Journal of Energy Chemistry ›› 2022, Vol. 73 ›› Issue (10): 68-87.DOI: 10.1016/j.jechem.2022.05.014
Previous Articles Next Articles
Xiangze Dua,b, Rui Zhangc, Dan Lia,*, Changwei Hua, Hermenegildo Garciab,*
Received:
2022-03-09
Revised:
2022-04-19
Accepted:
2022-05-06
Online:
2022-10-15
Published:
2022-10-24
Contact:
*E-mail addresses:danli@scu.edu.cn (D. Li), hgarcia@qim.upv.es (H. Garcia).
About author:
Xiangze Du got his BSc from Sichuan University in June 2017. He is currently a PhD candidate in Professor Changwei Hu's group. He studied as a visiting student in Professor Hermenegildo García's group at the Instituto de Tecnología Química of the Technical University of Valencia. His research intrinests focus on the catalytic upgrading for biomass derivatives, including thermo-catalysis and photocatalysis approaches.Xiangze Du, Rui Zhang, Dan Li, Changwei Hu, Hermenegildo Garcia. Molybdenum carbide as catalyst in biomass derivatives conversion[J]. Journal of Energy Chemistry, 2022, 73(10): 68-87.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2022.05.014
[1] F.X. Ma, H.B. Wu, B.Y. Xia, C.Y. Xu, X.W. Lou, Angew. Chem. Int. Ed. 54(2015) 15395-15399. [2] R. Wang, C. Tian, L. Wang, B. Wang, H. Zhang, H. Fu, Chem. Commun. (2009) 3104-3106. [3] B.V. Reddy, S.N. Khanna, P. Jena, Science 258 (1992) 1640-1643. [4] M. Grätzel, Nature 414 (2001) 338-344. [5] H.H. Hwu, J.G. Chen, Chem. Rev. 105(2005) 185-212. [6] G. Liu, J. Zhu, H. Guo, A. Sun, P. Chen, L. Xi, W. Huang, X. Song, X. Dong, Angew. Chem. Int. Ed. 58(2019) 18641-18646. [7] R.B. Levy, M. Boudart, Science 181 (1973) 547. [8] J.A. Schaidle, L.T. Thompson, J. Catal. 329(2015) 325-334. [9] L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.W. Li, C. Shi, X.D. Wen, D. Ma, Nature 544 (2017) 80-83. [10] R. Barthos, F. Solymosi, J. Catal. 249(2007) 289-299. [11] F. Solymosi, R. Németh, L. Óvári, L. Egri, J. Catal. 195(2000) 316-325. [12] Z. Li, C. Chen, E. Zhan, N. Ta, Y. Li, W. Shen, Chem. Commun. 50(2014) 4469-4471. [13] M. Grilc, G. Veryasov, B. Likozar, A. Jesih, J. Levec, Appl. Catal. B 163 (2015) 467-477. [14] G. Adamski, K. Dyrek, A. Kotarba, Z. Sojka, C. Sayag, G. Djéga-Mariadassou, Catal. Today 90 (2004) 115-119. [15] X. Ye, J. Ma, W. Yu, X. Pan, C. Yang, C. Wang, Q. Liu, Y. Huang, J. Energy Chem. 67(2022) 184-192. [16] Y. Liu, G. Yu, G.D. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, Angew. Chem. Int. Ed. 54(2015) 10752-10757. [17] H. Yan, Y. Xie, Y. Jiao, A. Wu, C. Tian, X. Zhang, L. Wang, H. Fu, Adv. Mater. 30(2018) 1704156. [18] S. Niu, J. Yang, H. Qi, Y. Su, Z. Wang, J. Qiu, A. Wang, T. Zhang, J. Energy Chem. 57(2021) 371-377. [19] W.