能源化学(英文版) ›› 2020, Vol. 48 ›› Issue (9): 398-423.DOI: 10.1016/j.jechem.2020.02.013
Jing-Qi Chia, Min Yanga, Yong-Ming Chaia, Zhi Yangb, Lei Wangc, bin Donga
收稿日期:
2019-12-27
修回日期:
2020-02-05
出版日期:
2020-09-15
发布日期:
2020-12-18
通讯作者:
Zhi Yang, Bin Dong
基金资助:
Jing-Qi Chia, Min Yanga, Yong-Ming Chaia, Zhi Yangb, Lei Wangc, bin Donga
Received:
2019-12-27
Revised:
2020-02-05
Online:
2020-09-15
Published:
2020-12-18
Contact:
Zhi Yang, Bin Dong
Supported by:
摘要: The green production of hydrogen from electrocatalytic water splitting is an important base and promising direction for the future of the large-scale application of hydrogen energy.The key of green hydrogen evolution depends on the development of low-cost and highly active electrocatalysts.Molybdenum carbides (MoxC).as a typical of earth-abundant transition-metal material.have accumulated great attention due to their low cost.earth abundance.electrical conductivity.similar d-band state to Pt.and regulated morphology/electronic structures.In this paper.recent researches focusing on MoxC for efficient HER in a wide pH range are summarized from respects of modulation of unique morphology.electronic structure.and electrode interface step by step.Briefly.modulation of morphology influence the apparent activity of catalyst.modulation of electronic structure of active sites by heteroatom doping and designing heterointerface boost intrinsic HER kinetics.and modulation of electrode interface via hybridization of MoxC structures with carbon materials can ensure the fast electron transfer and boost the activity.Besides the above methods discussed.perspective and challenges of designing MoxC as the substitute of Pt-based electrocatalyst for practical hydrogen generation in a wide pH range are pointed out.
Jing-Qi Chi, Min Yang, Yong-Ming Chai, Zhi Yang, Lei Wang, bin Dong. Design and modulation principles of molybdenum carbide-based materials for green hydrogen evolution[J]. 能源化学(英文版), 2020, 48(9): 398-423.
Jing-Qi Chi, Min Yang, Yong-Ming Chai, Zhi Yang, Lei Wang, bin Dong. Design and modulation principles of molybdenum carbide-based materials for green hydrogen evolution[J]. Journal of Energy Chemistry, 2020, 48(9): 398-423.
[1] Y.Yu,Y.Shi,B.Zhang,Acc.Chem.Res.51(7) (2018) 1711-1721.<br>[2] Z.J.Xu,Nano-Micro Lett.10(1) (2018) 8.<br>[3] C.X.Zhao,B.Q.Li,Q.Zhang,J.Energy Chem.34(2019) 10-11.<br>[4] B.Wang,C.Tang,H.F.Wang,X.Chen,R.Cao,Q.Zhang,J.Energy Chem.38(2019) 8-14.<br>[5] D.Chen,M.Qiao,Y.R.Liu,L.Hao,D.Liu,C.L.Dong,Y.Li,S.Wang,Angew.Chem.Int.Ed.57(28) (2018) 8691-8696.<br>[6] C.Tang,Q.Zhang,Adv.Mater.29(13) (2017) 1604103.<br>[7] B.Wang,C.Tang,H.F.Wang,X.Chen,R.Cao,Q.Zhang,Adv.Mater.31(4) (2019) 1805658.<br>[8] Y.Chen,G.Yu,W.Chen,Y.Liu,G.D.Li,P.Zhu,Q.Tao,Q.Li,X.Shen J.Liu,H.Li,X.Huang,D.Wang,T.Asefa,X.Zou,J.Am.Chem.Soc.139(36) (2017) 12370-12373.<br>[9] B.Q.Li,C.X.Zhao,S.Chen,J.N.Liu,X.Chen,L.Song,Q.Zhang,Adv.Mater.31(19) (2019) 1900592.<br>[10] J.Wei,M.Zhou,A.Long,Y.Xue,H.Liao,C.Wei,Z.J.Xu,Nano-Micro Lett.10(2018) 75.<br>[11] Y.Huang,Y.Wang,C.Tang,J.Wang,Q.Zhang,Y.Wang,J.Zhang,Adv.Mater.31(13) (2019) 1803800.