,C.P.Berlinguette,Science 365(6451)(2019)367-369. [172] C.-T.Dinh,T.Burdyny,M.G.Kibria,A.Seifitokaldani,C.M.Gabardo,F.P.G.de Arquer,A.Kiani,J.P.Edwards,P.De Luna,O.S.Bushuyev,Science 360(6390)(2018)783-787. [173] J.Albo,G.Beobide,P.Castaño,A.Irabien,J.CO2 Util.18(2017)164-172. [174] S.Narayanan,B.Haines,J.Soler,T.Valdez,J.Electrochem.Soc.158(2)(2011)A167-A173. [175] R.Kas,R.Kortlever,H.Yılmaz,M.T.Koper,G.Mul,Chem.Electro.Chem.2(3)(2015)354-358. [176] D.T.Whipple,E.C.Finke,P.J.Kenis,Electrochem.Solid-State Lett.13(9)(2010)109-111. [177] S.Ma,M.Sadakiyo,R.Luo,M.Heima,M.Yamauchi,P.J.Kenis,J.Power Sources 301(2016)219-228. [178] K.Jiang,R.B.Sandberg,A.J.Akey,X.Liu,D.C.Bell,J.K.Nørskov,K.Chan,H.Wang,Nat.Catal.1(2)(2018)111. [179] F.Pan,B.Li,W.Deng,Z.Du,Y.Gang,G.Wang,Y.Li,App.Catal.B Env.252(2019)240-249. [180] S.D.Ebbesen,R.Knibbe,M.Mogensen,J.Electrochem.Soc.159(8)(2012)F482-F489. [181] A.Fridman,Plasma Chemistry,Cambridge University Press,2008. [182] M.U.Khan,Y.Zhao,T.Hui,M.K.Shahzad,H.Cui,D.Zhao,Opt.Express 27(12)(2019)16738-16750. [183] A.Bogaerts,T.Kozák,K.Van Laer,R.Snoeckx,Faraday Discuss 183(2015)217-232. [184] R.Asisov,V.Givotov,E.Krasheninnikov,B.Potapkin,V.Rusanov,A.Fridman,in:Proc.5th Intern.Symp.Plasma Chemistry,1981,p.1981. [185] X.Tao,M.Bai,X.Li,H.Long,S.Shang,Y.Yin,X.Dai,Prog.Energy Combust.Sci.37(2)(2011)113-124. [186] H.Sekiguchi,Y.Mori,Thin Solid Films 435(1-2)(2003)44-48. [187] A.Fridman,A.Chirokov,A.Gutsol,J.Phy.D App.Phys.38(2)(2005). [188] M.Moreau,N.Orange,M.Feuilloley,Biotech.Advan.26(6)(2008)610-617. [189] Z.Bo,J.Yan,X.Li,Y.Chi,K.Cen,Int.J.Hydrogen Energy 33(20)(2008)5545-5553. [190] U.Kogelschatz,Plasma Chem.Plasma P 23(1)(2003)1-46. [191] U.Kogelschatz,B.Eliasson,W.Egli,Pure App.Chem.71(10)(1999)1819-1828. [192] N.A.S.A.Istadi,Fuel 85(5-6)(2006)577-592,doi:10.1016/j.fuel.2005.09.002. [193] X.Duten,D.Packan,L.Yu,C.Laux,C.Kruger,IEEE Trans.Plasma Sci.30(1)(2002)178-179. [194] A.-A.Mohamed,R.Block,K.H.Schoenbach,IEEE Trans.Plasma Sci.30(1)(2002)182-183. [195] X.Li,X.Tao,Y.Yin,IEEE Trans.Plasma Sci.37(6)(2009)759-763. [196] B.Eliasson,U.Kogelschatz,B.Xue,L.-M.Zhou,Ind.Eng.Chem.Res.37(8)(1998)3350-3357. [197] E.Jwa,S.Lee,H.Lee,Y.Mok,Fuel Process.Technol.108(2013)89-93. [198] M.Nizio,A.Albarazi,S.Cavadias,J.Amouroux,M.E.Galvez,P.Da Costa,Int.J.Hydrogen Energy 41(27)(2016)11584-11592. [199] Y.Zeng,X.Tu,IEEE Trans.Plasma Sci.44(4)(2015)405-411. [200] C.De Bie,J.van Dijk,A.Bogaerts,J.Phys.Chem.C.120(44)(2016)25210-25224. [201] L.Maya,J.Vacuum Sci.Tech.A Vacuum Surf.Films 18(1)(2000)285-287. [202] M.Kano,G.Satoh,S.Iizuka,Plasma Chem.Plasma Process 32(2)(2012)177-185. [203] F.Javier,S.H.Moreno,A.I.Stankiewicz,G.D.Stefanidis,Int.J.Hydrogen Energy 42(18)(2017)12943-12955. [204] G.Chen,N.Britun,T.Godfroid,V.Georgieva,R.Snyders,M.