-J. Kwak, K.C. Lau, C.-D. Shin, K. Amine, L.A. Curtiss, Y.-K. Sun, ACS Nano 9 (2015) 4129-4137. [20] S. Zhang, L. Tong, Y. Hu, L. Kang, J. Zhang, J. Am. Chem.Soc. 137(2015) 8904-8907. [21] J. Wang, S. Ji, J. Yang, Q. Zhu, S. Li, Catal. Commun. 6(2005) 389-393. [22] X. Zhou, Z. Yu, Y. Yao, Y. Jiang, X. Rui, J. Liu, Y. Yu, Adv. Mater. (2022) 2200479. [23] E. Cevik, S.T. Gunday, A. Iqbal, S. Akhtar, A. Bozkurt, J. Energy Storage 46 (2022) 103824. [24] B.M. Tackett, W. Sheng, J.G. Chen, Joule 1 (2017) 253-263. [25] X. Liu, C. Kunkel, P. Ramírez de la Piscina, N.Homs, F. Viñes, F. Illas, ACS Catal. 7(2017) 4323-4335. [26] A.M. Alexander, J.S. Hargreaves, Chem. Soc. Rev. 39(2010) 4388-4401. [27] S.A.W. Hollak, R.W. Gosselink, D.S. van Es, J.H. Bitter, ACS Catal 3 (2013) 2837-2844. [28] A.L. Jongerius, R.W. Gosselink, J. Dijkstra, J.H. Bitter, P.C.A. Bruijnincx, B.M. Weckhuysen, ChemCatChem 5 (2013) 2964-2972. [29] H. Prats, J.J. Pinero, F. Vines, S.T. Bromley, R. Sayos, F. Illas, Chem. Commun. 55(2019) 12797-12800. [30] W. Liu, B. Chen, X. Duan, K.-H.Wu, W. Qi, X. Guo, B. Zhang, D. Su, ACS Catal. 7(2017) 5820-5827. [31] J.A. Schaidle, J. Blackburn, C.A. Farberow, C. Nash, K.X. Steirer, J. Clark, D.J. Robichaud, D.A. Ruddy, ACS Catal. 6(2016) 1181-1197. [32] J.R. Kitchin, J.K. Nørskov, M.A. Barteau, J.G. Chen, Catal. Today 105 (2005) 66-73. [33] H.O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing,Applications, Noyes Publications, Park Ridge (1996). [34] J.-L.Calais, Adv. Phys. 26(1977) 847-885. [35] X. Liu, D.R. Salahub, Can. J. Chem. 94(2016) 282-292. [36] d.S.Politi, J. Roberto, F. Viñes, J.A. Rodriguez, F. Illas, Phys. Chem. Chem. Phys. 15(2013) 12617-12625. [37] E. Karaca, S. Baǧci, H.M. Tütüncü, H.Y. Uzunok, G.P. Srivastava, J. Alloys Compd. 788(2019) 842-851. [38] J. Haines, J. Léger, C. Chateau, J. Lowther, J. Phys. Condens. Matter 13 (2001) 2447. [39] X. Wang, M. Yan, H. Chen, J. Mater. Sci.Technol. 25(2009) 419-422. [40] Y. Ma, G. Guan, X. Hao, J. Cao, A. Abudula, Renew. Sustain. Energ. Rev. 75(2017) 1101-1129. [41] J.G. Chen, Chem. Rev. 96(1996) 1477-1498. [42] C. Wan, Y.N. Regmi, B.M. Leonard, Angew. Chem. Int. Ed. 53(2014) 6407-6410. [43] J.S. Lee, S.T. Oyama, M. Boudart, J. Catal. 106(1987) 125-133. [44] J.S. Lee, M. Boudart, Appl. Catal. 19(1985) 207-210. [45] L. Volpe, M. Boudart, J. Solid State Chem. 59(1985) 348-356. [46] C. Liang, P. Ying, C. Li, Chem. Mater. 14(2002) 3148-3151. [47] D. Mordenti, D. Brodzki, G. Djéga-Mariadassou, J. Solid State Chem. 141(1998) 114-120. [48] S. Chaudhury, S.K. Mukerjee, V.N. Vaidya, V. Venugopal, J. Alloy Compd. 