<br>[12] Z.Zhai,C.Li,L.Zhang,H.C.Wu,L.Zhang,N.Tang,W.Wang,J.Gong,J.Mater.Chem.A 6(21) (2018) 9833-9838.<br>[13] F.Yang,Y.Zhao,Y.Du,Y.Chen,G.Cheng,S.Chen,W.Luo,Adv.Energy Mater.8(2018) 1703489.<br>[14] B.Q.Li,S.Y.Zhang,X.Chen,C.Y.Chen,Z.J.Xia,Q.Zhang,Adv.Funct.Mater.29(29) (2019) 1901301.<br>[15] T.Liu,P.Li,N.Yao,G.Cheng,S.Chen,W.Luo,Y.Yin,Angew.Chem.Int.Ed.58(14) (2019) 4679-4684.<br>[16] J.Duan,S.Chen,B.A.Chambers,G.G.Andersson,S.Z.Qiao,Adv.Mater.27(28) (2015) 4234-4241.<br>[17] C.F.Du,Q.Liang,R.Dangol,J.Zhao,H.Ren,S.Madhavi,Q.Yan,Nano Micro Lett.10(2018) 67.<br>[18] H.Vrubel,X.Hu,Angew.Chem.Int.Ed.51(51) (2012) 12703-12706.<br>[19] Y.Zhao,K.Kamiya,K.Hashimoto,S.Nakanishi,J.Am.Chem.Soc.137(1) (2014) 110-113.<br>[20] W.F.Chen,S.Iyer,S.Iyer,K.Sasaki,C.H.Wang,Y.Zhu,J.T.Muckerman,E.Fujita,Energy Environ.Sci.6(6) (2013) 1818-1826.<br>[21] C.Tang,A.Sun,Y.Xu,Z.Wu,D.Wang,J.Power Sources 296(2015) 18-22.<br>[22] J.Chen,W.Zhou,J.Jia,B.Wan,J.Lu,T.Xiong,Q.Tong,S.Chen,Int.J.Hydrogen Energy 42(10) (2017) 6448-6454.<br>[23] H.H.Hwu,J.G.Chen,Chem.Rev.105(1) (2005) 185-212.<br>[24] Y.Zhang,C.Li,Z.Chen,Y.Ni,F.Kong,A.Kong,Y.Shan,Catal.Lett.147(1) (2017) 253-260.<br>[25] C.Tang,H.F.Wang,Q.Zhang,Acc.Chem.Res.51(4) (2018) 881-889.<br>[26] J.Jia,W.Zhou,Z.Wei,T.Xiong,G.Li,L.Zhao,X.Zhang,H.Liu,J.Zhou,S.Chen,Nano Energy 41(2017) 749-757.<br>[27] P.Xiao,X.Ge,H.Wang,Z.Liu,A.Fisher,X.Wang,Adv.Funct.Mater.25(10) (2015) 1520-1526.<br>[28] Y.Y.Chen,Y.Zhang,W.J.Jiang,X.Zhang,Z.Dai,L.J.Wan,J.S.Hu,ACS Nano 10(9) (2016) 8851-8860.<br>[29] X.Xu,F.Nosheen,X.Wang,Chem.Mater.28(17) (2016) 6313-6320.<br>[30] Z.Zhao,F.Qin,S.Kasiraju,L.Xie,M.K.Alam,S.Chen,D.Wang,Z.Ren,Z.Wang,L.C.Grabow,ACS Catal.7(10) (2017) 7312-7318.<br>[31] H.Wang,C.Sun,Y.Cao,J.Zhu,Y.Chen,J.Guo,J.Zhao,Y.Sun,G.Zou,Carbon NY 114(2017) 628-634.<br>[32] Y.Liu,G.Yu,G.D.Li,Y.Sun,T.Asefa,W.Chen,X.Zou,Angew.Chem.Int.Ed.54(37) (2015) 10752-10757.<br>[33] J.S.Li,Y.Wang,C.H.Liu,S.L.Li,Y.G.Wang,L.Z.Dong,Z.H.Dai,Y.F.Li,Y.Q.Lan,Nat.Commun.7(2016) 11204.<br>[34] Z.Zhong,N.Liu,H.Chen,X.Fu,L.Yang,Q.Gao,Mater.Lett.176(2016) 101-105.<br>[35] Z.Y.Wu,B.C.Hu,P.Wu,H.W.Liang,Z.L.Yu,Y.Lin,Y.R.Zheng,Z.Li,S.H.Yu,NPG Asia Mater.8(7) (2016) e288.<br>[36] H.Zhang,Z.Ma,G.Liu,L.Shi,J.Tang,H.Pang,K.Wu,T.Takei,J.Zhang,Y.Yamauchi,NPG Asia Mater.8(7) (2016) e293.<br>[37] A.B.Laursen,S.Kegnæs,S.Dahl,I.Chorkendorff,Energy Environ.Sci.5(2) (2012) 5577-5591.<br>[38] X.Shang,B.Dong,Y.-.M.Chai,C.-.G.Liu,Science Bulletin 63(13) (2018) 853-876.<br>[39] R.Parsons,J.M.Bockris,Trans.Faraday Soc.47(1951) 914-928.<br>[40] Z.Pu,I.S.Amiinu,Z.Kou,W.Li,S.Mu,Angew.Chem.,Int.Ed.56(38) (2017) 11559-11564.<br>[41] Y.Li,H.Wang,L.Xie,Y.Liang,G.Hong,H.Dai,J.Am.Chem.Soc.133(19) (2011) 7296-7299.<br>[42] J.M.Bockris,E.Potter,J.Electrochem.Soc.99(4) (1952) 169-186.<br>[43] J.Q.Chi,X.J.Zeng,X.Shang,B.Dong,Y.M.Chai,C.G.Liu,M.Marin,Y.Yin,Adv.Funct.Mater.(2019) 1901790.<br>[44] J.K.Nørskov,T.Bligaard,A.Logadottir,J.Kitchin,J.G.Chen,S.Pandelov,U.Stimming,J.Electrochem.Soc.152(3) (2005) J23-J26.<br>[45] C.G.Morales-Guio,L.A.Stern,X.Hu,Chem.Soc.Rev.43(18) (2014) 6555-6569.