Journal of Energy Chemistry ›› 2022, Vol. 73 ›› Issue (10): 88-113.DOI: 10.1016/j.jechem.2022.06.003
Previous Articles Next Articles
Magno B. Costaa, Moisés A. de Araújob, Marcos V. de Lima Tinocoa, Juliana F. de Britoa,c, Lucia H. Mascaroa,*
Received:
2022-05-04
Revised:
2022-06-03
Accepted:
2022-06-06
Online:
2022-10-15
Published:
2022-10-24
Contact:
*E-mail address:lmascaro@ufscar.br (L.H. Mascaro).
About author:
Magno B. Costa received his licentiate degree in Chemistry (2015) from the Instituto Federal do Espírito Santo (IFES), Brazil, and his MSc degree in Physical Chemistry (2017) from the Universidade Federal de São Carlos (UFSCar), Brazil. He is currently pursuing his PhD degree in Physical Chemistry at the UFSCar, Brazil, under the supervision of Prof. Lucia H. Mascaro. His research interests are focused on the synthesis and characterization of nanostructured semiconductor thin films for photoelectrochemical applications.Magno B. Costa, Moisés A. de Araújo, Marcos V. de Lima Tinoco, Juliana F. de Brito, Lucia H. Mascaro. Current trending and beyond for solar-driven water splitting reaction on WO3 photoanodes[J]. Journal of Energy Chemistry, 2022, 73(10): 88-113.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2022.06.003
[1] J.A. Linthorst, Found Chem 12 (2010) 55-68. [2] Q. Ding, B. Song, P. Xu, S. Jin, Chem 1 (2016) 699-726. [3] S. Ye, C. Ding, R. Chen, F. Fan, P. Fu, H. Yin, X. Wang, Z. Wang, P. Du, C. Li, J. Am. Chem.Soc. 140(2018) 3250-3256. [4] Y. Wang, W. Tian, C. Chen, W. Xu, L. Li, Adv. Funct. Mater. 29(2019) 1809036. [5] L.M. Peter, Chem. Rev. 90(1990) 753-769. [6] G. Jerkiewicz, ACS Catal. 10(2020) 8409-8417. [7] R. van de Krol, M. Grätzel, Photoelectrochemical Hydrogen Production, Springer, Nova York, 2012. [8] Z. Chen, H.N. Dinh, E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols, 1st ed., Springer-Verlag, New York, New York, 2013. [9] R.T. Ross, J. Chem. Phys. 45(1966) 1-7. [10] A. Murphy, P. Barnes, L. Randeniya, I. Plumb, I. Grey, M. Horne, J. Glasscock, Int. J. Hydrogen Energy 31 (2006) 1999-2017. [11] A. Govind Rajan, J.M.P.Martirez, E.A. Carter. ACS Catal. 10. (2020). 11177-11234. [12] J. Huang, P. Yue, L. Wang, H. She, Q. Wang, Chinese J. Catal. 40(2019) 1408-1420. [13] D. Sánchez Martínez, A. Martínez-de la Cruz, E.López Cuéllar, Appl. Catal. A Gen. 398(2011) 179-186. [14] X. Liu, F. Wang, Q. Wang, Phys. Chem. Chem. Phys. 14(2012) 7894. [15] X. Feng, Y. Chen, Z. Qin, M. Wang, L. Guo, ACS. Appl. Mater. Interfaces 8 (2016) 18089-18096. [16] S. Ye, C. Ding, M. Liu, A. Wang, Q. Huang, C. Li, Adv. Mater. 31(2019) 1902069. [17] W.A. Smith, I.D. Sharp, N.C. Strandwitz, J. Bisquert, Energy Environ. Sci. 8(2015) 2851-2862. [18] G.G. Bessegato, T.T. Guaraldo, J.F. de Brito, M.F. Brugnera, M.V.B. Zanoni, Electrocatalysis 6 (2015) 415-441. [19] G. Zheng, J. Wang, H. Liu, V. Murugadoss, G. Zu, H. Che, C. Lai, H. Li, T. Ding, Q. Gao, Z. Guo, Nanoscale 11 (2019) 18968-18994. [20] S.A. Alves, L.L. Soares, L.A. Goulart, L.H. Mascaro, J. Solid State Electrochem. 20(2016) 2461-2470. [21] Á. Valdés, G.