Journal of Energy Chemistry ›› 2022, Vol. 69 ›› Issue (6): 261-269.DOI: 10.1016/j.jechem.2022.01.014
Previous Articles Next Articles
Pan Luoa,c, Xue-Yin Suna,b,*, Hao Jianga, Li Yanga, Yang Lia,c, Wen-Zhu Shaoa,b, Liang Zhena,c,d, Cheng-Yan Xuc,d,*
Received:
2021-10-18
Revised:
2021-12-22
Accepted:
2022-01-09
Online:
2022-06-15
Published:
2022-10-25
Contact:
* E-mail addresses: hit2001sun@hit.edu.cn (X.-Y. Sun), cy_xu@hit.edu.cn (C.-Y. Xu).
Pan Luo, Xue-Yin Sun, Hao Jiang, Li Yang, Yang Li, Wen-Zhu Shao, Liang Zhen, Cheng-Yan Xu. Enhanced proton irradiation resistance in Cs-doped CH3NH3PbI3 films and solar cells[J]. Journal of Energy Chemistry, 2022, 69(6): 261-269.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2022.01.014
[1] M. Liu, M.B. Johnston, H.J. Snaith, Nature 501 (2013) 395-398. [2] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7(2014) 982-988. [3] V. D’Innocenzo, G. Grancini, M.J.P.Alcocer, A.R.S.Kandada, S.D. Stranks, M.M. Lee, G. Lanzani, H.J. Snaith, A. Petrozza, Nat. Commun. 5(2014) 3586. [4] K.X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, J.J. Berry, ACS Energy Lett. 1(2016) 360-366. [5] S. Mahjabin, M.M. Haque, K. Sobayel, M.S. Jamal, M.A. Islam, V. Selvanathan, A. K. Assaifan, H.F. Alharbi, K. Sopian, N. Amin, M. Akhtaruzzaman, IEEE Access. 8(2020) 106346-106353. [6] National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html (accessed 14 December2021). [7] Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, J. You, Adv. Mater. 29(2017) 1703852. [8] Y. Ma, Q. Zhao, J. Energy Chem. 64(2022) 538-560. [9] S. Kang, J. Jeong, S. Cho, Y.J. Yoon, S. Park, S. Lim, J.Y. Kim, H. Ko, J. Mater. Chem. A 7 (2019) 1107-1114. [10] M.O. Reese, S. Glynn, M.D. Kempe, D.L. McGott, M.S. Dabney, T.M. Barnes, S. Booth, D. Feldman, N.M. Haegel, Nat. Energy 3 (2018) 1002-1012. [11] F. Lang, N.H. Nickel, J. Bundesmann, S. Seidel, A. Denker, S. Albrecht, V.V. Brus, J. Rappich, B. Rech, G. Landi, H.C. Neitzert, Adv. Mater. 28(2016) 8726-8731. [12] Y. Miyazawa, M. Ikegami, H.W. Chen, T. Ohshima, M. Imaizumi, K. Hirose, T. Miyasaka, iScience 2 (2018) 148-155. [13] Y. Tu, J. Wu, G. Xu, X. Yang, R. Cai, Q. Gong, R. Zhu, W. Huang, Adv. Mater. 33(2021) 2006545. [14] M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P.Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 9(2016) 1989-1997. [15] J. Yang, Y. Chen, W. Tang, S. Wang, Q. Ma, Y. Wu, N. Yuan, J. Ding, W.H. Zhang, J. Energy Chem. 48(2020) 217-225. [16] R.J. Sutton, G.E. Eperon, L. Miranda, E.S. Parrott, B.A. Kamino, J.B. Patel, M.T. Hörantner, M.B. Johnston, A.A. Haghighirad, D.T. Moore, H.J. Snaith, Adv. Energy Mater. 