Journal of Energy Chemistry ›› 2022, Vol. 69 ›› Issue (6): 292-300.DOI: 10.1016/j.jechem.2022.01.042
Previous Articles Next Articles
Depeng Zhaoa, Meizhen Daia, Hengqi Liua, Zhongxin Duana, Xiaojie Tana, Xiang Wua,b,*
Received:
2021-12-03
Revised:
2022-01-20
Accepted:
2022-01-24
Online:
2022-06-15
Published:
2022-10-25
Contact:
* E-mail addresses: wuxiang05@sut.edu.cn, wuxiang05@163.com (X. Wu).
Depeng Zhao, Meizhen Dai, Hengqi Liu, Zhongxin Duan, Xiaojie Tan, Xiang Wu. Bifunctional ZnCo2S4@CoZn13 hybrid electrocatalysts for high efficient overall water splitting[J]. Journal of Energy Chemistry, 2022, 69(6): 292-300.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2022.01.042
[1] J.G. Sun, D.X. Ji, H.L. Ye, B.Y. Yu, Y.M. Wang, S. Ramakrishna, L. Lu, Cell Rep. Phys. Sci. 1(2020) 100082. [2] D.P. Zhao, R. Zhang, M.Z. Dai, H.Q. Liu, W. Jian, F.Q. Bai, X. Wu, Small 18 (2022) 2107268. [3] Y.L. Zhu, Q. Lin, Z.B. Wang, D.C. Qi, Y.C. Yin, Y. Liu, X.W. Zhang, Z.P. Shao, H.T. Wang, J. Energy Chem. 52(2021) 115-120. [4] Z.X. Duan, X.J. Tan, Y.C. Sun, W.C. Zhang, A. Umar, X. Wu, ACS Appl. Nano Mater. 4(2021) 10791-10798. [5] L.M. Cao, D. Lu, D.C. Zhong, T.B. Lu, Coord. Chem. Rev. 407(2020) 213156. [6] M.Z. Dai, H.Q. Liu, D.P. Zhao, X.F. Zhu, A. Umar, H. Algarni, X. Wu, ACS Appl. Nano Mater. 4(2021) 5461-5468. [7] M. Arif, G. Yasin, M. Shakeel, M.A. Mushtaq, W. Ye, X. Fang, S. Ji, D. Yan, Mater. Chem. Front. 3(2019) 520-531. [8] D.D. Babu, Y.Y. Huang, G. Anandhababu, X. Wang, R. Si, M.X. Wu, Q.H. Li, Y.B. Wang, J.M. Yao, J. Mater. Chem. A 7 (2019) 8376-8383. [9] M. Arif, G. Yasin, M. Shakeel, M.A. Mushtaq, W. Ye, X.Y. Fang, S.F. Ji, D.P. Yan, J. Energy Chem. 58(2021) 237-243. [10] H.Q. Liu, D.P. Zhao, Y. Liu, Y.L. Tong, X. Wu, G.Z. Shen, Sci. China Mater. 64(2021) 581-591. [11] Z.X. Duan, H.Q. Liu, X.J. Tan, A. Umar, X. Wu, Catal. Commun. 162(2022) 106379. [12] R. Gao, J. Zhu, D.P. Yan, Nanoscale 13 (2021) 13593. [13] D.P. Zhao, M.Z. Dai, H.Q. Liu, L. Xiao, X. Wu, H. Xia, Cryst. Growth. Des. 19(2019) 1921-1929. [14] W.J. Song, M.Z. Xu, X. Teng, Y.L. Niu, S.Q. Gong, X.A. Liu, X.M. He, Z.F. Chen, Nanoscale 3 (2021) 1680-1688. [15] Y. Jiang, S.S. Gao, J.L. Liu, G.C. Xu, J. Qiang, F.S. Chen, X.M. Song, Nanoscale 12 (2020) 11573-11581. [16] Z. Yu, Y. Bai, S.M. Zhang, Y.X. Liu, N.Q. Zhang, K.N. Sun, J. Mater. Chem. A 22 (2018) 10441-10446. [17] L.H. Yao, N. Zhang, Y. Wang, Y.M. Nia, D.P. Yan, C.W. Hu, J. Power Sources 374 (2018) 142-148. [18] J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Nat. Commun. 8(2017) 14969. [19] J. Feng, H. Zhou, D. Chen, T. Bian, A. Yuan, Electrochim. Acta 331 (2020) 135445. [20] B.Y. Guan, Y. Lu, Y. Wang, M. Wu, X.W.D.Lou, Adv. Funct. Mater. 28(2018) 1706738. [21] L.F. Sun, X.H. Zhang, W.Y. Wang, J.H. Chen, Anal. Methods 7 (2015) 5060-5066. [22] S. Ibraheem, G. Yasin, A. Kumar, M.A. Mushtaq, S. Ibrahim, R. Iqbal, M. Tabish, S. Ali, A. Saad, Appl. Catal. B-Environ. 