CO2 likes molten salts: Capture and in-situ electro-splitting of CO2 in molten salts integrates carbon reduction with preparation of advanced carbon/oxygen and desulfurization/denitration
In this manuscript, Prof. Xiao and coworkers introduced the basic concepts, possible reactions and morphological variations of the derived carbon. The inert anode materials, cost estimation and scale-up evaluation of the process were also discussed. This strategy is apt to power plants and steel/iron-making sectors, by providing a closed-loop solution in energy, resource and environmental sustainability. With input of electricity from renewable energy and flue gas, advanced carbon and value-added O2 are generated. The former is the key-enabling material for diverse applications ranging from energy storage/conversion to environmental remediation. The latter, O2, can be fed back to combustion chambers for high-efficiency oxy-fuel combustion or back to blast furnaces in steel/ironmaking sectors for purifying steel/iron.