6(2016) 1502458. [17] L. Tao, J. Qiu, B. Sun, X. Wang, X. Ran, L. Song, W. Shi, Q. Zhong, P. Li, H. Zhang,Y. Xia, P. Müller-Buschbaum, Y. Chen, J. Energy Chem. 61(2021) 395-415. [18] S. Sun, A. Tiihonen, F. Oviedo, Z. Liu, J. Thapa, Y. Zhao, N.T.P. Hartono, A. Goyal,T. Heumueller, C. Batali, A. Encinas, J.J. Yoo, R. Li, Z. Ren, I.M. Peters, C.J. Brabec,M.G. Bawendi, V. Stevanovic, J. Fisher, T. Buonassisi, Matter 4 (2021) 1305-1322. [19] J. Gong, P. Guo, S.E. Benjamin, P.G.V.Patten, R.D. Schaller, T. Xu, J.Energy Chem. 27(2018) 1017. [20] C.W. Myung, J. Yun, G. Lee, K.S. Kim, Adv. Energy Mater. 8(2018) 1702898. [21] M. Qin, H. Xue, H. Zhang, H. Hu, K. Liu, Y. Li, Z. Qin, J. Ma, H. Zhu, K. Yan, G. Fang,G. Li, U.-S.Jeng, G. Brocks, S. Tao, X. Lu, Adv. Mater. 32(2020) 2004630. [22] W. Jian, R. Jia, H.X. Zhang, F.Q. Bai, Inorg. Chem. Front. 7(2020) 1741-1749. [23] Miyazawa Y., Ikegami M., Miyasaka T., Ohshima T., Imaizumi M., Hirose K., in: 2015 IEEE 42nd Photovoltaic Specialists Conference, New Orleans, 2015, pp. 1-4. [24] Huang J., Kelzenberg M.D., Espinet-González P., Mann C., Walker D., Naqavi A., Vaidya N., Warmann E., Atwater H.A., in: 2017 IEEE 44th Photovoltaic Specialist Conference, Washington, D.C., 2017, pp. 1248-1252. [25] V.V. Brus, F. Lang, J. Bundesmann, S. Seidel, A. Denker, B. Rech, G. Landi, H.C. Neitzert, J. Rappich, N.H. Nickel, Adv. Electron. Mater. 3(2017) 1600438. [26] K. Motoki, Y. Miyazawa, D. Kobayashi, M. Ikegami, T. Miyasaka, T. Yamamoto, K. Hirose, J. Appl. Phys. 121(2017) 085501. [27] Z. Song, C. Li, C. Chen, J. McNatt, W. Yoon, D. Scheiman, P.P. Jenkins, R.J. Ellingson, M.J. Heben, Y. Yan, J. Phys. Chem. C 124 (2020) 1330-1336. [28] J. Barbe, D. Hughes, Z.F. Wei, A. Pockett, H.K.H.Lee, K.C. Heasman, M.J. Carnie T.M. Watson, W.C. Tsoi, Sol. RRL 3 (2019) 1900219. [29] F. Lang, M. Jošt, J. Bundesmann, A. Denker, S. Albrecht, G. Landi, H.C. Neitzert, J. Rappich, N.H. Nickel, Energy Environ. Sci. 12(2019) 1634-1647. [30] F. Lang, M. Jošt, K. Frohna, E. Köhnen, A. Al-Ashouri, A.R. Bowman, T. Bertram,A.B. Morales-Vilches, D. Koushik, E.M. Tennyson, K. Galkowski, G. Landi, M. Creatore, B. Stannowski, C.A. Kaufmann, J. Bundesmann, J. Rappich, B. Rech, A. Denker, S. Albrecht, H.-C. Neitzert, N.H. Nickel, S.D. Stranks, Joule 4 (2020) 1054-1069. [31] S. Yang, Z. Xu, S. Xue, P. Kandlakunta, L. Cao, J. Huang, Adv. Mater. 31(2019) 1805547. [32] K. Huang, K. Yang, H. Li, S. Zheng, J. Wang, H. Guo, Y. Peng, X. Zhong, J. Yang, ACS Appl. Energy Mater. 3(2020) 7318-7324. [33] J. Yang, Q. Bao, L. Shen, L. Ding, Nano Energy 76 (2020) 105019. [34] M.D. Xiao, F.Z. Huang, W.C. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.B. Cheng, L. Spiccia, Angew. Chem. Int. Ed. 53(2014) 9898-9903. [35] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186. [36] G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6(1996) 15-50. [37] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868. [38] T. Markvart, J. Mater. Sci.Mater. Electron. 