<br>[46] Z.W.Seh,J.Kibsgaard,C.F.Dickens,I.Chorkendorff,J.K.Nørskov,T.F.Jaramillo,Science 355(6321) (2017) eaad4998.<br>[47] Y.Zhao,L.P.Wang,M.T.Sougrati,Z.Feng,Y.Leconte,A.Fisher,M.Srinivasan,Z.Xu,Adv.Energy Mater.7(9) (2017) 1601424.<br>[48] H.M.Wang,X.H.Wang,M.H.Zhang,X.Y.Du,W.Li,K.Y.Tao,Chem.Mater.19(7) (2007) 1801-1807.<br>[49] A.Celzard,J.Mareche,G.Furdin,V.Fierro,C.Sayag,J.Pielaszek,Green Chem.7(11) (2005) 784-792.<br>[50] C.Bouchy,C.Pham-Huu,B.Heinrich,C.Chaumont,M.J.Ledoux,J.Catal.190(1) (2000) 92-103.<br>[51] E.A.Blekkan,C.Pham-Huu,M.J.Ledoux,J.Guille,Ind.Eng.Chem.Res.33(7) (1994) 1657-1664.<br>[52] A.M.Alexander,J.S.Hargreaves,Chem.Soc.Rev.39(11) (2010) 4388-4401.<br>[53] L.Zhong,F.Yu,Y.An,Y.Zhao,Y.Sun,Z.Li,T.Lin,Y.Lin,X.Qi,Y.Dai,Nature 538(7623) (2016) 84.<br>[54] J.R.Kitchin,J.K.Nørskov,M.A.Barteau,J.G.Chen,Catal.Today 105(1) (2005) 66-73.<br>[55] S.T.Hunt,M.Milina,A.C.Alba-Rubio,C.H.Hendon,J.A.Dumesic,Y.Román-Leshkov,Science 352(6288) (2016) 974-978.<br>[56] C.Wan,Y.N.Regmi,B.M.Leonard,Angew.Chem.Int.Ed.53(25) (2014) 6407-6410.<br>[57] C.Wan,N.A.Knight,B.M.Leonard,Chem.Commun.49(88) (2013) 10409-10411.<br>[58] P.Liu,J.A.Rodriguez,Catal.Lett.91(3-4) (2003) 247-252.<br>[59] J.R.Kitchin,N.A.Khan,M.A.Barteau,J.G.Chen,B.Yakshinskiy,T.E.Madey,Surf.Sci.544(2-3) (2003) 295-308.<br>[60] N.A.Khan,M.B.Zellner,J.G.Chen,Surf.Sci.556(2-3) (2004) 87-100.<br>[61] J.K.Nørskov,T.Bligaard,A.Logadottir,S.Bahn,L.B.Hansen,M.Bollinger,H.Bengaard,B.Hammer,Z.Sljivancanin,M.Mavrikakis,J.Catal.209(2) (2002) 275-278.<br>[62] J.R.dos Santos Politi,F.Viñes,J.A.Rodriguez,F.Illas,Phys.Chem.Chem.Phys.15(30) (2013) 12617-12625.<br>[63] S.Wirth,F.Harnisch,M.Weinmann,U.Schröder,Appl.Catal.B-Environ.126(2012) 225-230.<br>[64] J.S.Lee,M.H.Yeom,K.Y.Park,I.-.S.Nam,J.S.Chung,Y.G.Kim,S.H.Moon,J.Catal.128(1) (1991) 126-136.<br>[65] A.Hanif,T.Xiao,A.P.York,J.Sloan,M.L.Green,Chem.Mater.14(3) (2002) 1009-1015.<br>[66] T.C.Xiao,A.P.York,H.Al-Megren,C.V.Williams,H.T.Wang,M.L.Green,J.Catal.202(1) (2001) 100-109.<br>[67] A.Zhang,A.Zhu,B.Chen,S.Zhang,C.Au,C.Shi,Catal.Commun.12(9) (2011) 803-807.<br>[68] S.Zhang,C.Shi,B.Chen,Y.Zhang,Y.Zhu,J.Qiu,C.Au,Catal.Today 258(2015) 676-683.<br>[69] Q.Gao,C.Zhang,S.Xie,W.Hua,Y.Zhang,N.Ren,H.Xu,Y.Tang,Chem.Mater.21(23) (2009) 5560-5562.<br>[70] Y.Ma,G.Guan,X.Hao,J.Cao,A.Abudula,Renew.Sust.Energ.Rev.75(2017) 1101-1129.<br>[71] T.Hyeon,M.Fang,K.S.Suslick,J.Am.Chem.Soc.118(23) (1996) 5492-5493.<br>[72] Z.Xia,Y.Shen,J.Shen,Z.Li,J.Alloys Compd.453(1-2) (2008) 185-190.<br>[73] J.Lu,H.Hugosson,O.Eriksson,L.Nordström,U.Jansson,Thin Solid Films 370(1-2) (2000) 203-212.<br>[74] Q.Gao,N.Liu,S.Wang,Y.Tang,Nanoscale 6(23) (2014) 14106-14120.<br>[75] X.Liu,L.Zhang,X.Lan,X.Hu,Electrochim.Acta 274(2018) 23-30.<br>[76] J.Q.Chi,K.L.Yan,W.K.Gao,B.Dong,X.Shang,Y.R.Liu,X.Li,Y.M.Chai,C.G.Liu,J.Alloys Compd.714(2017) 26-34.<br>[77] W.T.Yao,S.H.Yu,Q.S.Wu,Adv.Funct.Mater.17(4) (2007) 623-631.<br>[78] Z.A.Zang,H.B.Yao,Y.X.Zhou,W.T.Yao,S.H.Yu,Chem.Mater.20(14) (2008) 4749-4755.<br>[79] Y.Yu,Y.Shi,B.Zhang,Acc.Chem.Res.51(7) (2018) 1711-1721.