-J.Kroes, J. Chem. Phys. 130(2009) 114701. [22] A. Leaustic, F. Babonneau, J. Livage, J. Phys. Chem. 90(1986) 4193-4198. [23] M.D. Bhatt, J.S. Lee, J. Mater. Chem. A 3 (2015) 10632-10659. [24] C. Dulgerbaki, A.U.Oksuz, in: Adv. Electrode Mater., Scrivener Publishing, 2017, pp. 61-99. [25] G. Hodes, D. Cahen, J. Manassen, Nature 260 (1976) 312-313. [26] M. Yang, H. He, H. Zhang, X. Zhong, F. Dong, G. Ke, Y. Chen, J. Du, Y. Zhou, Electrochim. Acta 283 (2018) 871-881. [27] W. Kim, T. Tachikawa, D. Monllor-Satoca, H. Kim, T. Majima, W. Choi, Energy Environ. Sci. 6(2013) 3732. [28] J. Cen, Q. Wu, D. Yan, W. Zhang, Y. Zhao, X. Tong, M. Liu, A. Orlov, RSC Adv. 9(2019) 899-905. [29] X. Chen, J. Yang, Y. Cao, L. Kong, J. Huang, ChemElectroChem 8 (2021) 4427-4440. [30] G. Hodes, P.V. Kamat, J. Phys. Chem.Lett. 6(2015) 4090-4092. [31] J.A. Seabold, K.-S.Choi, Chem. Mater. 23(2011) 1105-1112. [32] H.S. Han, W. Park, S.W. Hwang, H. Kim, Y. Sim, S. Surendran, U. Sim, I.S. Cho, J. Catal. 389(2020) 328-336. [33] G. Zheng, J. Wang, G. Zu, H. Che, C. Lai, H. Li, V. Murugadoss, C. Yan, J. Fan, Z. Guo, J. Mater. Chem. A 7 (2019) 26077-26088. [34] G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J.Z. Zhang, Y. Li, Energy Environ. Sci. 5(2012) 6180. [35] S.S. Kalanur, I.-H. Yoo, H. Seo, Electrochim. Acta 254 (2017) 348-357. [36] M. Dahl, Y. Liu, Y. Yin, Chem. Rev. 114(2014) 9853-9889. [37] L. Pan, S. Wang, J. Xie, L. Wang, X. Zhang, J.-J. Zou, Nano Energy 28 (2016) 296-303. [38] N. Wang, M. Liu, H. Tan, J. Liang, Q. Zhang, C. Wei, Y. Zhao, E.H. Sargent, X. Zhang, Small 13 (2017) 1603527. [39] M.K. Sanyal, A. Datta, S. Hazra, Pure Appl. Chem. 74(2002) 1553-1570. [40] T. Li, J. He, B. Peña, C.P. Berlinguette, ACS Appl. Mater. Interfaces 8 (2016) 25010-25013. [41] Y. Li, J.Z. Zhang, Laser Photon. Rev. 4(2009) 517-528. [42] G. Wang, Y. Ling, H. Wang, L. Xihong, Y. Li, J. Photochem. Photobiol. C Photochem. Rev. 19(2014) 35-51. [43] F.E. Osterloh, Chem. Soc. Rev. 42(2013) 2294-2320. [44] T. Zhang, M. Paulose, R. Neupane, L.A. Schaffer, D.B. Rana, J. Su, L. Guo, O.K. Varghese, Sol. Energy Mater. Sol. Cells 209 (2020) 110472. [45] G. Roselló-Márquez, R.M.Fernández-Domene, R.Sánchez-Tovar, J. García-Antón, Sep. Purif. Technol. 238(2020) 116417. [46] Y. Gu, W. Zheng, Y. Bu, J. Electroanal. Chem. 833(2019) 54-62. [47] L.-D.Zhao, Q. Zhang, J.-B. Fan, L.-Q. Yin, P.-W. Qi, H.-C. Yao, Z.-J. Li, J. Solid State Electrochem. 23(2019) 1621-1630. [48] Y.-Q.Rong, X.-F. Yang, W.-D. Zhang, Y.-X. Yu, Mater. Lett. 246(2019) 161-164. [49] J. Feng, X. Zhao, B. Zhang, G. Yang, Q. Qian, S.S.K.Ma, Z. Chen, Z.Li, Y. Huang, Sci. China Mater. 63(2020) 2261-2271. [50] Y. Wang, F. Zhang, G. Zhao, Y. Zhao, Y. Ren, H. Zhang, L. Zhang, J. Du, Y. Han, D. J. Kang, Ceram. Int. 45(2019) 7302-7308. [51] M. Jadwiszczak, K. Jakubow-Piotrowska, P. Kedzierzawski, K. Bienkowski, J. Augustynski, Adv. Energy Mater. 10(2020) 1903213. [52] F. Andrei, A. Andrei, R. Birjega, E.N. Sirjita, A.I. Radu, M. Dinescu, V. Ion, V.