1(1990) 1-12. [39] M. Rogalla, K. Runge, A. Söldner-Rembold, Nucl. Phys. B Proc.Suppl. 78(1999) 516-520. [40] D. Liu, S. Li, F. Bian, X. Meng, Materials 11 (2018) 1141. [41] C. Kittel, Introduction to Solid State Physics, 8th ed., John Wiley, Sons, Hoboken, 2005. [42] C. Wang, C. Zhang, S. Wang, G. Liu, H. Xia, S. Tong, J. He, D. Niu, C. Zhou, K. Ding, Y. Gao, J. Yang, Sol. RRL 2 (2018) 1700209. [43] X. Zhang, X. Ren, B. Liu, R. Munir, X. Zhu, D. Yang, J. Li, Y. Liu, D.M. Smilgies, R. Li, Z. Yang, T. Niu, X. Wang, A. Amassian, K. Zhao, S. Liu, Energy Environ. Sci. 10(2017) 2095-2102. [44] A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M.K. Nazeeruddin, M. Grätzel, F. De Angelis, Nano Lett. 14(2014) 3608-3616. [45] Z. Li, M. Yang, J.S. Park, S.H. Wei, J.J. Berry, K. Zhu, Chem. Mater. 28(2016) 284-292. [46] M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photonics 8 (2014) 506-514. [47] C. Suryanarayana, M.G. Norton, X-Ray Diffraction—A Practical Approach, Springer, New York, 1998. [48] T.W. Jones, A. Osherov, M. Alsari, M. Sponseller, B.C. Duck, Y.K. Jung, C. Settens,F. Niroui, R. Brenes, C.V. Stan, Y. Li, M. Abdi-Jalebi, N. Tamura, J.E. Macdonald,M. Burghammer, R.H. Friend, V. Bulovic´, A. Walsh, G.J. Wilson, S. Lilliu, S.D. Stranks, Energy Environ. Sci. 12(2019) 596-606. [49] P. Luo, X.Y. Sun, Y. Li, L. Yang, W.Z. Shao, L. Zhen, C.Y. Xu, ACS Appl. Energy Mater. 4(2021) 13504-13515. [50] S. Kanaya, G.M. Kim, M. Ikegami, T. Miyasaka, K. Suzuki, Y. Miyazawa, H. Toyota, K. Osonoe, T. Yamamoto, K. Hirose, J. Phys. Chem.Lett. 10(2019) 6990-6995. [51] E. Aydin, M. De Bastiani, S. De Wolf, Adv. Mater. 31(2019) 1900428. [52] N. Klein-Kedem, D. Cahen, G. Hodes, Acc. Chem. Res. 49(2016) 347-354. [53] C. Xiao, Z. Li, H. Guthrey, J. Moseley, Y. Yang, S. Wozny, H. Moutinho, B. To, J.J. Berry, B. Gorman, Y. Yan, K. Zhu, M. Al-Jassim, J. Phys. Chem. C 119 (2015) 26904-26911. [54] J. Ran, O. Dyck, X. Wang, B. Yang, D.B. Geohegan, K. Xiao, Adv. Energy Mater. 10(2020) 1903191. [55] Z. Tang, S. Uchida, T. Bessho, T. Kinoshita, H. Wang, F. Awai, R. Jono, M.M. Maitani, J. Nakazaki, T. Kubo, H. Segawa, Nano Energy 45 (2018) 184-192. [56] S. Gharibzadeh, B. Abdollahi Nejand, M. Jakoby, T. Abzieher, D. Hauschild, S. Moghadamzadeh, J.A. Schwenzer, P. Brenner, R. Schmager, A.A. Haghighirad, L. Weinhardt, U. Lemmer, B.S. Richards, I.A. Howard, U.W. Paetzold, Adv. Energy Mater. 