261(1997) 105-113. [49] Q. Gao, C. Zhang, S. Xie, W. Hua, Y. Zhang, N. Ren, H. Xu, Y. Tang, Chem. Mater. 21(2009) 5560-5562. [50] K.S. Suslick, T. Hyeon, M. Fang, A.A. Cichowlas, Mater. Sci. Eng. A 204 (1-2) (1995) 186-192. [51] T. Hyeon, M. Fang, K.S. Suslick, J. Am. Chem.Soc. 118(1996) 5492-5493. [52] S.R. Vallance, S. Kingman, D.H. Gregory, Chem Commun (2007) 742-744. [53] M. Pang, C. Li, L. Ding, J. Zhang, D. Su, W. Li, C. Liang, Ind. Eng. Chem. Res. 49(2010) 4169-4174. [54] D. Zeng, M.J.Hampden-Smith, Chem. Mater. 4(1992) 968-970. [55] H.Y. Chen, L. Chen, Y. Lu, Q. Hong, H.C. Chua, S.B. Tang, J. Lin, Catal. Today 96 (2004) 161-164. [56] C.A. Wolden, A. Pickerell, T. Gawai, S. Parks, J. Hensley, J.D. Way, ACS Appl. Mater. Interfaces 3 (2011) 517-521. [57] C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X.L. Ma, H.M. Cheng, W. Ren, Nat. Mater. 14(2015) 1135-1141. [58] Q. Zhu, Q. Chen, X. Yang, D. Ke, Mater. Lett. 61(2007) 5173-5174. [59] G. Vitale, M.L. Frauwallner, E. Hernandez, C.E. Scott, P. Pereira-Almao, Appl. Catal. A 400 (2011) 221-229. [60] M.-L. Frauwallner, F. López-Linares, J. Lara-Romero, C.E. Scott, V. Ali, E. Hernández, P. Pereira-Almao, Appl. Catal. A 394 (2011) 62-70. [61] W. Xu, P.J. Ramirez, D. Stacchiola, J.A. Rodriguez, Catal. Lett. 144(2014) 1418-1424. [62] Q. Gao, W. Zhang, Z. Shi, L. Yang, Y. Tang, Adv. Mater. 31(2019) 1802880. [63] T.P.S.Clair, B. Dhandapani, S.T. Oyama, Catal. Lett. 58(1999) 169-171. [64] J. Han, J. Duan, P. Chen, H. Lou, X. Zheng, H. Hong, Green Chem. 13(2011) 2561-2568. [65] W. Wang, Y. Hana, Z. Li, X. Liu, S. Xu, Ceram. Int. 46(2019) 755-762. [66] L. Fei, S.M. Ng, W. Lu, M. Xu, L. Shu, W.B. Zhang, Z. Yong, T. Sun, C.H. Lam, C.W. Leung, C.L. Mak, Y. Wang, Nano Lett. 16(2016) 7875-7881. [67] A. Garcia-Mulero, H.G. Baldoví, A. Dhakshinamoorthy, A. Primo, A. Corma, H. García, Appl. Catal. A 612 (2021) 118014. [68] L. Peng, Y. Peng, A. Primo, H. García, ACS Appl. Mater. Interfaces 13 (2021) 13499-13507. [69] P. Xiao, Y. Yan, X. Ge, Z. Liu, J. Wang, X. Wang, Appl. Catal.B 154-155(2014) 232-237. [70] J. Gao, Y. Wu, C. Jia, Z. Zhong, F. Gao, Y. Yang, B. Liu, Catal. Commun. 84(2016) 147-150. [71] K.S. Suslick, Science 247 (1990) 1439-1445. [72] F. Wang, W. Zhang, J. Jiang, J. Xu, Q. Zhai, L. Wei, F. Long, C. Liu, B. Liu, W. Tan, D. He, Chem. Eng. J. 382(2020) 122464. [73] S. Ashenaeian, M. Haghighi, N. Rahemi, Adv. Powder Technol. 30(2019) 502-512. [74] A. Zlotorzynski, Crit. Rev. Anal. Chem. 25(1995) 43-76. [75] R.J. Meredith, Engineers' Handbook of Industrial Microwave Heating, IET, England (1998). [76] K.E. Haque, Int. J. Miner. Process. 