<br>[80] C.Giordano,C.Erpen,W.Yao,M.Antonietti,Nano Lett.8(12) (2008) 4659-4663.<br>[81] L.Liao,S.Wang,J.Xiao,X.Bian,Y.Zhang,M.D.Scanlon,X.Hu,Y.Tang,B.Liu,H.H.Girault,Energy Environ.Sci.7(1) (2014) 387-392.<br>[82] Q.Gao,S.Wang,H.Fang,J.Weng,Y.Zhang,J.Mao,Y.Tang,J.Mater.Chem.22(11) (2012) 4709-4715.<br>[83] H.Lin,Z.Shi,S.He,X.Yu,S.Wang,Q.Gao,Y.Tang,Chem.Sci.7(5) (2016) 3399-3405.<br>[84] H.Lin,N.Liu,Z.Shi,Y.Guo,Y.Tang,Q.Gao,Adv.Funct.Mater.26(31) (2016) 5590-5598.<br>[85] J.Q.Chi,W.K.Gao,J.H.Lin,B.Dong,J.F.Qin,Z.Z.Liu,B.Liu,Y.M.Chai,C.G.Liu,J.Catal.360(2018) 9-19.<br>[86] C.Ge,P.Jiang,W.Cui,Z.Pu,Z.Xing,A.M.Asiri,A.Y.Obaid,X.Sun,J.Tian,Electrochim.Acta 134(2014) 182-186.<br>[87] F.Yang,Y.Chen,G.Cheng,S.Chen,W.Luo,ACS Catal.7(6) (2017) 3824-3831.<br>[88] Z.Wu,J.Wang,R.Liu,K.Xia,C.Xuan,J.Guo,W.Lei,D.Wang,Nano Energy 32(2017) 511-519.<br>[89] H.Furukawa,K.E.Cordova,M.O'Keeffe,O.M.Yaghi,Science 341(6149) (2013) 1230444.<br>[90] H.Hu,L.Han,M.Yu,Z.Wang,X.W.D.Lou,Energy Environ.Sci.9(1) (2016) 107-111.<br>[91] B.Y.Xia,Y.Yan,N.Li,H.B.Wu,X.W.D.Lou,X.Wang,Nat.Energy 1(1) (2016) 15006.<br>[92] J.S.Li,Y.J.Tang,C.H.Liu,S.L.Li,R.H.Li,L.Z.Dong,Z.H.Dai,J.C.Bao,Y.Q.Lan,J.Mater.Chem.A 4(4) (2016) 1202-1207.<br>[93] J.Yang,F.Zhang,X.Wang,D.He,G.Wu,Q.Yang,X.Hong,Y.Wu,Y.Li,Angew.Chem.Int.Ed.55(41) (2016) 12854-12858.<br>[94] T.Iida,M.Shetty,K.Murugappan,Z.Wang,K.Ohara,T.Wakihara,Y.Román-Leshkov,ACS Catal.7(12) (2017) 8147-8151.<br>[95] L.F.Pan,Y.H.Li,S.Yang,P.F.Liu,M.Q.Yu,H.G.Yang,Chem.Commun.50(86) (2014) 13135-13137.<br>[96] W.Cui,N.Cheng,Q.Liu,C.Ge,A.M.Asiri,X.Sun,ACS Catal.4(8) (2014) 2658-2661.<br>[97] K.An,X.Xu,X.Liu,ACS Sustainable Chem.Eng.6(1) (2017) 1446-1455.<br>[98] Z.Pu,M.Wang,Z.Kou,I.S.Amiinu,S.Mu,Chem.Commun.52(86) (2016) 12753-12756.<br>[99] S.L.Candelaria,Y.Shao,W.Zhou,X.Li,J.Xiao,J.-.G.Zhang,Y.Wang,J.Liu,J.Li,G.Cao,Nano Energy 1(2) (2012) 195-220.<br>[100] D.S.Su,S.Perathoner,G.Centi,Chem.Rev.113(8) (2013) 5782-5816.<br>[101] C.He,J.Tao,RSC Adv.6(11) (2016) 9240-9246.<br>[102] B.Šljukić,D.M.Santos,M.Vujković,L.Amaral,R.P.Rocha,C.A.Sequeira,J.L.Figueiredo,ChemSusChem 9(10) (2016) 1200-1208.<br>[103] W.-.F.Chen,C.-.H.Wang,K.Sasaki,N.Marinkovic,W.Xu,J.Muckerman,Y.Zhu,R.Adzic,Energy Environ.Sci.6(3) (2013) 943-951.<br>[104] D.H.Youn,S.Han,J.Y.Kim,J.Y.Kim,H.Park,S.H.Choi,J.S.Lee,ACS Nano 8(5) (2014) 5164-5173.<br>[105] F.Yang,K.Sliozberg,H.Antoni,W.Xia,M.Muhler,Electroanalysis 28(10) (2016) 2293-2296.<br>[106] C.He,J.Tao,Chem.Commun.51(39) (2015) 8323-8325.<br>[107] H.Yan,Y.Xie,Y.Jiao,A.Wu,C.Tian,X.Zhang,L.Wang,H.Fu,Adv.Mater.30(2) (2018) 1704156.<br>[108] R.Ma,Y.Zhou,Y.Chen,P.Li,Q.Liu,J.Wang,Angew.Chem.Int.Ed.54(49) (2015) 14723-14727.<br>[109] M.-.S.Balogun,W.Qiu,H.Yang,W.Fan,Y.Huang,P.Fang,G.Li,H.Ji,Y.Tong,Energy Environ.Sci.9(11) (2016) 3411-3416.<br>[110] N.S.Alhajri,D.H.Anjum,K.Takanabe,J.Mater.Chem.A 2(27) (2014) 10548-10556.<br>[111] H.Wei,Q.Xi,X.a.Chen,D.Guo,F.Ding,Z.Yang,S.Wang,J.Li,S.Huang,Adv.Sci.5(3) (2018) 1700733.<br>[112] T.T.Yang,W.A.Saidi,Nanoscale 9(9) (2017) 3252-3260.<br>[113] J.Kibsgaard,Z.Chen,B.N.Reinecke,T.F.Jaramillo,Nat.Mater.11(11) (2012) 963.