304(2022) 120987. [23] M.Z. Dai, D.P. Zhao, H.Q. Liu, Y.L. Tong, P.F. Hu, X. Wu, Mater. Today Energy 16 (2020) 100412. [24] D.C. Liu, L.M. Cao, Z.M. Luo, D.C. Zhong, J.B. Tan, T.B. Lu, J. Mater. Chem. A 6 (2018) 24920-24927. [25] D.P. Zhao, M.Z. Dai, H.Q. Liu, X.F. Zhu, X. Wu, Mater. Today Energy 20 (2021) 100637. [26] H.Q. Liu, D.P. Zhao, P.F. Hu, K.F. Chen, X. Wu, D.F. Xue, Mater. Today Phys. 13(2020) 100197. [27] H. Liu, Z. Liu, F. Wang, L. Feng, Chem. Eng. J. 397(2020) 125507. [28] G. Bronoel, J. Reby, Electrochim. Acta 25 (1980) 973-976. [29] R. Iqbal, S. Ali, G. Yasin, S. Ibraheem, M. Tabish, M.H.H.Chen, H. Xu, J.Zeng, W. Zhao, Chem. Eng. J. 430(2022) 132642. [30] Y. Li, L. Zhang, X. Xiang, D.P. Yan, F. Li, J. Mater. Chem. A 2 (2014) 13250-13257. [31] G. Anandhababu, Y.Y. Huang, D.D. Babu, M.X. Wu, Y.B. Wang, Adv. Funct. Mater. 28(2018) 1706120. [32] S.C. Abbas, J. Wu, Y.Y. Huang, D.D. Babu, G. Anandhababu, M.A. Ghausi, M.X. Wu, Y.B. Wang, Int. J. Hydrogen Energy 43 (2018) 16-23. [33] T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, J. Am. Chem.Soc. 136(2014) 13925-13931. [34] W.G. Wang, D.D. Babu, Y.Y. Huang, J.Q. Lv, Y.B. Wang, M.X. Wu, Int. J. Hydrogen Energy 43 (2018) 10351-10358. [35] D. Zhao, H. Liu, X. Wu, Nano Energy 57 (2019) 363-370. [36] M.L. Yan, Y.D. Yao, J.Q. Wen, L. Long, M.K. Kong, G.G. Zhang, X.M. Liao, G.F.Yin Z.B. Huang, ACS Appl. Mater. Interfaces 8 (2016) 24525-24535. [37] J. Gautam, T.D. Thanh, K. Maiti, N.H. Kim, J.H. Lee, Carbon 137 (2018) 358-367. [38] H. Idriss, Surf. Sci. 712(2021) 121894. [39] T.T. Wang, X. Li, Y.J. Pang, X.R. Gao, Z.K. Kou, J. Tang, J. Wang, Chem. Eng. J. 425(2021) 131491. [40] Y.L. Zhu, H.A. Tahini, Z.W. Hu, Z.G. Chen, W. Zhou, A.C. Komarek, Q. Lin, H.J. Lin, C.T. Chen, Y.J. Zhong, M.T.Fernández-Díaz, S.C. Smith, H.T. Wang, M.L. Liu, Z.P. Shao, Adv. Mater. 32(2020) 1905025. [41] J.S. Lee, A. Kumar, T.H. Yang, X.H. Liu, A.R. Jadhav, H. Park, Y. Hwang, J.M. Yu, Y. Liu, S. Ajmal, M.G. Kim, H. Lee, Energy Environ. Sci. 12(2020) 5152-5164. [42] H.Q. Liu, D.P. Zhao, M.Z. Dai, X.F. Zhu, F.Y. Qu, A. Umar, X. Wu, Chem. Eng. J. 428(2022) 131183. [43] L.M. Cao, J.W. Wang, D.C. Zhong, T.B. Lu, J. Mater. Chem. A 6 (2018) 3224-3230. [44] S.L. Wang, L.Y. Zhao, J.X. Li, X.L. Tian, X. Wu, L.G. Feng, J. Energy Chem. 66(2022) 483-492. [45] L. Jiao, Y.X. Zhou, H.L. Jiang, Chem. Sci. 7(2016) 1690-1695. [46] C. Guan, X. Liu, A.M. Elshahawy, H. Zhang, H. Wu, S.J. Pennycook, J. Wang, Nanoscale Horiz. 2(2017) 342-348. [47] H. Liang, A.N. Gandi, D.H. Anjum, X. Wang, U. Schwingenschlogl, H.N. Alshareef, Nano Lett. 16(2020) 7718-7725. [48] D.P. Zhao, M.Z. Dai, Y. Zhao, H.Q. Liu, Y. Liu, X. Wu, Nano Energy 72 (2020) 104715. [49] H. Zhang, X. Li, A. Hahnel, C.V. Naumann, C. Lin, S. Azimi, S.L. Schweizer, A.W. Maijenburg, R.B. Wehrspohn, Adv. Funct. Mater. 