-P.Delplancke-Ogletree,J.Phys.D App.Phy.50(8)(2017)084001. [205] N.Hayashi,T.Yamakawa,S.Baba,Vacuum 80(11-12)(2006)1299-1304. [206] J.-Q.Zhang,Y.-J.Yang,J.-S.Zhang,Q.Liu,Acta Chim.Sinica-Chinese Ed.60(11)(2002)1973-1980. [207] M.-w.Li,G.-h.Xu,Y.-l.Tian,L.Chen,H.-f.Fu,J.Phy.Chem.A.108(10)(2004)1687-1693. [208] Y.Yang,Ind.Eng.Chem.Res.41(24)(2002)5918-5926. [209] A.Indarto,J.-W.Choi,H.Lee,H.K.Song,Energy 31(14)(2006)2986-2995. [210] H.K.Song,J.-W.Choi,S.H.Yue,H.Lee,B.-K.Na,Catal.Today 89(1-2)(2004)27-33. [211] Q.Wang,B.-H.Yan,Y.Jin,Y.Cheng,Plasma Chem.Plasma Process 29(3)(2009)217-228. [212] H.Long,S.Shang,X.Tao,Y.Yin,X.Dai,Int.J.Hydrogen Energy 33(20)(2008)5510-5515. [213] X.Tao,M.Bai,Q.Wu,Z.Huang,Y.Yin,X.Dai,Int.J.Hydrogen Energy 34(23)(2009)9373-9378. [214] T.Lan,W.Ran,H.Long,Y.WANG,Y.YIN,Nat.Gas Ind.27(5)(2007)129. [215] X.Tao,F.Qi,Y.Yin,X.Dai,Int.J.Hydrogen Energy 33(4)(2008)1262-1265. [216] B.G.Lougou,J.Hong,Y.Shuai,X.Huang,Y.Yuan,H.Tan,Sol.Energy 148(2017)117-127. [217] B.Guene Lougou,Y.Shuai,G.Chaffa,C.Ahouannou,R.Pan,H.Zhang,H.Tan,Energy Technology 7(3)(2019)1800588. [218] M.Romero,A.J.E.Steinfeld,J.Energy Environ.Science 5(11)(2012)9234-9245. [219] B.G.Lougou,Y.Shuai,R.Pan,G.Chaffa,H.Tan,Int.J.Heat Mass Transf.127(2018)61-74,doi:10.1016/j.ijheatmasstransfer.2018.06.153. [220] B.G.Lougou,Y.Shuai,H.Xing,Y.Yuan,H.Tan,Int.J.Heat Mass Transf.111(2017)410-418. [221] C.Agrafiotis,H.von Storch,M.Roeb,C.Sattler,Renew.Sust.Energy Rev.29(2014)656-682. [222] M.Böhmer,U.Langnickel,M.Sanchez,Sol.Energy Mater.24(1-4)(1991)441-448. [223] I.Spiewak,C.E.Tyner,U.Langnickel,Applications of Solar Reforming Technology,Sandia National Labs.,Albuquerque,NMUnited States,1993. [224] N.Gokon,S.Nakamura,T.Hatamachi,T.Kodama,Energy 68(2014)773-782. [225] A.Giaconia,G.Monteleone,B.Morico,A.Salladini,K.Shabtai,M.Sheintuch,D.Boettge,J.Adler,V.Palma,S.Voutetakis,Energy Procedia.69(2015)1750-1758. [226] J.K.Dahl,A.W.Weimer,A.Lewandowski,C.Bingham,F.Bruetsch,A.Steinfeld,Ind.Eng.Chem.Res.43(18)(2004)5489-5495. [227] M.Epstein,I.Spiewak,A.Segal,I.Levy,D.Lieberman,M.Meri,V.Lerner,in:Eighth Int.Symposium on Sol.Therm.,Concentrating Tech,1996. [228] A.Wörner,R.Tamme,Catal.Today 46(2-3)(1998)165-174. [229] S.Möller,SolarPACES Annual