57(1999) 1-24. [77] H. Huang, C. Yu, H. Huang, W. Guo, M. Zhang, X. Han, Q. Wei, S. Cui, X. Tan, J. Qiu, Small Methods 3 (2019) 1900259. [78] K. MacKenzie, O. Dunens, A.T. Harris, Sep. Purif. Technol. 66(2009) 209-222. [79] A.M. Schwenke, S. Hoeppener, U.S. Schubert, Adv. Mater. 27(2015) 4113-4141. [80] Z. Tisler, R. Velvarska, L. Skuhrovcova, L. Peliskova, U. Akhmetzyanova, Materials 12 (2019) 415. [81] J. Han, J. Duan, P. Chen, H. Lou, X. Zheng, H. Hong, ChemSusChem 5 (2012) 727-733. [82] L. Macedo, R.R. Oliveira Jr., T. Haasterecht, V.T. Silva, H. Bitter, Appl. Catal. B 241 (2019) 81-88. [83] G. Vitale, H. Guzmán, M.L. Frauwallner, C.E. Scott, P. Pereira-Almao, Catal. Today 250 (2015) 123-133. [84] T. Miyao, I. Shishikura, M. Matsuoka, M. Nagal, S.T. Oyama, Appl. Catal. A 165 (1997) 419-428. [85] T. Xiao, A.P.E.York, V. Cliff Williams, H.Al-Megren, A. Hanif, X. Zhou, M.L.H. Green, Chem. Mater. 12(2000) 3896-3905. [86] D.-V.-N. Vo, C.G. Cooper, T.-H. Nguyen, A.A. Adesina, D.B. Bukur, Fuel 93 (2012) 105-116. [87] H. Lin, Z. Shi, S. He, X. Yu, S. Wang, Q. Gao, Y. Tang, Chem. Sci. 7(2016) 3399-3405. [88] L. Jia, C. Li, Y. Zhao, B. Liu, S. Cao, D. Mou, T. Han, G. Chen, Y. Lin, Nanoscale 11 (2019) 23318-23329. [89] E. Ochoa, D. Torres, J.L. Pinilla, I. Suelves, Catal. Today 357 (2019) 240-247. [90] H. Wang, S. Liu, B. Liu, V. Montes, J.M. Hill, K.J. Smith, J. Solid State Electrochem. 258(2018) 818-824. [91] Y. Qin, L. He, J. Duan, P. Chen, H. Lou, X. Zheng, H. Hong, ChemCatChem 6 (2014) 2698-2705. [92] D.R. Stellwagen, J.H. Bitter, Green Chem. 17(2015) 582-593. [93] A. Adam, M.H. Suliman, M. Awwad, M.N. Siddiqui, Z.H. Yamani, M. Qamar, Int. J. Hydrog. Energy 44 (2019) 11797-111791. [94] J.S. Li, Y. Wang, C.H. Liu, S.L. Li, Y.G. Wang, L.Z. Dong, Z.H. Dai, Y.F. Li, Y.Q. Lan, Nat. Commun. 7(2016) 1-8. [95] H. Shou, D. Ferrari, D.G. Barton, C.W. Jones, R.J. Davis, ACS Catal. 2(2012) 1408-1416. [96] A. Celzard, J.F. Marêché, G. Furdin, V. Fierro, C. Sayag, J. Pielaszek, Green Chem. 7(2005) 784-792. [97] C. Giordano, C. Erpen, W. Yao, M. Antonietti, Nano Lett. 8(2008) 4659-4663. [98] J. Quiroz, E.F. Mai, V. Teixeira da Silva, Top.Catal. 59(2016) 148-158. [99] L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang, M.D. Scanlon, X. Hu, Y. Tang, B. Liu, H.H. Giraultb, Energy Environ. Sci. 7(2014) 387-392. [100] D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu, J. Chen, W. Liu, W. Zhou, K.P. Loh, Adv. Mater. 29(2017) 1700072. [101] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23(2011) 4248-4253. [102] J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.