<br>[114] W.Chen,J.Pei,C.T.He,J.Wan,H.Ren,Y.Wang,J.Dong,K.Wu,W.C.Cheong,J.Mao,Adv.Mater.30(30) (2018) 1800396.<br>[115] Y.Li,H.Zhang,T.Xu,Z.Lu,X.Wu,P.Wan,X.Sun,L.Jiang,Adv.Funct.Mater.25(11) (2015) 1737-1744.<br>[116] Z.Lu,Y.Li,X.Lei,J.Liu,X.Sun,Mater.Horiz.2(3) (2015) 294-298.<br>[117] Q.Zhang,P.Li,D.Zhou,Z.Chang,Y.Kuang,X.Sun,Small 13(41) (2017) 1701648.<br>[118] Y.Wang,Z.Shi,Q.Mo,B.Gao,B.Liu,L.Wang,Y.Zhang,Q.Gao,Y.Tang,ChemElectroChem 4(9) (2017) 2169-2177.<br>[119] P.Xiao,Y.Yan,X.Ge,Z.Liu,J.Y.Wang,X.Wang,Appl.Catal.B-Environ.154(2014) 232-237.<br>[120] F.X.Ma,H.B.Wu,B.Y.Xia,C.Y.Xu,X.W.Lou,Angew.Chem.Int.Ed.54(51) (2015) 15395-15399.<br>[121] S.Jing,L.Zhang,L.Luo,J.Lu,S.Yin,P.K.Shen,P.Tsiakaras,Appl.Catal.B-Environ.224(2018) 533-540.<br>[122] Y.R.Liu,X.Shang,W.K.Gao,B.Dong,X.Li,X.H.Li,J.C.Zhao,Y.M.Chai,Y.Q.Liu,C.G.Liu,J.Mater.Chem.A 5(6) (2017) 2885-2896.<br>[123] M.Naguib,M.Kurtoglu,V.Presser,J.Lu,J.Niu,M.Heon,L.Hultman,Y.Gogotsi,M.W.Barsoum,Adv.Mater.23(37) (2011) 4248-4253.<br>[124] M.Naguib,O.Mashtalir,J.Carle,V.Presser,J.Lu,L.Hultman,Y.Gogotsi,M.W.Barsoum,ACS Nano 6(2) (2012) 1322-1331.<br>[125] J.Halim,M.R.Lukatskaya,K.M.Cook,J.Lu,C.R.Smith,L.Å.Näslund,S.J.May,L.Hultman,Y.Gogotsi,P.Eklund,Chem.Mater.26(7) (2014) 2374-2381.<br>[126] B.Anasori,M.R.Lukatskaya,Y.Gogotsi,Nat.Rev.Mater.2(2) (2017) 16098.<br>[127] G.Gao,A.P.O'Mullane,A.Du,ACS Catal.7(1) (2016) 494-500.<br>[128] M.Naguib,Y.Gogotsi,Acc.Chem.Res.48(1) (2014) 128-135.<br>[129] Z.W.Seh,K.D.Fredrickson,B.Anasori,J.Kibsgaard,A.L.Strickler,M.R.Lukatskaya,Y.Gogotsi,T.F.Jaramillo,A.Vojvodic,ACS Energy Lett.1(3) (2016) 589-594.<br>[130] P.Li,J.Zhu,A.D.Handoko,R.Zhang,H.Wang,D.Legut,X.Wen,Z.Fu,Z.W.Seh,Q.Zhang,J.Mater.Chem.A 6(10) (2018) 4271-4278.<br>[131] J.Zhu,K.Sakaushi,G.Clavel,M.Shalom,M.Antonietti,T.P.Fellinger,J.Am.Chem.Soc.137(16) (2015) 5480-5485.<br>[132] C.Du,H.Huang,Y.Wu,S.Wu,W.Song,Nanoscale 8(36) (2016) 16251-16258.<br>[133] J.Jia,T.Xiong,L.Zhao,F.Wang,H.Liu,R.Hu,J.Zhou,W.Zhou,S.Chen,ACS Nano 11(12) (2017) 12509-12518.<br>[134] J.Wan,J.Wu,X.Gao,T.Li,Z.Hu,H.Yu,L.Huang,Adv.Funct.Mater.27(45) (2017) 1703933.<br>[135] J.W.Long,B.Dunn,D.R.Rolison,H.S.White,Chem.Rev.104(10) (2004) 4463-4492.<br>[136] D.W.Wang,F.Li,M.Liu,G.Q.Lu,H.M.Cheng,Angew.Chem.Int.Ed.47(2) (2008) 373-376.<br>[137] H.Ang,H.Wang,B.Li,Y.Zong,X.Wang,Q.Yan,Small 12(21) (2016) 2859-2865.<br>[138] H.Yu,H.Fan,J.Wang,Y.Zheng,Z.Dai,Y.Lu,J.Kong,X.Wang,Y.J.Kim,Q.Yan,Nanoscale 9(21) (2017) 7260-7267.<br>[139] F.Li,X.Zhao,J.Mahmood,M.S.Okyay,S.M.Jung,I.Ahmad,S.J.Kim,G.F.Han,N.Park,J.B.Baek,ACS Nano 11(7) (2017) 7527-7533.<br>[140] T.Meng,L.Zheng,J.Qin,D.Zhao,M.Cao,J.Mater.Chem.A 5(38) (2017) 20228-20238.<br>[141] R.Michalsky,Y.J.Zhang,A.A.Peterson,ACS Catal.4(5) (2014) 1274-1278.<br>[142] J.Greeley,T.F.Jaramillo,J.Bonde,I.Chorkendorff,J.K.Nørskov,World Sci.(2011) 280-284.<br>[143] H.Ang,H.T.Tan,Z.M.Luo,Y.Zhang,Y.Y.Guo,G.Guo,H.Zhang,Q.Yan,Small 11(47) (2015) 6278-6284.<br>[144] Z.Shi,K.Nie,Z.J.Shao,B.Gao,H.Lin,H.Zhang,B.Liu,Y.Wang,Y.Zhang,X.Sun,Energy Environ.Sci.10(5) (2017) 1262-1271.