Report.2007)(2008)4.5-4.6. [230] J.Petrasch,B.Schrader,P.Wyss,A.Steinfeld,J.Heat Transfer 130(3)(2008)032602. [231] J.Petrasch,A.Steinfeld,Chem.Eng.Sci.62(16)(2007)4214-4228. [232] T.Kodama,N.Gokon,K.Matsubara,K.Yoshida,S.Koikari,Y.Nagase,K.Nakamura,Energy Procedia 49(2014)1990-1998. [233] J.Hinkley,Solar Fuels Research at CSIRO(2013)http://www.iitj.ac.in/CSP/material/20dec/fuels.pdf. [234] J.F.Muir,R.E.Hogan Jr,R.D.Skocypec,R.Buck,Sol.Energy 52(6)(1994)467-477. [235] R.Buck,J.F.Muir,R.E.Hogan,Sol.Energy Mater.24(1-4)(1991)449-463. [236] A.Berman,R.K.Karn,M.Epstein,Energy Fuels 20(2)(2006)455-462. [237] R.Rubin,J.Karni,J.Sol.Energy Eng.133(2)(2011)021008. [238] C.Sugarmen,A.Rotstein,U.Fisher,J.Sinai,J.Sol.Energy Eng.126(3)(2004)867-871. [239] S.Möller,D.Kaucic,C.Sattler,J.Sol.Energy Eng.128(1)(2006)16-23. [240] R.Tamme,R.Buck,M.Epstein,U.Fisher,C.Sugarmen,J.Sol.Energy Eng.123(2)(2001)160-163. [241] R.Diver,J.Fish,R.Levitan,M.Levy,E.Meirovitch,H.Rosin,S.Paripatyadar,J.Richardson,Sol.Energy 48(1)(1992)21-30. [242] S.Paripatyadar,J.Richardson,Sol.Energy 41(5)(1988)475-485. [243] J.R.Scheffe,A.Steinfeld,Mater.Today 17(7)(2014)341-348. [244] J.R.Scheffe,D.Weibel,A.J.E.Steinfeld,Fuels 27(8)(2013)4250-4257. [245] A.H.McDaniel,E.C.Miller,D.Arifin,A.Ambrosini,E.N.Coker,R.O'Hayre,W.C.Chueh,J.Tong,Energy Env.Sci.6(8)(2013)2424-2428. [246] A.Evdou,V.Zaspalis,L.Nalbandian,Fuel 89(6)(2010)1265-1273. [247] D.Sastre,A.J.Carrillo,D.P.Serrano,P.Pizarro,J.Coronado,Top.Catal.60(15-16)(2017)1108-1118. [248] A.Demont,S.Abanades,RSC.Adv.4(97)(2014)54885-54891. [249] A.H.McDaniel,A.Ambrosini,E.N.Coker,J.E.Miller,W.C.Chueh,R.O'Hayre,J.Tong,Energy Procedia 49(2014)2009-2018. [250] A.Demont,S.p.Abanades,E.Beche,J.Phys.Chem.C 118(24)(2014)12682-12692. [251] M.Ezbiri,M.Takacs,B.Stolz,J.Lungthok,A.Steinfeld,R.Michalsky,J.Mater.Chem.A 5(29)(2017)15105-15115. [252] C.L.Muhich,S.Blaser,M.C.Hoes,A.Steinfeld,Int.J.Hydrogen Energy 43(41)(2018)18814-18831. [253] H.Kong,Y.Hao,H.Jin,App.Energy 228(2018)301-308. [254] Y.Lu,L.Zhu,C.Agrafiotis,J.Vieten,M.Roeb,C.Sattler,Prog.Energy Combust.C.Sci.75(2019)100785. [255] S.Abanades,G.Flamant,Sol.Energy 80(12)(2006)1611-1623. [256] W.C.Chueh,S.M.Haile,Chem.Sus.Chem.2(8)(2009)735-739. [257] W.C.Chueh,C.Falter,M.Abbott,D.Scipio,P.Furler,S.M.Haile,A.Steinfeld,Science 330(6012)(2010)1797-1801. [258] R.Panlener,R.Blumenthal,J.E.Garnier,J.Phy.Chem.Solids 36(11)(1975)1213-1222. [259] O.T.Sørensen,J.Solid State Chem.18(3)(1976)217-233. [260] P.Furler,J.R.Scheffe,A.Steinfeld,Energy