-A. Maraloiu, V.S_. Teodorescu, N.D. Scarisoreanu, Nanomaterials 11 (2021) 110. [53] M. Stefik, M. Cornuz, N. Mathews, T. Hisatomi, S. Mhaisalkar, M. Grätzel, Nano Lett. 12(2012) 5431-5435. [54] D. Chandra, K. Saito, T. Yui, M. Yagi, Angew. Chemie Int. Ed. 52(2013) 12606-12609. [55] M. Rodríguez-Pérez, I. Rodríguez-Gutiérrez, A. Vega-Poot, R. García-Rodríguez, G. Rodríguez-Gattorno, G. Oskam, Electrochim. Acta 258 (2017) 900-908. [56] D.P.Norton, in: Pulsed Laser Depos. Thin Film, John Wiley & Sons Inc, Hoboken, NJ, USA, 2006, pp. 1-31. [57] D. Chandra, D. Li, T. Sato, Y. Tanahashi, T. Togashi, M. Ishizaki, M. Kurihara, E. A. Mohamed, Y. Tsubonouchi, Z.N. Zahran, K. Saito, T. Yui, M. Yagi, A.C.S.Sustain, Chem. Eng. 7(2019) 17896-17906. [58] N. Kangkun, N. Kiama, N. Saito, C. Ponchio, Optik (Stuttg). 198(2019) 163235. [59] Y. Feng, L. Guan, J. Li, X. Li, S. Zhang, Y. Jiao, S. Zhang, Y. Lin, Y. Ren, X. Zhou, Z. Liu, J. Mater. Sci.Mater. Electron. 31(2020) 14137-14144. [60] J. Kim, H. Lee, J.H. Choi, C. Park, B. Lee, J.Y. Jung, J.H. Park, J. Lee, S.J. Cho, Nanotechnology 32 (2021) 395402. [61] Y. Shabdan, A. Markhabayeva, N. Bakranov, N. Nuraje, Nanomaterials 10 (2020) 1871. [62] N. Wang, D. Wang, M. Li, J. Shi, C. Li, Nanoscale 6 (2014) 2061-2066. [63] S.S. Kalanur, Y.J. Hwang, S.Y. Chae, O.S. Joo, J. Mater. Chem. A 1 (2013) 3479-3488. [64] J.Y. Zheng, G. Song, C.W. Kim, Y.S. Kang, Nanoscale 5 (2013) 5279. [65] R. Kishore, X. Cao, X. Zhang, A. Bieberle-Hütter, Catal. Today 321-322(2019) 94-99. [66] J. Zhou, Y. Ding, S.Z. Deng, L. Gong, N.S. Xu, Z.L. Wang, Adv. Mater. 17(2005) 2107-2110. [67] H.V. Le, P.T. Pham, L.T. Le, A.D. Nguyen, N.Q. Tran, P.D. Tran, Int. J. Hydrogen Energy 46 (2021) 22852-22863. [68] Y. Zhao, S. Balasubramanyam, R. Sinha, R. Lavrijsen, M.A. Verheijen, A.A. Bol, A. Bieberle-Hütter, ACS Appl. Energy Mater. 1(2018) 5887-5895. [69] L. Ma, S. Chen, Z. Pei, H. Li, Z. Wang, Z. Liu, Z. Tang, J.A. Zapien, C. Zhi, ACS Nano 12 (2018) 8597-8605. [70] S. Rahimnejad, J. Hui He, F. Pan, X. Lee, W. Chen, K. Wu, G. Qin Xu, Mater. Res. Express 1 (2014) 045044. [71] Q. Liu, F. Wang, H. Lin, Y. Xie, N. Tong, J. Lin, X. Zhang, Z. Zhang, X. Wang, Catal. Sci. Technol. 8(2018) 4399-4406. [72] M. Ma, K. Zhang, P. Li, M.S. Jung, M.J. Jeong, J.H. Park, Angew. Chemie Int. Ed. 55 (2016) (1823) 11819-11823. [73] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Nano Lett. 11(2011) 3026-3033. [74] G. Wang, Y. Yang, Y. Ling, H. Wang, X. Lu, Y.-C. Pu, J.Z. Zhang, Y. Tong, Y. Li, J. Mater. Chem. A 4 (2016) 2849-2855. [75] I.S. Cho, M. Logar, C.H. Lee, L. Cai, F.B. Prinz, X. Zheng, Nano Lett. 14(2014) 24-31. [76] Y. Liu, L. Kong, X. Guo, J. Xu, S. Shi, L. Li, J. Phys. Chem. Solids 149 (2021) 109823. [77] C. Shao, A.S. Malik, J. Han, D. Li, M. Dupuis, X. Zong, C. Li, Nano Energy 77 (2020) 105190. [78] S.S. Kalanur, I.-H. Yoo, I.-S. Cho, H. Seo, Electrochim. Acta 296 (2019) 517-527. [79] T. Soltani, A. Tayyebi, H. Hong, M.H. Mirfasih, B.-K. Lee, Sol. Energy Mater. Sol. Cells 191 (2019) 39-49. [80] S. Hoang, S. Guo, N.T. Hahn, A.J. Bard, C.B. Mullins, Nano Lett. 12(2012) 26-32. [81] S.-M. Tao, L.-Y. Lin, Int. J. Hydrogen Energy 45 (2020) 6487-6499. [82] S. Shen, J. Zhou, C.-L.Dong, Y. Hu, E.N. Tseng, P. Guo, L. Guo, S.S. Mao, Sci. Rep. 4(2015) 6627. [83] S.S. Kalanur, I.-H.Yoo, K. Eom, H. Seo, J. Catal. 