<br>[145] S.Wang,J.Wang,M.Zhu,X.Bao,B.Xiao,D.Su,H.Li,Y.Wang,J.Am.Chem.Soc.137(50) (2015) 15753-15759.<br>[146] A.M.Gómez-Marín,E.A.Ticianelli,Appl.Catal.B-Environ.209(2017) 600-610.<br>[147] J.Jiang,Q.Liu,C.Zeng,L.Ai,J.Mater.Chem.A 5(32) (2017) 16929-16935.<br>[148] X.Li,L.Yang,T.Su,X.Wang,C.Sun,Z.Su,J.Mater.Chem.A 5(10) (2017) 5000-5006.<br>[149] F.Yu,Y.Gao,Z.Lang,Y.Ma,L.Yin,J.Du,H.Tan,Y.Wang,Y.Li,Nanoscale 10(13) (2018) 6080-6087.<br>[150] Z.Shi,B.Gao,Q.Mo,Z.J.Shao,K.Nie,B.Liu,H.Zhang,Y.Wang,Y.Zhang,Q.Gao,ChemNanoMat 4(2) (2018) 194-202.<br>[151] L.Ji,J.Wang,X.Teng,H.Dong,X.He,Z.Chen,ACS Appl.Mater.Interfaces 10(17) (2018) 14632-14640.<br>[152] K.Xiong,L.Li,L.Zhang,W.Ding,L.Peng,Y.Wang,S.Chen,S.Tan,Z.Wei,J.Mater.Chem.A 3(5) (2015) 1863-1867.<br>[153] J.Yin,Q.Fan,Y.Li,F.Cheng,P.Zhou,P.Xi,S.Sun,J.Am.Chem.Soc.138(44) (2016) 14546-14549.<br>[154] J.Xiong,J.Li,J.Shi,X.Zhang,N.-.T.Suen,Z.Liu,Y.Huang,G.Xu,W.Cai,X.Lei,ACS Energy Lett.3(2) (2018) 341-348.<br>[155] K.Zhang,G.Zhang,J.Qu,H.Liu,ACS Appl.Mater.Interfaces 10(3) (2018) 2451-2459.<br>[156] H.Lin,W.Zhang,Z.Shi,M.Che,X.Yu,Y.Tang,Q.Gao,ChemSusChem 10(12) (2017) 2597-2604.<br>[157] K.Zhang,Y.Zhao,S.Zhang,H.Yu,Y.Chen,P.Gao,C.Zhu,J.Mater.Chem.A 2(44) (2014) 18715-18719.<br>[158] C.Tang,W.Wang,A.Sun,C.Qi,D.Zhang,Z.Wu,D.Wang,ACS Catal.5(11) (2015) 6956-6963.<br>[159] J.Q.Chi,X.Shang,S.S.Lu,B.Dong,Z.Z.Liu,K.L.Yan,W.K.Gao,Y.M.Chai,C.G.Liu,Carbon NY 124(2017) 555-564.<br>[160] J.Jeon,Y.Park,S.Choi,J.Lee,S.S.Lim,B.H.Lee,Y.J.Song,J.H.Cho,Y.H.Jang,S.Lee,ACS Nano 12(1) (2018) 338-346.<br>[161] X.Li,J.Zhang,R.Wang,H.Huang,C.Xie,Z.Li,J.Li,C.Niu,Nano Lett.15(8) (2015) 5268-5272.<br>[162] Y.Huang,J.Ge,J.Hu,J.Zhang,J.Hao,Y.Wei,Adv.Energy Mater.8(6) (2018) 1701601.<br>[163] L.N.Zhang,S.H.Li,H.Q.Tan,S.U.Khan,Y.Y.Ma,H.Y.Zang,Y.H.Wang,Y.G.Li,ACS Appl.Mater.Interfaces 9(19) (2017) 16270-16279.<br>[164] L.Ma,L.R.L.Ting,V.Molinari,C.Giordano,B.S.Yeo,J.Mater.Chem.A 3(16) (2015) 8361-8368.<br>[165] L.He,W.Zhang,Q.Mo,W.Huang,L.Yang,Q.Gao,Angew.Chem.Int.Ed.(2019),doi:10.1002/anie.201914752.<br>[166] Y.Hu,D.G.Guan,B.Yu,W.Hou,B.Zheng,W.Zhang,Y.Chen,Electrochim.Acta 263(2018) 192-200.<br>[167] Q.Gao,C.Zhang,S.Wang,W.Shen,Y.Zhang,H.Xu,Y.Tang,Chem.Commun.46(35) (2010) 6494-6496.<br>[168] W.Gao,Y.Shi,Y.Zhang,L.Zuo,H.Lu,Y.Huang,W.Fan,T.Liu,ACS Sustain.Chem.Eng.4(12) (2016) 6313-6321.<br>[169] M.Fan,H.Chen,Y.Wu,L.L.Feng,Y.Liu,G.D.Li,X.Zou,J.Mater.Chem.A 3(31) (2015) 16320-16326.<br>[170] Z.X.Huang,Y.Wang,J.I.Wong,W.H.Shi,H.Y.Yang,Electrochim.Acta 167(2015) 388-395.<br>[171] K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,Y.Zhang,S.V.Dubonos,I.V.Grigorieva,A.A.Firsov,Science 306(5696) (2004) 666-669.<br>[172] S.Wang,L.Liao,Z.Shi,J.Xiao,Q.Gao,Y.Zhang,B.Liu,Y.Tang,ChemElectroChem 3(12) (2016) 2110-2115.<br>[173] Y.J.Tang,C.H.Liu,W.Huang,X.L.Wang,L.Z.Dong,S.L.Li,Y.Q.Lan,ACS Appl.Mater.Interfaces 9(20) (2017) 16977-16985.<br>[174] X.Zhang,F.Zhou,W.Pan,Y.Liang,R.Wang,Adv.Funct.Mater.28(43) (2018) 1804600.<br>[175] Y.Huang,Q.Gong,X.Song,K.Feng,K.Nie,F.Zhao,Y.Wang,M.Zeng,J.Zhong,Y.Li,ACS Nano 10(12) (2016) 11337-11343.