9(2019) 1803699. [57] R. Udayabhaskar, B. Karthikeyan, J. Appl. Phys. 116(2014) 094310. [58] T.J. Jacobsson, S. Svanström, V. Andrei, J.P.H. Rivett, N. Kornienko, B. Philippe, U.B. Cappel, H. Rensmo, F. Deschler, G. Boschloo, J. Phys. Chem. C 122 (2018) 13548-13557. [59] R. Brakkee, R.M. Williams, Appl. Sci. 10(2020) 3061. [60] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, O.M. Bakr, Science 347 (2015) 519-522. [61] M. Sajedi Alvar, P.W.M.Blom, G.J.A.H. Wetzelaer, Nat. Commun. 11(2020) 4023. [62] R.H. Bube, J. Appl. Phys. 33(1962) 1733-1737. [63] A. Taya, P. Rani, J. Thakur, M.K. Kashyap, Vacuum 160 (2019) 440-444. [64] D. Liu, W. Zha, J. Chen, R. Sa, Appl. Phys. Express 13 (2020) 011007. [65] H. Choi, J. Jeong, H.B. Kim, S. Kim, B. Walker, G.H. Kim, J.Y. Kim, Nano Energy 7 (2014) 80-85. [66] F. Bella, P. Renzi, C. Cavallo, C. Gerbaldi, Chem. Eur. J. 24(2018) 12183-12205. [67] G. Wu, R. Sun, L. Hu, X. Dong, G. Cui, M. Gu, T.B. Tang, Z. Zuo, Y. Liu, Sol. RRL 4 (2020) 1900406. [68] M. Deepa, M. Salado, L. Calio, S. Kazim, S.M. Shivaprasad, S. Ahmad, Phys. Chem. Chem. Phys. 19(2017) 4069-4077. [69] D. Lin, T. Shi, H. Xie, F. Wan, X. Ren, K. Liu, Y. Zhao, L. Ke, Y. Lin, Y. Gao, X. Xu, W. Xie, P. Liu, Y. Yuan, Adv. Energy Mater. 11(2021) 2002552. |
[1] | Yiming Xiong, Haoyu Cai, Wang Yue, Wenjian Shen, Xuehao Zhu, Juan Zhao, Fuzhi Huang, Yi-Bing Cheng, Jie Zhong. Low-cost biodegradable lead sequestration film for perovskite solar cells [J]. Journal of Energy Chemistry, 2023, 84(9): 311-320. |
[2] | Hualin Zheng, Xuefeng Peng, Tingxi Chen, Ting Zhang, Shihao Yuan, Lei Wang, Feng Qian, Jiang Huang, Xiaodong Liu, Zhi David Chen, Yanning Zhang, Shibin Li. Boosting efficiency and stability of 2D alternating cation perovskite solar cells via rational surface-modification: Marked passivation efficacy of anion [J]. Journal of Energy Chemistry, 2023, 84(9): 354-362. |
[3] | Wu Liu, Ning Meng, Xiaomin Huo, Yao Lu, Yu Zhang, Xiaofeng Huang, Zhenqun Liang, Suling Zhao, Bo Qiao, Zhiqin Liang, Zheng Xu, Dandan Song. Machine learning enables intelligent screening of interface materials towards minimizing voltage losses for p-i-n type perovskite solar cells [J]. Journal of Energy Chemistry, 2023, 83(8): 128-137. |
[4] | Yuanyuan Zhao, Huimin Xiang, Ran Ran, Wei Zhou, Wei Wang, Zongping Shao. Beyond two-dimension: One- and zero-dimensional halide perovskites as new-generation passivators for high-performance perovskite solar cells [J]. Journal of Energy Chemistry, 2023, 83(8): 189-208. |
[5] | Congtan Zhu, Jing Gao, Tian Chen, Xueyi Guo, Ying Yang. Intrinsic thermal stability of inverted perovskite solar cells based on electrochemical deposited PEDOT [J]. Journal of Energy Chemistry, 2023, 83(8): 445-453. |
[6] | Miaoyu Lin, Jingjing He, Xinyi Liu, Qing Li, Zhanpeng Wei, Yuting Sun, Xuesong Leng, Mengjiong Chen, Zhuhui Xia, Yu Peng, Qiang Niu, Shuang Yang, Yu Hou. Nano-capillary induced assemble of quantum dots on perovskite grain boundaries for efficient and stable perovskite solar cells [J]. Journal of Energy Chemistry, 2023, 83(8): 595-601. |