357(2018) 127-137. [84] F. Wang, C. Di Valentin, G. Pacchioni, J. Phys. Chem. C 116 (2012) 8901-8909. [85] M. Kumar Mohanta, T. Kanta Sahu, S. Alam, M. Qureshi, Chem. -An Asian J. 15(2020) 3886-3896. [86] S.S. Kalanur, Y.-G.Noh, H. Seo, Appl. Surf. Sci. 509(2020) 145253. [87] X. Yin, W. Qiu, W. Li, K. Wang, X. Yang, L. Du, Y. Liu, J. Li, Int. J. Hydrogen Energy 45 (2020) 19257-19266. [88] S.S. Kalanur, H. Seo, J. Alloys Compd. 785(2019) 1097-1105. [89] S.S. Kalanur, Catalysts 9 (2019) 456. [90] S.S. Kalanur, I.-H.Yoo, I.S. Cho, H. Seo, Ceram. Int. 45(2019) 8157-8165. [91] Y. Ma, Y.H. Hu, Appl. Phys. Lett. 118(2021) 223903. [92] C. Ros, T. Andreu, J.R. Morante, J. Mater. Chem. A 8 (2020) 10625-10669. [93] W. Xu, W. Tian, L. Li, Sol. RRL(2020) 2000412. [94] H. Gerischer, J. Vac. Sci.Technol. 15(1978) 1422-1428. [95] H. Gerischer, in: Sol. Energy Convers. Solid-State Phys. Asp., Springer, 1979, pp. 117-172. [96] C.R. Lhermitte, J. Garret Verwer, B.M. Bartlett, J. Mater. Chem. A 4 (2016) 2960-2968. [97] D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 89th ed., CRC Press, Boca Raton, 2008. [98] J. Jun, S. Ju, S. Moon, S. Son, D. Huh, Y. Liu, K. Kim, H. Lee, Nanotechnology 31 (2020) 204003. [99] R. Solarska, A. Królikowska, J. Augustyń ski, Angew.Chemie Int. Ed. 49(2010) 7980-7983. [100] A.A. Wilson, S. Corby, L. Francàs, J.R. Durrant, A. Kafizas, Phys. Chem. Chem. Phys. 23(2021) 1285-1291. [101] M.K. Mohanta, T.K. Sahu, D. Gogoi, N.R. Peela, M. Qureshi, ACS Appl. Energy Mater. 2(2019) 7457-7466. [102] Y. Li, W. Zhang, B. Qiu, Chem. Lett. 49(2020) 741-744. [103] Y. Liu, Y.-S. Chang, Y.-J. Hsu, B.-J. Hwang, C.-H. Hsueh, Electrochim. Acta 321 (2019) 134674. [104] Y. Li, Z. Liu, Z. Guo, M. Ruan, X. Li, Y. Liu, A.C.S.Sustain, Chem. Eng. 7(2019) 12582-12590. [105] B.-E.Wu, C.-Y. Chiang, J. Taiwan Inst. Chem. Eng. 80(2017) 1014-1021. [106] P. Schnell, M. Kölbach, M. Schleuning, K. Obata, R. Irani, I.Y. Ahmet, M. Harb, D.E. Starr, R. van de Krol, F.F. Abdi, Adv. Energy Mater. 11(2021) 2003183. [107] Y.P. Xie, G. Liu, G.Q. (Max) Lu, H.-M. Cheng, Nanoscale 4 (2012) 1267. [108] H. Zhang, C. Guo, J. Ren, J. Ning, Y. Zhong, Z. Zhang, Y. Hu, Chem. Commun. 55(2019) 14050-14053. [109] G.-L.Hu, R. Hu, Z.-H. Liu, K. Wang, X.-Y. Yan, H.-Y. Wang, Catal. Sci. Technol. 10(2020) 5677-5687. [110] P. Chatterjee, A.K. Chakraborty, Opt. Mater.(Amst). 111(2021) 110610. [111] B. Jin, Y. Cho, Y. Zhang, D.H. Chun, P. Li, K. Zhang, K.-S. Lee, J.H. Park, Nano Energy 66 (2019) 104110. [112] W. Kong, X. Zhang, S. Liu, Y. Zhou, B. Chang, S. Zhang, H. Fan, B. Yang, Adv. Mater. Interfaces 6 (2019) 1801653. [113] M. Ertl, Z. Ma, T. Thersleff, P. Lyu, S. Huettner, P. Nachtigall, J. Breu, A. Slabon, Inorg. Chem. 58(2019) 9655-9662. [114] J. Liu, Z. Shang, J. Chen, L. Wen, J. Liu, Catal. Letters (2021), https://doi.org/10.1007/s10562-021-03856-6. [115] Y. Li, Z. Liu, J. Li, M. Ruan, Z. Guo, J. Mater. Chem. A 8 (2020) 6256-6267. [116] Z. Ma, H. Hou, K. Song, Z. Fang, L. Wang, F. Gao, W. Yang, B. Tang, Y. Kuang, Chem. Eng. J. 379(2020) 122266. [117] Y. Li, Z. Liu, M. Ruan, Z. Guo, X. Li, ChemSusChem 12 (2019) 5282-5290. [118] M. Yang, J. Li, G. Ke, B. Liu, F. Dong, L. Yang, H. He, Y. Zhou, J. Energy Chem. 56(2021) 37-45. [119] Y. Tian, B. Chang, J. Lu, J. Fu, F. Xi, X. Dong, ACS Appl. Mater. Interfaces 5 (2013) 7079-7085. [120] K. Afroz, M. Moniruddin, N. Bakranov, S. Kudaibergenov, N. Nuraje, J. Mater. Chem. A 6 (2018) 21696-21718. [121] S.J.A.Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Energy Environ.Sci. 8(2015) 731-759. [122] X. Su, C. Liu, Y. Liu, Y. Yang, X. Liu, S. Chen, Trans. Nonferrous Met. Soc. China 31 (2021) 533-544. [123] E. Kim, S. Kim, Y.M. Choi, J.H. Park, H. Shin, A.C.S.Sustain, Chem. Eng. 8(2020) 11358-11367. [124] C.-H.Wang, D.-D. Qin, D.-L. Shan, J. Gu, Y. Yan, J. Chen, Q.-H. Wang, C.-H. He, Y. Li, J.-J. Quan, X.-Q. Lu, Phys. Chem. Chem. Phys. 19(2017) 4507-4515. [125] J. Zhang, H. Ma, Z. Liu, Appl. Catal. B Environ. 201(2017) 84-91. [126] R. Wang, T. Xie, T. Zhang, T. Pu, Y. Bu, J.-P. Ao, J. Mater. Chem. A 6 (2018) 12956-12961. [127] M. Tayebi, Z. Masoumi, B.-K.Lee, Ultrason. Sonochem. 70(2021) 105339. [128] M. Mojaddami, A. Simchi, Renew. Energy 162 (2020) 504-512. [129] C.T. Moi, G. Gogoi, T.K. Sahu, D. Gogoi, N.R. Peela, M. Qureshi, Sustain, Energy Fuels 3 (2019) 3481-3488. [130] Y. Qu, M. Shao, Y. Shao, M. Yang, J. Xu, C.T. Kwok, X. Shi, Z. Lu, H. Pan, J. Mater. Chem. A 5 (2017) 15080-15086. [131] M.G. Hosseini, P.Y. Sefidi, Z. Aydin, S. Kinayyigit, Electrochim. Acta 333 (2020) 135475. [132] M.G. Hosseini, P.Y. Sefidi, S. Kinayyigit, Mater. Sci. Semicond. Process. 121(2021) 105440. [133] S. Yoo, J. Kum, G. Ali, S. Heo, S. Cho, Nanoscale Res. Lett. 7(2012) 142. [134] J. Sun, L. Sun, X. Yang, S. Bai, R. Luo, D. Li, A. Chen, Electrochim. Acta 331 (2020) 135282. [135] Y. Li, Z. Liu, J. Zhang, Z. Guo, Y. Xin, L. Zhao, J. Alloys Compd. 790(2019) 493-501. [136] H. Lin, X. Long, Y. An, S. Yang, J. Chem. Phys. 152(2020) 214704. [137] W. Ma, X. Wu, K. Huang, M. Wang, R. Fu, H. Chen, S. Feng, Sustain. Energy Fuels 3 (2019) 2135-2141. [138] H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, A. Rothschild, Nat. Mater. 12(2013) 158-164. [139] J. Li, S.K. Cushing, P. Zheng, F. Meng, D. Chu, N. Wu, Nat. Commun. 4(2013) 2651. [140] Q. Wu, Q. Bu, S. Li, Y. Lin, X. Zou, D. Wang, T. Xie, J. Alloys Compd. 803(2019) 1105-1111. [141] T.T. Guaraldo, J.F. Brito, D. Wood, M.V.B. Zanoni, Electrochim. Acta 185 (2015) 117-124. [142] X. Fan, T. Wang, H. Xue, B. Gao, S. Zhang, H. Gong, H. Guo, L. Song, W. Xia, J. He, ChemElectroChem 6 (2019) 543-551. [143] S. Ye, W. Shi, Y. Liu, D. Li, H. Yin, H. Chi, Y. Luo, N. Ta, F. Fan, X. Wang, C. Li, J. Am. Chem.Soc. 143(2021) 12499-12508. [144] S.-H.Yoon, T. Sadike, J.-R. Ding, K.-S. Kim, J. Ind. Eng. Chem. 85(2020) 240-248. [145] T.W. Kim, K.-S. Choi, Science (80-.) 343(2014) 990-994. [146] B. Chen, Z. Zhang, M. Baek, S. Kim, W. Kim, K. Yong, Appl. Catal. B Environ. 237(2018) 763-771. [147] Z. Ma, K. Song, L. Wang, F. Gao, B. Tang, H. Hou, W. Yang, ACS Appl. Mater. Interfaces 11 (2019) 889-897. [148] K. Kim, S.K. Nam, J.H. Park, J.H. Moon, J. Mater. Chem. A 7 (2019) 4480-4485. [149] B.R. Lee, M.G. Lee, H. Park, T.H. Lee, S.A. Lee, S.S.M. Bhat, C. Kim, S. Lee, H.W. Jang, ACS Appl. Mater. Interfaces 11 (2019) 20004-20012. [150] J.-H.Kim, D.H. Kim, J.W. Yoon, Z. Dai, J.-H. Lee, ACS Appl. Energy Mater. 