<br>[176] J.Xiao,Y.Zhang,Z.Zhang,Q.Lv,F.Jing,K.Chi,S.Wang,ACS Appl.Mater.Interfaces 9(27) (2017) 22604-22611.<br>[177] C.Lu,D.Tranca,J.Zhang,F.N.Rodrıģuez Hernández,Y.Su,X.Zhuang,F.Zhang,G.Seifert,X.Feng,ACS Nano 11(4) (2017) 3933-3942.<br>[178] K.Zhang,Y.Zhao,D.Fu,Y.Chen,J.Mater.Chem.A 3(11) (2015) 5783-5788.<br>[179] K.Zhang,C.Li,Y.Zhao,X.Yu,Y.Chen,Phys.Chem.Chem.Phys.17(25) (2015) 16609-16614.<br>[180] Y.Liu,K.Ai,L.Lu,Chem.Rev.114(9) (2014) 5057-5115.<br>[181] Q.Ye,F.Zhou,W.Liu,Chem.Soc.Rev.40(7) (2011) 4244-4258.<br>[182] Y.Guo,J.Tang,J.Henzie,B.Jiang,H.Qian,Z.Wang,H.Tan,Y.Bando,Y.Yamauchi,Mater.Horiz.4(6) (2017) 1171-1177.<br>[183] L.Sun,C.Wang,Q.Sun,Y.Cheng,L.Wang,Chem-Eur J.23(19) (2017) 4644-4650.<br>[184] X.Fan,Y.Liu,Z.Peng,Z.Zhang,H.Zhou,X.Zhang,B.I.Yakobson,W.A.Goddard,X.Guo,R.H.Hauge,ACS Nano 11(1) (2017) 384-394.<br>[185] P.Xiao,M.A.Sk,L.Thia,X.Ge,R.J.Lim,J.-.Y.Wang,K.H.Lim,X.Wang,Energy Environ.Sci.7(8) (2014) 2624-2629.<br>[186] R.Wu,J.Zhang,Y.Shi,D.Liu,B.Zhang,J.Am.Chem.Soc.137(22) (2015) 6983-6986.<br>[187] B.You,X.Liu,G.Hu,S.Gul,J.Yano,D.E.Jiang,Y.Sun,J.Am.Chem.Soc.139(35) (2017) 12283-12290.<br>[188] R.Subbaraman,D.Tripkovic,K.C.Chang,D.Strmcnik,A.P.Paulikas,P.Hirunsit,M.Chan,J.Greeley,V.Stamenkovic,N.M.Markovic,Nat.Mater.11(6) (2012) 550.<br>[189] J.Li,M.Yan,X.Zhou,Z.Q.Huang,Z.Xia,C.R.Chang,Y.Ma,Y.Qu,Adv.Funct.Mater.26(37) (2016) 6785-6796.<br>[190] B.Ren,X.Xu,X.Li,W.Cai,Z.Tian,Surf.Sci.427(1999) 157-161.<br>[191] J.F.Li,Y.F.Huang,Y.Ding,Z.L.Yang,S.B.Li,X.S.Zhou,F.R.Fan,W.Zhang,Z.Y.Zhou,B.Ren,Nature 464(7287) (2010) 392.<br>[192] N.Kornienko,J.Resasco,N.Becknell,C.M.Jiang,Y.S.Liu,K.Nie,X.Sun,J.Guo,S.R.Leone,P.Yang,J.Am.Chem.Soc.137(23) (2015) 7448-7455.<br>[193] Y.Zheng,Y.Jiao,S.Z.Qiao,Adv.Mater.27(36) (2015) 5372-5378.<br>[194] Y.P.Zhu,C.Guo,Y.Zheng,S.Z.Qiao,Acc.Chem.Res.50(4) (2017) 915-923.<br>[195] T.Asefa,Acc.Chem.Res.49(9) (2016) 1873-1883.<br>[196] J.Kibsgaard,T.F.Jaramillo,Angew.Chem.Int.Ed.53(52) (2014) 14433-14437.<br>[197] M.Tavakkoli,T.Kallio,O.Reynaud,A.G.Nasibulin,C.Johans,J.Sainio,H.Jiang,E.I.Kauppinen,K.Laasonen,Angew.Chem.Int.Ed.54(15) (2015) 4535-4538.<br>[198] H.Zhang,Z.Ma,J.Duan,H.Liu,G.Liu,T.Wang,K.Chang,M.Li,L.Shi,X.Meng,ACS Nano 10(1) (2015) 684-694.<br>[199] Y.Yang,Z.Lun,G.Xia,F.Zheng,M.He,Q.Chen,Energy Environ.Sci.8(12) (2015) 3563-3571.<br>[200] H.A.Chen,C.L.Hsin,Y.T.Huang,M.L.Tang,S.Dhuey,S.Cabrini,W.W.Wu,S.R.Leone,J.Phys.Chem.C 117(43) (2013) 22211-22217.<br>[201] F.Guinea,Phys.Rev.B 75(23) (2007) 235433.<br>[202] L.Zou,Y.Qiao,S.Gu,Y.Huang,C.Zhong,Z.E.Long,J.Alloys Compd.712(2017) 103-110. |
[1] | Sasan Ghashghaie, Samson Ho-Sum Cheng, Jie Fang, Hafiz Khurram Shahzad, Robin Lok-Wang Ma, chi-Yuen Chung. Electrophoretically deposited binder-free 3-D carbon/sulfur nanocomposite cathode for high-performance Li-S batteries[J]. 能源化学(英文版), 2020, 48(9): 92-101. |
[2] | Bo Xu, Xiaodong Yang, Qiang Fang, Linbing Du, Yan Fu, Yiqiang Sun, Qisheng Liu, Qingquan Lin, cuncheng Li. Anion-cation dual doping: An effective electronic modulation strategy of Ni2P for high-performance oxygen evolution[J]. 能源化学(英文版), 2020, 48(9): 116-121. |