28(2018) 1706847. [50] J.L. Zheng, W. Zhou, T. Liu, S.J. Liu, C.B. Wang, L. Guo, Nanoscale 9 (2017) 4409-4418. [51] H.F. Liang, A.N. Gandi, D.H. Anjum, X.B. Wang, U. Schwingenschlögl, H.N. Alshareef, Nano Lett. 16(2016) 7718-7725. [52] T.L. Chen, R. Zhang, G.L. Chen, J. Huang, W. Chen, X.Q. Wang, D.L. Chen, Catal. Today 337 (2019) 147-154. [53] J.J. Lv, S.J. Wu, M. Qiao, L.L. Li, J.J. Zhu, J. Power Sources 400 (2018) 434-440. [54] H.J. Wu, W. Xiao, C. Guan, X.M. Liu, W.J. Zang, H. Zhang, J. Ding, Y.P. Feng, S.J. Pennycook, J. Wang, Nano Energy 48 (2018) 73-80. [55] J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.G. Park, S.D. Tilley, H.J. Fan, M. Grätzel, Science 345 (2014) 1593-1596. [56] H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, J. Am. Chem.Soc. 137(2015) 2688-2694. [57] J. Nai, H. Yin, T. You, L. Zheng, J. Zhang, P. Wang, Z. Jin, Y. Tian, J. Liu, Z. Tang, L. Guo, Adv. Energy Mater. 5 (2015) (1887) 1401880-1402140. [58] G. Yasin, S. Ibraheem, S. Ali, M. Arif, S. Ibrahim, R. Iqbal, A. Kumar, M. Tabish, H. Xu, W. Zhao, Mater. Chem. 23(2022) 100634. [59] H.Y. Wang, Y.Y. Hsu, R. Chen, T.S. Chan, H.M. Chen, B. Liu, Adv. Energy Mater. 5(2015) 1-8. [60] A. Sivanantham, P. Ganesan, S. Shanmugam, Adv. Funct. Mater. 26(2016) 4661. [61] Y. Tang, K.Y. Shen, J. Zheng, B.H. He, J.L. Chen, J.H. Lu, W. Ge, L.X. Shen, P.Z. Yang, S.K. Deng, Chem. Eng. J. 427(2022) 130915. [62] D.T. Tran, H.T. Le, T.L.L. Doan, N.H. Kim, J.H. Lee, Nano Energy 59 (2019) 216-228. [63] G. Yasin, S. Ibrahim, S. Ibraheem, S. Ali, R. Iqbal, M. Tabish, Y. Slimani, H. Xu, W. Zhao, J. Mater. Chem. A 9 (2021) 18222-18230. |
[1] | Ji Hoon Choi, Hae-Jun Seok, Dongchul Sung, Dong Su Kim, Hak Hyeon Lee, Suklyun Hong, Han-Ki Kim, Hyung Koun Cho. Electrodeposited copper oxides with a suppressed interfacial amorphous phase using mixed-crystalline ITO and their enhanced photoelectrochemical performances [J]. Journal of Energy Chemistry, 2023, 82(7): 277-286. |
[2] | Lorrane C. C. B. Oliveira, Raissa Venâncio, Paulo V. F. de Azevedo, Chayene G. Anchieta, Thayane C. M. Nepel, Cristiane B. Rodella, Hudson Zanin, Gustavo Doubek. Reviewing perovskite oxide sites influence on electrocatalytic reactions for high energy density devices [J]. Journal of Energy Chemistry, 2023, 81(6): 1-19. |
[3] | Tuzhi Xiong, Jingting Li, Jagadish Chandra Roy, Malcolm Koroma, Zhixiao Zhu, Hao Yang, Lei Zhang, Ting Ouyang, M.-Sadeeq Balogun, Mohammad Al-Mamun. Hetero-interfacial nickel nitride/vanadium oxynitride porous nanosheets as trifunctional electrodes for HER, OER and sodium ion batteries [J]. Journal of Energy Chemistry, 2023, 81(6): 71-81. |
[4] | So Jung Kim, Heechae Choi, Jeong Ho Ryu, Kang Min Kim, Sungwook Mhin, Arpan Kumar Nayak, Junghwan Bang, Minyeong Je, Ghulam Ali, Kyung Yoon Chung, Kyeong-Han Na, Won-Youl Choi, Sunghwan Yeo, Jin Uk Jang, HyukSu Han. Zn-doped nickel iron (oxy)hydroxide nanocubes passivated by polyanions with high catalytic activity and corrosion resistance for seawater oxidation [J]. Journal of Energy Chemistry, 2023, 81(6): 82-92. |