2(2019) 4535-4543. [151] D. Coelho, J.P.R.S. Gaudêncio, S.A. Carminati, F.W.P.Ribeiro, A.F. Nogueira, L.H. Mascaro, Chem. Eng. J. 399(2020) 125836. [152] I. Grigioni, M. Abdellah, A. Corti, M.V. Dozzi, L. Hammarström, E. Selli, J. Am. Chem.Soc. 140(2018) 14042-14045. [153] W. Tian, C. Chen, L. Meng, W. Xu, F. Cao, L. Li, Adv. Energy Mater. 10(2020) 1903951. [154] Y. Wang, C. Chen, W. Tian, W. Xu, L. Li, Nanotechnology 30 (2019) 495402. [155] X. Shi, F. Dong, C. Dai, X. Ye, P. Yang, L. Zheng, H. Zheng, Electrochim. Acta 361 (2020) 137017. [156] T. Wang, X. Fan, B. Gao, C. Jiang, Y. Li, P. Li, S. Zhang, X. Huang, J. He, ChemElectroChem 8 (2021) 125-134. [157] Z. Hao, Z. Liu, Y. Li, M. Ruan, Z. Guo, Int. J. Hydrogen Energy 45 (2020) 16550-16559. [158] J. Liu, Q. Yang, J. Liu, H. Luo, J. Mater. Sci. 56(2021) 8079-8090. [159] Z. Chen, A.J. Corkett, C. de Bruin-Dickason, J.Chen, A. Rokiciń ska, P. Kuśtrowski, R. Dronskowski, A. Slabon, Inorg. Chem. 59(2020) 13589-13597. [160] Z. Hao, Z. Guo, M. Ruan, J. Ya, Y. Yang, X. Wu, Z. Liu, ChemCatChem 13 (2021) 271-280. [161] Y. Ma, Y.H. Hu, J. Phys. Chem. C 124 (2020) 19447-19456. [162] X. Zhang, X. Bian, H. Xu, W. Wu, Appl. Surf. Sci. 542(2021) 148579. [163] X. Cao, C. Xu, J. Ma, Y. Dong, C. Dong, M. Yue, Y. Ding, ChemSusChem 12 (2019) 4685-4692. [164] Y.-F.Zhang, Y.-K. Zhu, C.-X. Lv, S.-J. Lai, W.-J. Xu, J. Sun, Y.-Y. Sun, D.-J. Yang, Rare Met. 39(2020) 841-849. [165] J. Zhang, G. Zhu, W. Liu, Y. Xi, D.A. Golosov, S.M. Zavadski, S.N. Melnikov, J. Alloys Compd. 834(2020) 154992. [166] X. Zhang, X. Wang, D. Wang, J. Ye, ACS Appl. Mater. Interfaces 11 (2019) 5623-5631. [167] Y. Liu, B.R. Wygant, K. Kawashima, O. Mabayoje, T.E. Hong, S.-G.Lee, J. Lin, J.-H. Kim, K. Yubuta, W. Li, J. Li, C.B. Mullins, Appl. Catal. B Environ. 245(2019) 227-239. [168] S. Khoomortezaei, H. Abdizadeh, M.R. Golobostanfard, ACS Appl. Energy Mater. 2(2019) 6428-6439. [169] V.O. Smilyk, S.S. Fomanyuk, G.Y. Kolbasov, I.A. Rusetskyi, V.S. Vorobets, Res. Chem. Intermed. 45(2019) 4149-4161. [170] L. Zhou, Y. Wu, L. Wang, Y. Yang, Y. Na, Inorg. Chem. Commun. 107(2019) 107480. [171] I. Grigioni, L. Ganzer, F.V.A.Camargo, B. Bozzini, G.Cerullo, E. Selli, ACS Energy Lett. 4(2019) 2213-2219. [172] Q. Pan, H. Zhang, Y. Yang, C. Cheng, Small 15 (2019) 1900924. [173] V.S. Kumbhar, H. Lee, J. Lee, K. Lee, J. Colloid Interface Sci. 557(2019) 478-487. [174] L. Zhang, M. Yang, Z. Luo, J. Zhang, Y. Hou, Int. J. Hydrogen Energy 44 (2019) 25652-25661. [175] S. Ju, H.-J.Seok, J. Jun, D. Huh, S. Son, K. Kim, W. Kim, S. Baek, H.-K. Kim, H. Lee, Appl. Catal. B Environ. 263(2020) 118362. [176] S. Phiankoh, P. Prajongtat, M. Chareonpanich, R. Munprom, Energy Technol. 8(2020) 2000147. [177] H. Sun, W. Hua, Y. Li, J.