[3] | Rong Jiang, Xin Chen, Jinxia Deng, Tianyu Wang, Kang Wang, Yanli Chen, Jianzhuang Jiang. In-situ growth of ZnS/FeS heterojunctions on biomass-derived porous carbon for efficient oxygen reduction reaction[J]. 能源化学(英文版), 2020, 47(8): 79-85. |
[4] | Jae Hyeon Nam, Myeong Je Jang, Hye Yeon Jang, Woojin Park, Xiaolei Wang, Sung Mook Choi,byungjin Cho. Room-temperature sputtered electrocatalyst WSe2 nanomaterials for hydrogen evolution reaction[J]. 能源化学(英文版), 2020, 47(8): 107-111. |
[5] | Hui-Ying Sun, Guang-Rui Xu,fu-Min Li, Qing-Ling Hong, Pu-Jun Jin, Pei Chen, Yu Chen. Hydrogen generation from ammonia electrolysis on bifunctional platinum nanocubes electrocatalysts[J]. 能源化学(英文版), 2020, 47(8): 234-240. |
[6] | Danyang He, Liyun Cao, Jianfeng Huang, Koji Kajiyoshi, Jianpeng Wu,changcong Wang, Qianqian Liu,dan Yang, Liangliang Feng. In-situ optimizing the valence configuration of vanadium sites in NiV-LDH nanosheet arrays for enhanced hydrogen evolution reaction[J]. 能源化学(英文版), 2020, 47(8): 263-271. |
[7] | Shijie Zhang, Peng Zhang, Ruohan Hou,bin Li, Yongshang Zhang, Kangli Liu, Xilai Zhang, Guosheng Shao. In situ sulfur-doped graphene nanofiber network as efficient metal-free electrocatalyst for polysulfides redox reactions in lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 47(8): 281-290. |
[8] | Zhao Liu, Jing Li, Shiji Xue, Shunfa Zhou, Konggang Qu, Ying Li, Weiwei Cai. Pt/Mo2C heteronanosheets for superior hydrogen evolution reaction[J]. 能源化学(英文版), 2020, 47(8): 317-323. |
[9] | Hansaem Jang, Jaeyoung Lee. Iridium oxide fabrication and application:A review[J]. 能源化学(英文版), 2020, 46(7): 152-172. |
[10] | Qiusheng Zhou, Jianrui Feng, Xinwen Peng, Linxin Zhong, Runcang Sun. Porous carbon coupled with an interlaced MoP-MoS2 heterojunction hybrid for efficient hydrogen evolution reaction[J]. 能源化学(英文版), 2020, 45(6): 45-51. |
[11] | Tian-Tian Chen, Rui Wang, Lin-Ke Li, Zhong-Jun Li, Shuang-Quan Zang. MOF-derived Co9S8/MoS2 embedded in tri-doped carbon hybrids for efficient electrocatalytic hydrogen evolution[J]. 能源化学(英文版), 2020, 44(5): 90-96. |
[12] | Yixing Shen, Yuhang Li, Guangxing Yang, Qiao Zhang, Hong Liang, Feng Peng. Lignin derived multi-doped (N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells[J]. 能源化学(英文版), 2020, 44(5): 106-114. |
[13] | Yingqi Xu, Weifeng Zhang, Yaguang Li, Pengfei Lu, Zhong-Shuai Wu. A general bimetal-ion adsorption strategy to prepare nickel single atom catalysts anchored on graphene for efficient oxygen evolution reaction[J]. 能源化学(英文版), 2020, 43(4): 52-57. |
[14] | Xiaoke Li, Luhua Jiang, Jing Liu, Qingfeng Hua, Erdong Wang, Guangwen Xie. Size-dependent catalytic activity of cobalt phosphides for hydrogen evolution reaction[J]. 能源化学(英文版), 2020, 43(4): 121-128. |
[15] | Tianqi Guo, Yingze Song, Zhongti Sun, Yuhan Wu, Yu Xia, Yayun Li, Jianhui Sun, Kai Jiang, Shixue Dou, Jingyu Sun. Bio-templated formation of defect-abundant VS2 as a bifunctional material toward high-performance hydrogen evolution reactions and lithium-sulfur batteries[J]. 能源化学(英文版), 2020, 42(3): 34-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||