-Q.Zhao, E.J. Moon, J. Pitock, J. Nanda, S.J. May, Y. Gogotsi, M.W. Barsoum, Adv. Funct. Mater. 26(2016) 3118-3127. [103] Q. Lu, C.-J.Chen, W. Luc, J.G. Chen, A. Bhan, F. Jiao, ACS Catal. 6(2016) 3506-3514. [104] Y. Guo, J. Tang, J. Henzie, B. Jiang, H. Qian, Z. Wang, H. Tan, Y. Bando, Y. Yamauchi, Mater. Horiz. 4(2017) 1171. [105] J.S. Hargreaves, A.R. McFarlane, S. Laassiri, R. Soc. Chem. (2018) 1-20. [106] Y. He, S. Laursen, ACS Catal. 7(2017) 3169-3180. [107] C. Lu D. Tranca J. Zhang F.N. Rodri Guez Hernandez, Y. Su, X. Zhuang, F. Zhang, G. Seifert, X. Feng, ACS Nano 11 (2017) 3933-3942. [108] G. Li, J. Yu, Z. Zhou, R. Li, Z. Xiang, Q. Cao, L. Zhao, X. Wang, X. Peng, H. Liu, W. Zhou, iScience 19 (2019) 1090-1100. [109] T. Ouyang, Y.Q. Ye, C.Y. Wu, K. Xiao, Z.Q. Liu, Angew. Chem. Int. Ed. 58(2019) 4923-4928. [110] F. Wang, J. Jiang, K. Wang, Q. Zhai, F. Long, P. Liu, J. Feng, H. Xia, J. Ye, J. Li, J. Xu, Appl. Catal. B 242 (2019) 150-160. [111] Y. Wang, R.A. Senthil, J. Pan, Y. Sun, S. Osman, A. Khan, X. Liu, Ionics 25 (2019) 4273-4283. [112] Z. Shi, K. Nie, Z. Shao, B. Gao, H. Lin, H. Zhang, B. Liu, Y. Wang, Y. Zhang, X. Sun, X. Cao, P. Hu, Q. Gao, Energy Environ. Sci. 10(2017) 1262-1271. [113] Y. Wang, S. Zhu, N. Tsubaki, M. Wu, ChemCatChem 10 (2018) 2300-2304. [114] X. Kong, S. Chen, Y. Zou, S. Lyu, X. She, Y. Lu, J. Sun, H. Zhang, D. Yang, Int. J. Hydrog. Energy 43 (2018) 13720-13726. [115] Z. Chen, T. Guo, Z. Wu, D. Wang, Nanotechnology 31 (2019) 105707. [116] W. Geng, H. Han, F. Liu, X. Liu, L. Xiao, W. Wu, J. CO2 Util. 21(2017) 64-71. [117] L. Ji, J. Wang, X. Teng, H. Dong, X. He, Z. Chen, ACS Appl. Mater. Interfaces 10 (2018) 14632-14640. [118] C.C. Tran, Y. Han, M. Garcia-Perez, S. Kaliaguine, Catal. Sci. Technol. 9(2019) 1387-1397. [119] C. Wan, B.M. Leonard, Chem. Mater. 27(2015) 4281-4288. [120] X. Liu, S.J. Ardakani, K.J. Smith, Catal. Commun. 12(2011) 454-458. [121] W. Xu, P.J. Ramírez, D. Stacchiola, J.L. Brito, J.A. Rodriguez, Catal. Lett. 145(2015) 1365-1373. [122] C.J. Barrett, J.N. Chheda, G.W. Huber, J.A. Dumesic, Appl. Catal. B 66 (2006) 111-118. [123] D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Chem. Soc. Rev. 41(2012) 8075-8098. [124] S. Liu, T. Simonetti, W. Zheng, B. Saha, ChemSusChem 11 (2018) 1446-1454. [125] Y. Zhou, L. Liu, M. Li, C. Hu, Bioresour. Technol. 344(2022) 126371. [126] K. Kimura, Y. Saika, Y. Kakuta, K. Kurihara, Biomass Convers. Biorefin. 