-G.Wang, A.C.S. Sustain, Chem. Eng. 8(2020) 12637-12645. [178] S.D. Ghadge, M.K. Datta, O.I. Velikokhatnyi, P.N. Kumta, Int. J. Hydrogen Energy 47 (2022) 993-1005. [179] J.H. Kim, J.W. Yoon, T.H. Kim, Y.M. Jo, J.S. Kim, S.Y. Jeong, J.H. Lee, Chem. Eng. J. 425(2021) 131496. [180] A. Singh, S. Karmakar, S. Basu, Int. J. Hydrogen Energy 46 (2021) 39868-39881. [181] J. Ji, P. Sang, J.H. Kim, Ceram. Int. 47(2021) 26260-26270. [182] M.S. Sayed, D. Mohapatra, M.L. Baynosa, J.J. Shim, J. Colloid Interface Sci. 598(2021) 348-357. [183] E. Park, S.S. Patil, H. Lee, V.S. Kumbhar, K. Lee, Nanoscale 13 (2021) 16932-16941. [184] J. Feng, H. Huang, W. Guo, X. Xu, Y. Yao, Z. Yu, Z. Li, Z. Zou, Chem. Eng. J. 417(2021) 128095. [185] J. Li, C. Guo, L. Li, Y. Gu, K. BoK-Hee, J. Huang, Catal. Letters 152 (2022) 1611-1620. [186] M. Sun, R.T. Gao, J. He, X. Liu, T. Nakajima, X. Zhang, L. Wang, Angew. Chemie -Int.Ed. 60(2021) 17601-17607. [187] V. Madhavi, P. Kondaiah, H. Shaik, K.N. Kumar, T.S.S.Kumar Naik, G.M. Rao, P. C. Ramamurthy, Mater. Chem. Phys. 274(2021) 125095. [188] D.B. Seo, S. Yoo, V. Dongquoc, T.N. Trung, E.T. Kim, J. Alloys Compd. 888(2021) 161587. [189] Q. Zhao, Z. Liu, J. Li, W. Yan, J. Ya, X. Wu, Int. J. Hydrogen Energy 46 (2021) 36113-36123. [190] J. Wang, T. Zhou, Y. Zhang, S. Chen, J. Bai, J. Li, H. Zhu, B. Zhou, J. Colloid Interface Sci. 600(2021) 828-837. [191] H. Wu, Q. Liu, L. Zhang, Y. Tang, G. Wang, G. Mao, ACS Appl. Energy Mater. 4(2021) 12508-12514. [192] M.-J. Choi, T.L. Kim, K.S. Choi, W. Sohn, T.H. Lee, S.A. Lee, H. Park, S.Y. Jeong, J. W. Yang, S. Lee, H.W. Jang, ACS Appl. Mater. Interfaces 14 (2022) 7788-7795. [193] J. Divya, S. Prakash, P. Saxena, S. Kumar, A.M. Dass, R.S. Kannan, J. Appl. Electrochem. 52(2022) 535-558. [194] U. Prasad, J.L. Young, J.C. Johnson, D.L. McGott, H. Gu, E. Garfunkel, A.M. Kannan, J. Mater. Chem. A 9 (2021) 16137-16149. [195] C.X.M.Ta, Y. Furusho, F.Amano, Appl. Surf. Sci. 548(2021) 149251. [196] W. Lin, Y. Yu, Y. Fang, J. Liu, X. Li, J. Wang, Y. Zhang, C. Wang, L. Wang, X. Yu, Langmuir 37 (2021) 6490-6497. [197] M.A. Khalifa, L. Shen, J. Zheng, C. Xu, RSC Adv. 11(2021) 13513-13520. [198] M. Wang, Q. Zeng, S. Chang, S. Li, C. Hu, Z. Chen, Phys. Chem. Chem. Phys. 23(2021) 8241-8245. [199] J. Liu, W. Chen, Q. Sun, Y. Zhang, X. Li, J. Wang, C. Wang, Y. Yu, L. Wang, X. Yu, ACS Appl. Energy Mater. 4(2021) 2864-2872. |
[1] | Jiwon Kim, Talshyn Begildayeva, Jayaraman Theerthagiri, Cheol Joo Moon, Ahreum Min, Seung Jun Lee, Gyeong-Ah Kim, Myong Yong Choi. Manifolding active sites and in situ/operando electrochemical-Raman spectroscopic studies of single-metal nanoparticle-decorated CuO nanorods in furfural biomass valorization to H2 and 2-furoic acid [J]. Journal of Energy Chemistry, 2023, 84(9): 50-61. |
[2] | Zhengyan Du, Zeshuo Meng, Chao Jiang, Chenxu Zhang, Yanan Cui, Yaxin Li, Chong Wang, Xiaoying Hu, Shansheng Yu, Hongwei Tian. Enhanced reconstruction of Fe5Ni4S8 by implanting pyrrolidone to unlock efficient oxygen evolution [J]. Journal of Energy Chemistry, 2023, 84(9): 112-121. |
[3] | Mengxin Chen, Yuanyuan Zhang, Ran Wang, Bin Zhang, Bo Song, Yanchao Guan, Siwei Li, Ping Xu. Surface reconstruction of Se-doped NiS2 enables high-efficiency oxygen evolution reaction [J]. Journal of Energy Chemistry, 2023, 84(9): 173-180. |
[4] | Wa Gao, Yinwen Li, Dequan Xiao, Ding Ma. Advances in photothermal conversion of carbon dioxide to solar fuels [J]. Journal of Energy Chemistry, 2023, 83(8): 62-78. |