[5] | Yonghui Zhou, Bo Yang. Uncertainty quantification of predicting stable structures for high-entropy alloys using Bayesian neural networks [J]. Journal of Energy Chemistry, 2023, 81(6): 118-124. |
[6] | Ansheng Wang, Shan Gao, Jiaguo Yan, Chunning Zhao, Meng Yu, Weichao Wang. Vacancy-modified bimetallic FeMoSx/CoNiPx heterostructure array for efficient seawater splitting and Zn-air battery [J]. Journal of Energy Chemistry, 2023, 81(6): 533-542. |
[7] | Xiang Peng, Song Xie, Shijian Xiong, Rong Li, Peng Wang, Xuming Zhang, Zhitian Liu, Liangsheng Hu, Biao Gao, Peter Kelly, Paul K. Chu. Ultralow-voltage hydrogen production and simultaneous Rhodamine B beneficiation in neutral wastewater [J]. Journal of Energy Chemistry, 2023, 81(6): 574-582. |
[8] | Yifei Wu, Peng Hu, Fengping Xiao, Xiaoting Yu, Wenqi Yang, Minqi Liang, Ziwei Liang, Aixin Zhu. Metal-organic frameworks based single-atom catalysts for advanced fuel cells and rechargeable batteries [J]. Journal of Energy Chemistry, 2023, 80(5): 501-534. |
[9] | Athira Krishnan, Muhsina Yoosuf, K. Archana, A.S. Arsha, Amritha Viswam. Metal derivative (MD)/g-C3N4 association in hydrogen production:A study on the fascinating chemistry behind, current trend and future direction [J]. Journal of Energy Chemistry, 2023, 80(5): 562-583. |
[10] | Obaid Fahad Aldosari, Ijaz Hussain, Zuhair Malaibari. Emerging trends of electrocatalytic technologies for renewable hydrogen energy from seawater: Recent advances, challenges, and techno-feasible assessment [J]. Journal of Energy Chemistry, 2023, 80(5): 658-688. |
[11] | Chenyu Yang, Xiuxiu Zhang, Qizheng An, Meihuan Liu, Wanlin Zhou, Yuanli Li, Fengchun Hu, Qinghua Liu, Hui Su. Dynamically-evolved surface heterojunction in iridium nanocrystals boosting acidic oxygen evolution and overall water splitting [J]. Journal of Energy Chemistry, 2023, 78(3): 374-380. |
[12] | Xin Li, Jianying Wang, Mingze Sun, Xufang Qian, Yixin Zhao. Ti-Fe2O3/Ni(OH)x as an efficient and durable photoanode for the photoelectrochemical catalysis of PET plastic to formic acid [J]. Journal of Energy Chemistry, 2023, 78(3): 487-496. |
[13] | Mengwei Guo, Rongrong Deng, Chaowu Wang, Qibo Zhang. Recent progress of advanced manganese oxide-based materials for acidic oxygen evolution reaction: Fundamentals, performance optimization, and prospects [J]. Journal of Energy Chemistry, 2023, 78(3): 537-553. |
[14] | Tae Sik Koh, Periyasamy Anushkkaran, Weon-Sik Chae, Hyun Hwi Lee, Sun Hee Choi, Jum Suk Jang. Gradient Si-and Ti-doped Fe2O3 hierarchical homojunction photoanode for efficient solar water splitting: Effect of facile microwave-assisted growth of Si-FeOOH on Ti-FeOOH nanocorals [J]. Journal of Energy Chemistry, 2023, 77(2): 27-37. |
[15] | Zi-Xin Ge, Yu Ding, Tian-Jiao Wang, Feng Shi, Pu-Jun Jin, Pei Chen, Bin He, Shi-Bin Yin, Yu Chen. Interfacial engineering of holey platinum nanotubes for formic acid electrooxidation boosted water splitting [J]. Journal of Energy Chemistry, 2023, 77(2): 209-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||