11(2021) 873-884. [127] Y. Feng, S. Long, X. Tang, Y. Sun, R. Luque, X. Zeng, L. Lin, Chem. Soc. Rev. 50(2021) 6042-6093. [128] D. Adu-Mensah, D. Mei, L. Zuo, Q. Zhang, J. Wang, Fuel 251 (2019) 660-668. [129] M. Li, J. Fu, S. Xing, L. Yang, X. Zhang, P. Lv, Z. Wang, Z. Yuan, Appl. Catal. B 260 (2020) 118114. [130] J. Horacek, U. Akhmetzyanova, L. Skuhrovcova, Z. Tisler, H.d.P. Carmona, Appl. Catal. B 263 (2020) 118328. [131] S. Boullosa-Eiras, R. Lødeng, H. Bergem, M. Stöcker, L. Hannevold, E.A. Blekkan, Catal. Today 223 (2014) 44-53. [132] E. Vonghia, D.G. Boocock, S.K. Konar, A. Leung, Energy Fuels 9 (1995) 1090-1096. [133] L.A. Sousa, J.L. Zotin, V.T.d. Silva, Appl. Catal. A 449 (2012) 105-111. [134] H. Wang, S. Yan, S.O. Salley, K.Y.S.Ng, Ind. Eng. Chem. Res. 51(2012) 10066-10073. [135] P.M. Mortensena, H.W.P. de Carvalhob, J.-D. Grunwaldtb, P.A. Jensena, A.D. Jensen, J. Catal. 328(2015) 208-215. [136] E. Ochoa, D. Torres, R. Moreira, J.L. Pinilla, I. Suelves, Appl. Catal. B 239 (2018) 463-474. [137] S. Liu, H. Wang, R.D.D. Putra, C.S. Kim, K.J. Smith, Energy Fuels 33 (2019) 4506-4514. [138] C.-J. Chen, W.-S. Lee, A. Bhan, Appl. Catal. A 510 (2016) 42-48. [139] E.F. Mai, M.A. Machado, T.E. Davies, J.A.L.Sanchez, V.T.d. Silva, Green Chem. 16(2014) 4092-4097. [140] J.R.McManus, J.M.Vohs, Surf. Sci. 630(2014) 16-21. [141] K. Xiong, W.S. Lee, A. Bhan, J.G. Chen, ChemSusChem 7 (2014) 2146-2149. [142] H. Ren, W. Yu, M. Salciccioli, Y. Chen, Y. Huang, K. Xiong, D.G. Vlachos, J.G. Chen, ChemSusChem 6 (2013) 798-801. [143] A.P. Farkas, F. Solymosi, Surf. Sci. 601(2007) 193-200. [144] T.G. Kelly, J.G. Chen, Green Chem. 16(2014) 777-784. [145] W. Yu, M. Salciccioli, K. Xiong, M.A. Barteau, D.G. Vlachos, J.G. Chen, ACS Catal. 4(2014) 1409-1418. [146] M.M. Sullivan, J.T. Held, A. Bhan, J. Catal. 326(2015) 82-91. [147] F.G. Baddour, C.P. Nash, J.A. Schaidle, D.A. Ruddy, Angew. Chem. Int. Ed. 55(2016) 9026-9029. [148] F.G. Baddour, V.A. Witte, C.P. Nash, M.B. Griffin, D.A. Ruddy, J.A. Schaidle, ACS Sustain. Chem. Eng. 5(2017) 11433-11439. [149] W.-S.Lee, Z. Wang, R.J. Wu, A. Bhan, J. Catal. 319(2014) 44-53. [150] W.-S.Lee, Z. Wang, W. Zheng, D.G. Vlachos, A. Bhan, Catal. Sci. Technol. 4(2014) 2340-2352. [151] S.K. Kim, J. Kim, S.-C.Lee, Catal. Commun. 99(2017) 61-65. [152] N. Dubuc, P.H.McBreen, Top. Catal. 58(2015) 232-239. [153] E. Furimsky, F.E. Massoth, Catal. Today 52 (1999) 381-495. [154] X. Liu, K.J. Smith, Appl. Catal. A 335 (2008) 230-240. [155] E. Laurent, A. Centeno, B. Delmon, Stud. Surf. Sci. Catal. 88(1994) 573-578. [156] C. Pham-Huu, A.P.E.York, M. Benaissa, P.D. Gallo, M.J. Ledoux, Ind. Eng. Chem. Res. 34(1995) 1107-1113. [157] D. Ma, Y. Shu, X. Bao, Y. Xu, J. Catal. 