[5] | So Jung Kim, Heechae Choi, Jeong Ho Ryu, Kang Min Kim, Sungwook Mhin, Arpan Kumar Nayak, Junghwan Bang, Minyeong Je, Ghulam Ali, Kyung Yoon Chung, Kyeong-Han Na, Won-Youl Choi, Sunghwan Yeo, Jin Uk Jang, HyukSu Han. Zn-doped nickel iron (oxy)hydroxide nanocubes passivated by polyanions with high catalytic activity and corrosion resistance for seawater oxidation [J]. Journal of Energy Chemistry, 2023, 81(6): 82-92. |
[6] | Xiaolin Hu, Ronghua Wang, Wenlin Feng, Chaohe Xu, Zidong Wei. Electrocatalytic oxygen evolution activities of metal chalcogenides and phosphides: Fundamentals, origins, and future strategies [J]. Journal of Energy Chemistry, 2023, 81(6): 167-191. |
[7] | Ansheng Wang, Shan Gao, Jiaguo Yan, Chunning Zhao, Meng Yu, Weichao Wang. Vacancy-modified bimetallic FeMoSx/CoNiPx heterostructure array for efficient seawater splitting and Zn-air battery [J]. Journal of Energy Chemistry, 2023, 81(6): 533-542. |
[8] | Lingxue Meng, Wenwei Liu, Yang Lu, Zhenyi Liang, Ting He, Jinying Li, Haoxiong Nan, Shengxu Luo, Jia Yu. Lamellar-stacked cobalt-based nanopiles integrated with nitrogen/sulfur co-doped graphene as a bifunctional electrocatalyst for ultralong-term zinc-air batteries [J]. Journal of Energy Chemistry, 2023, 81(6): 633-641. |
[9] | Rongrong Zhang, Beibei Guo, Lun Pan, Zhen-Feng Huang, Chengxiang Shi, Xiangwen Zhang, Ji-Jun Zou. Metal-oxoacid-mediated oxyhydroxide with proton acceptor to break adsorption energy scaling relation for efficient oxygen evolution [J]. Journal of Energy Chemistry, 2023, 80(5): 594-602. |
[10] | Rashid Mehmood, Guifa Long, Wenjun Fan, Mingrun Li, Lifang Liu, Fuxiang Zhang. One dimensional nickel phosphide polymorphic heterostructure as carbon-free functional support loading single-atom iridium for promoted electrocatalytic water oxidation [J]. Journal of Energy Chemistry, 2023, 79(4): 410-417. |
[11] | Hanjin Jiang, Xinghang Liu, Dewen Wang, Zhenan Qiao, Dong Wang, Fei Huang, Hongyan Peng, Chaoquan Hu. Designing high-efficiency light-to-thermal conversion materials for solar desalination and photothermal catalysis [J]. Journal of Energy Chemistry, 2023, 79(4): 581-600. |
[12] | Shuhao Wang, Xinyan Liu, Xiang Chen, Kamran Dastafkan, Zhong-Heng Fu, Xin Tan, Qiang Zhang, Chuan Zhao. Super-exchange effect induced by early 3d metal doping on NiFe2O4(001) surface for oxygen evolution reaction [J]. Journal of Energy Chemistry, 2023, 78(3): 21-29. |
[13] | Zhengmei Zhang, Lei Jia, Tong Li, Jinmei Qian, Xiaolei Liang, Desheng Xue, Daqiang Gao. In-situ magnetic field enhanced performances in ferromagnetic FeCo2O4nanofibers-based rechargeable Zinc-air batteries [J]. Journal of Energy Chemistry, 2023, 78(3): 447-453. |
[14] | Fangyuan Diao, Mikkel Rykær Kraglund, Huili Cao, Xiaomei Yan, Pei Liu, Christian Engelbrekt, Xinxin Xiao. Moderate heat treatment of CoFe Prussian blue analogues for enhanced oxygen evolution reaction performance [J]. Journal of Energy Chemistry, 2023, 78(3): 476-486. |
[15] | Mengwei Guo, Rongrong Deng, Chaowu Wang, Qibo Zhang. Recent progress of advanced manganese oxide-based materials for acidic oxygen evolution reaction: Fundamentals, performance optimization, and prospects [J]. Journal of Energy Chemistry, 2023, 78(3): 537-553. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||