[7] | Yinhua Lv, Bing Cai, Ruihan Yuan, Yihui Wu, Quinn Qiao, Wen-Hua Zhang. Toward high-efficiency perovskite solar cells with one-dimensional oriented nanostructured electron transport materials [J]. Journal of Energy Chemistry, 2023, 82(7): 66-87. |
[8] | Daizhe Wang, Cong Kang, Tengling Ye, Dongqing He, Shan Jin, Xiaoru Zhang, Xiaochen Sun, Yong Zhang. A novel perylene diimide-based ionene polymer and its mixed cathode interlayer strategy for efficient and stable inverted perovskite solar cells [J]. Journal of Energy Chemistry, 2023, 82(7): 334-342. |
[9] | Lin Yang, Peng Li, Jiangang Ma, Xintong Zhang, Xiao-Feng Wang, Yichun Liu. MXenes for perovskite solar cells: Progress and prospects [J]. Journal of Energy Chemistry, 2023, 81(6): 443-461. |
[10] | Dongmei He, Ru Li, Baibai Liu, Qian Zhou, Hua Yang, Xuemeng Yu, Shaokuan Gong, Xihan Chen, Baomin Xu, Shangfeng Yang, Jiangzhao Chen. Unraveling abnormal buried interface anion defect passivation mechanisms depending on cation-induced steric hindrance for efficient and stable perovskite solar cells [J]. Journal of Energy Chemistry, 2023, 80(5): 1-9. |
[11] | Yue Liu, Yanbo Gao, Tingting Li, Xinyu Bao, Zehua Xu, Fujun Zhang, Min Lu, Zhennan Wu, Yanjie Wu, Guang Sun, Xue Bai, Zhifeng Shi, Junhua Hu, Yu Zhang. Simultaneous bottom-up double-layer synergistic engineering by multifunctional natural molecules for efficient and stable SnO2-based planar perovskite solar cells [J]. Journal of Energy Chemistry, 2023, 80(5): 40-47. |
[12] | Dongyang Li, Yulan Huang, Zhiwei Ren, Abbas Amini, Aleksandra B. Djurišić, Chun Cheng, Gang Li. Recent progress of inverted organic-inorganic halide perovskite solar cells [J]. Journal of Energy Chemistry, 2023, 79(4): 168-191. |
[13] | Nikolai A. Belich, Andrey A. Petrov, Pavel A. Ivlev, Natalia N. Udalova, Alla A. Pustovalova, Eugene A. Goodilin, Alexey B. Tarasov. How to stabilize standard perovskite solar cells to withstand operating conditions under an ambient environment for more than 1000 hours using simple and universal encapsulation [J]. Journal of Energy Chemistry, 2023, 78(3): 246-249. |
[14] | Guibin Shen, Hongye Dong, Fan Yang, Xin Ren Ng, Xin Li, Fen Lin, Cheng Mu. Application of an amphipathic molecule at the NiOx/perovskite interface for improving the efficiency and long-term stability of the inverted perovskite solar cells [J]. Journal of Energy Chemistry, 2023, 78(3): 454-462. |
[15] | Weiguang Chi, Sanjay K. Banerjee. Comparison and integration of CuInGaSe and perovskite solar cells [J]. Journal of Energy Chemistry, 2023, 78(3): 463-475. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||