189(2000) 314-325. [158] E.V. Matus, I.Z. Ismagilov, O.B. Sukhova, V.I. Zaikovskii, L.T. Tsikoza, Z.R. Ismagilov, J.A. Moulijn, Ind. Eng. Chem. Res. 46(2007) 4063-4074. [159] X. Du, K. Zhou, L. Zhou, X. Lei, H. Yang, D. Li, C. Hu, J. Energy Chem. 61(2021) 425-435. [160] J.A. Rodriguez, F. Viñes, P. Liu, F. Illas, in: Role of C and P sites on the chemical activity of metal carbides and phosphides: From clusters to single-crystal surfaces. in: R. Rioux (Eds), Model Systems in Catalysis, Chapter 6, Springer, New York, 2010, pp. 117-132. [161] P. Liu, J.A. Rodriguez, J. Chem. Phys. 120(2004) 5414-5423. |
[1] | Yue Liu, Huan Zhang, Chen Yang, Ziyang Xu, Yiyang Shi, Xukun Zhu, Xinde Duan, Ling Qin, Yachao Jin, Li Song, Mingdao Zhang, Hegen Zheng. Alkaline hydrogen production promoted by small-molecule modification on flowerlike Co2(OH)2CO3 [J]. Journal of Energy Chemistry, 2023, 84(9): 73-80. |
[2] | Kejia Wu, Jinrong Liang, Sijie Liu, Yimin Huang, Minglong Cao, Qiang Zeng, Xuehui Li. Selective photocatalytic aerobic oxidative cleavage of lignin C-O bonds over sodium lignosulfonate modified Fe3O4/TiO2 [J]. Journal of Energy Chemistry, 2023, 84(9): 89-100. |
[3] | Mengxia Li, Tianxi Zheng, Dongfei Lu, Shiwei Dai, Xin Chen, Xinchen Pan, Dibo Dong, Rengui Weng, Gang Xu, Fanan Wang. Facet effect on the reconstructed Cu-catalyzed electrochemical hydrogenation of 5-hydroxymethylfurfural (HMF) towards 2,5-bis (hydroxymethy)furan (BHMF) [J]. Journal of Energy Chemistry, 2023, 84(9): 101-111. |
[4] | Hua-Qing Yin, Zuo-Shu Sun, Qiu-Ping Zhao, Lu-Lu Yang, Tong-Bu Lu, Zhi-Ming Zhang. Electrochemical urea synthesis by co-reduction of CO2 and nitrate with FeII-FeIIIOOH@BiVO4 heterostructures [J]. Journal of Energy Chemistry, 2023, 84(9): 385-393. |
[5] | Fengyu Zhang, Yunna Guo, Chenxi Li, Tiening Tan, Xuedong Zhang, Jun Zhao, Ping Qiu, Hongbing Zhang, Zhaoyu Rong, Dingding Zhu, Lei Deng, Zhangran Ye, Zhixuan Yu, Peng Jia, Xiang Liu, Jianyu Huang, Liqiang Zhang. Multiscale strain alleviation of Ni-rich cathode guided by in situ environmental transmission electron microscopy during the solid-state synthesis [J]. Journal of Energy Chemistry, 2023, 84(9): 467-475. |
[6] | Shaohui Zhang, Suying Liu, Jingwen Huang, Haikun Zhou, Xuanzhi Liu, Pengfei Tan, Haoyun Chen, Yili Liang, Jun Pan. Microbial synthesis of N, P co-doped carbon supported PtCu catalysts for oxygen reduction reaction [J]. Journal of Energy Chemistry, 2023, 84(9): 486-495. |