Env.Sci.5(3)(2012)6098-6103. [261] M.A.Panhans,R.N.Blumenthal,Solid State Ion.60(4)(1993)279-298. [262] A.S.Jonathan,R.Scheffe,Mater.Today 17(7)(2014)341-348. [263] E.N.Coker,J.A.Ohlhausen,A.Ambrosini,J.E.Miller,J.Mater.Chem.22(14)(2012)6726-6732. [264] W.C.Chueh,S.M.Haile,Philos.T.R.Soc.A.368(1923)(2010)3269-3294. [265] G.J.VanHandel,R.N.Blumenthal,J.Electrochem.Soc.121(9)(1974)1198-1202. [266] J.E.Miller,M.D.Allendorf,R.B.Diver,L.R.Evans,N.P.Siegel,J.N.Stuecker,J.Mater.Sci.43(14)(2008)4714-4728. [267] H.Aoki,H.Kaneko,N.Hasegawa,H.Ishihara,A.Suzuki,Y.Tamaura,Solid State Ion 172(1-4)(2004)113-116. [268] Y.Tamaura,Y.Ueda,J.Matsunami,N.Hasegawa,M.Nezuka,T.Sano,M.Tsuji,Sol.Energy 65(1)(1999)55-57. [269] C.Agrafiotis,A.Zygogianni,C.Pagkoura,M.Kostoglou,A.G.Konstandopoulos,AIChE J.59(4)(2013)1213-1225. [270] M.Inoue,N.Hasegawa,R.Uehara,N.Gokon,H.Kaneko,Y.Tamaura,Sol.Energy.76(1-3)(2004)309-315. [271] Y.Tamaura,M.Kojima,T.Sano,Y.Ueda,N.Hasegawa,M.Tsuji,Int.J.Hydrogen Energy 23(12)(1998)1185-1191. [272] G.L.Bachirou,Y.Shuai,J.Zhang,X.Huang,Y.Yuan,H.Tan,Int.J.Hydrogen Energy 41(44)(2016)19936-19946. [273] C.Agrafiotis,M.Roeb,C.Sattler,Renew.Sust.Energy Rev.42(2015)254-285. [274] M.D.Allendorf,R.B.Diver,N.P.Siegel,J.E.Miller,Energy and Fuels 22(6)(2008)4115-4124. [275] C.C.Agrafiotis,C.Pagkoura,A.Zygogianni,G.Karagiannakis,M.Kostoglou,A.G.Konstandopoulos,Int.J.Hydrogen Energy 37(11)(2012)8964-8980. [276] M.Kostoglou,S.Lorentzou,A.G.Konstandopoulos,Int.J.Hydrogen Energy 39(12)(2014)6317-6327. [277] M.Neises,M.Roeb,M.Schmücker,C.Sattler,R.Pitz-Paal,Int.Energy Res.34(8)(2010)651-661. [278] K.S.Go,S.R.Son,S.Kim,Int.J.Hydrogen Energy 33(21)(2008)5986-5995. |
[1] | Huanhuan Jia, Linfeng Peng, Zhuoran Zhang, Tao An, Jia Xie. Na3.8[Sn0.67Si0.33]0.8Sb0.2S4:A quinary sodium fast ionic conductor for all-solid-state sodium battery[J]. 能源化学(英文版), 2020, 48(9): 102-106. |
[2] | Naveed Altaf, Shuyu Liang, Liang Huang, Qiang Wang. Electro-derived Cu-Cu2O nanocluster from LDH for stable and selective C2 hydrocarbons production from CO2 electrochemical reduction[J]. 能源化学(英文版), 2020, 48(9): 169-180. |
[3] | Xuelei Li, Huilan Guan, Zhijie Ma, Ming Liang, dawei Song, Hongzhou Zhang, Xixi Shi, chunliang Li, Lifang Jiao, Lianqi Zhang. In/ex-situ Raman spectra combined with EIS for observing interface reactions between Ni-rich layered oxide cathode and sulfide electrolyte[J]. 能源化学(英文版), 2020, 48(9): 195-202. |
[4] | Dong Chen, Jingwei Shen, Xue Li, Shun-an Cao, Ting Li, Wei Luo, fei Xu. Ni0.85Se hexagonal nanosheets as an advanced conversion cathode for Mg secondary batteries[J]. 能源化学(英文版), 2020, 48(9): 226-232. |