[7] | Zhe-Hui Zhang, Xianyuan Wu, Xiaohong Ren, Zeming Rong, Zhuohua Sun, Katalin Barta, Tong-Qi Yuan. High yield production of 1,4-cyclohexanediol from lignin derived 2,6-dimethoxybenzoquinone via Raney NiMn catalyst in hydrogen free conditions [J]. Journal of Energy Chemistry, 2023, 83(8): 275-286. |
[8] | Qing Wen, Hao Fu, Ru-de Cui, He-Zhang Chen, Rui-Han Ji, Lin-Bo Tang, Cheng Yan, Jing Mao, Ke-Hua Dai, Xia-Hui Zhang, Jun-Chao Zheng. Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries [J]. Journal of Energy Chemistry, 2023, 83(8): 287-303. |
[9] | Yanan Xing, Guiyue Bi, Xiaoli Pan, Qike Jiang, Yuanlong Tan, Yang Su, Leilei Kang, Bonan Li, Lin Li, Aiqin Wang, Jingyuan Ma, Xiaofeng Yang, Xiao Yan Liu, Tao Zhang. Sub-nanometer Pt2In3 intermetallics as ultra-stable catalyst for propane dehydrogenation [J]. Journal of Energy Chemistry, 2023, 83(8): 304-312. |
[10] | Chunhua Wang, Hongwen Zhang, Feili Lai, Zhirun Xie, Yun Hau Ng, Bo Weng, Xuejiao Wu, Yuhe Liao. Engineering versatile Au-based catalysts for solar-to-fuel conversion [J]. Journal of Energy Chemistry, 2023, 83(8): 341-362. |
[11] | Mingren Jin, Seyed Mohsen Sadeghzadeh, Jinzhu Chen. Visible light-induced synthesis of biomass-derived quinoxaline by using Co phthalocyanine immobilized on pyridine-doped g-C3N4 [J]. Journal of Energy Chemistry, 2023, 82(7): 638-652. |
[12] | Hang Yang, Duo Chen, Yicheng Tan, Hao Xu, Li Li, Yiming Zhang, Chenglin Miao, Guangshe Li, Wei Han. A facile finger-paint physical modification for bilateral electrode/electrolyte interface towards a stable aqueous Zn battery [J]. Journal of Energy Chemistry, 2023, 81(6): 101-109. |
[13] | Chunfeng Cheng, Tianfu Liu, Yi Wang, Pengfei Wei, Jiaqi Sang, Jiaqi Shao, Yanpeng Song, Yipeng Zang, Dunfeng Gao, Guoxiong Wang. Amorphous Sn(HPO4)2-derived phosphorus-modified Sn/SnOx core/shell catalyst for efficient CO2 electroreduction to formate [J]. Journal of Energy Chemistry, 2023, 81(6): 125-131. |
[14] | Aditya Velidandi, Pradeep Kumar Gandam, Madhavi Latha Chinta, Srilekha Konakanchi, Anji reddy Bhavanam, Rama Raju Baadhe, Minaxi Sharma, James Gaffey, Quang D. Nguyen, Vijai Kumar Gupta. State-of-the-art and future directions of machine learning for biomass characterization and for sustainable biorefinery [J]. Journal of Energy Chemistry, 2023, 81(6): 42-63. |
[15] | Yue Liu, Yanbo Gao, Tingting Li, Xinyu Bao, Zehua Xu, Fujun Zhang, Min Lu, Zhennan Wu, Yanjie Wu, Guang Sun, Xue Bai, Zhifeng Shi, Junhua Hu, Yu Zhang. Simultaneous bottom-up double-layer synergistic engineering by multifunctional natural molecules for efficient and stable SnO2-based planar perovskite solar cells [J]. Journal of Energy Chemistry, 2023, 80(5): 40-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||