[5] | Jia Liu, Hong Yuan. The evolution and failure mechanism of lithium metal anode under practical working conditions[J]. 能源化学(英文版), 2020, 48(9): 424-425. |
[6] | Jia Liu,dan Li, Ying Wang, Siqi Zhang, Ziye Kang, Haiming Xie, Liqun Sun. MoO2 nanoparticles/carbon textiles cathode for high performance flexible Li-O2 battery[J]. 能源化学(英文版), 2020, 47(8): 66-71. |
[7] | Jianing Liang, Yun Lu, Jie Wang, Xupo Liu, Ke Chen, Weihao Ji, Ye Zhu,deli Wang. Well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron sphere with fast electrochemical kinetics for cathodic lithium storage[J]. 能源化学(英文版), 2020, 47(8): 188-195. |
[8] | Ying Zheng, Ting Deng, Wei Zhang, Weitao Zheng. Optimizing the micropore-to-mesopore ratio of carbon-fiber-cloth creates record-high specific capacitance[J]. 能源化学(英文版), 2020, 47(8): 210-216. |
[9] | Yamin Zhang, Lina Chen, Chongyang Hao, Xiaowen Zheng, Yixuan Guo, Long Chen, Kangrong Lai, Yinghe Zhang, Lijie Ci. Potassium pre-inserted K1.04Mn8O16 as cathode materials for aqueous Li-ion and Na-ion hybrid capacitors[J]. 能源化学(英文版), 2020, 46(7): 53-61. |
[10] | Zhikai Li, Tao Yang, Shaojun Yuan, Yongxiang Yin, Edwin J. Devid, Qiang Huang, Daniel Auerbach, Aart W. Kleyn. Boudouard reaction driven by thermal plasma for efficient CO2 conversion and energy storage[J]. 能源化学(英文版), 2020, 45(6): 128-134. |
[11] | Qinghuiqiang Xiao, Gaoran Li, Minjie Li, Ruiping Liu, Haibo Li, Pengfei Ren, Yue Dong, Ming Feng, Zhongwei Chen. Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 44(5): 61-67. |
[12] | Yunfeng Tian, Yun Liu, Wenjie Wang, Lichao Jia, Jian Pu, Bo Chi, Jian Li. High performance and stability of double perovskite-type oxide NdBa0.5Ca0.5Co1.5Fe0.5O5+δ as an oxygen electrode for reversible solid oxide electrochemical cell[J]. 能源化学(英文版), 2020, 43(4): 108-115. |
[13] | Jiarong Yang, Wei Weng, Wei Xiao. Electrochemical synthesis of ammonia in molten salts[J]. 能源化学(英文版), 2020, 43(4): 195-207. |
[14] | Peiyuan Guan, Lu Zhou, Zhenlu Yu, Yuandong Sun, Yunjian Liu, Feixiang Wu, Yifeng Jiang, Dewei Chu. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J]. 能源化学(英文版), 2020, 43(4): 220-235. |
[15] | Sathiyaraj Kandhasamy, Geir Martin Haarberg, Signe Kjelstrup, Asbjørn Solheim. Gas electrodes with nickel based current collectors for molten carbonate electrolyte thermo-electrochemical cells[J]. 能源化学(英文版), 2020, 41(2): 34-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||