Journal of Energy Chemistry ›› 2022, Vol. 69 ›› Issue (6): 363-368.DOI: 10.1016/j.jechem.2022.01.004
Previous Articles Next Articles
Kehua Daia,b,*, Weiwei Shaoa, Beibei Zhaoa, Wenjuan Zhanga, Yan Fenga, Wenfeng Maoa, Guo Aic, Gao Liud, Jing Maoe,*, Wanli Yangb,*
Received:
2021-12-04
Revised:
2021-12-28
Accepted:
2022-01-03
Online:
2022-06-15
Published:
2022-10-25
Contact:
* E-mail addresses: daikh@tjnu.edu.cn (K. Dai), maojing@zzu.edu.cn (J. Mao), wlyang@lbl.gov (W. Yang).
Kehua Dai, Weiwei Shao, Beibei Zhao, Wenjuan Zhang, Yan Feng, Wenfeng Mao, Guo Ai, Gao Liu, Jing Mao, Wanli Yang. Precisely quantifying bulk transition metal valence evolution in conventional battery electrode by inverse partial fluorescence yield[J]. Journal of Energy Chemistry, 2022, 69(6): 363-368.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2022.01.004
[1] Y. Liang, C.Z. Zhao, H. Yuan, Y. Chen, W. Zhang, J.Q. Huang, D. Yu, Y. Liu, M.M. Titirici, Y.L. Chueh, H. Yu, Q. Zhang, InfoMat 1 (2019) 6-32. [2] G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, P. Anderson, Nature 575 (2019) 75-86. [3] X. Zeng, M. Li, D. Abd El-Hady, W.Alshitari, A.S. Al-Bogami, J. Lu, K. Amine, Adv. Energy Mater. 9(2019) 1900161. [4] L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang, Q. Zhang, X. Shen, J. Zhao, X. Yu, H. Li, X. Huang, L. Chen, Y.-S. Hu, Nat. Energy 4 (2019) 495-503. [5] J.B. Goodenough, H. Gao, Sci. China Chem. 62(2019) 1555-1556. [6] J. Xu, S. Dou, H. Liu, L. Dai, Nano Energy 2 (2013) 439-442. [7] X. Xiang, K. Zhang, J. Chen, Adv. Mater. 27(2015) 5343-5364. [8] R.J. Clément, P.G. Bruce, C.P. Grey, J. Electrochem. Soc. 162(2015) A2589-A2604. [9] H. Su, S. Jaffer, H. Yu, Energy Storage Mater. 5(2016) 116-131. [10] P. He, H. Yu, H. Zhou, J. Mater. Chem. 22(2012) 3680-3695. [11] M. Li, T. Liu, X. Bi, Z. Chen, K. Amine, C. Zhong, J. Lu, Chem. Soc. Rev. 49(2020) 1688-1705. [12] J. Wu, Z.-X.Shen, W. Yang, Front. Chem. 8(2020) 816. [13] J. Wu, Z. Zhuo, X. Rong, K. Dai, Z. Lebens-Higgins, S. Sallis, F. Pan, L.F.J. Piper, G. Liu, Y.-D. Chuang, Z. Hussain, Q. Li, R. Zeng, Z.-X. Shen, W. Yang, Sci. Adv 6 (2020) eaaw3871. [14] G.-H.Lee, J. Wu, D. Kim, K. Cho, M. Cho, W. Yang, Y.-M. Kang, Angew. Chem. Int. Ed. 59(2020) 8681-8688. [15] K. Dai, J. Mao, Z. Zhuo, Y. Feng, W. Mao, G. Ai, F. Pan, G. Liu, W. Yang, Nano Energy 74 (2020) 104831. [16] J. Wu, Q. Li, S. Sallis, Z. Zhuo, W. Gent, W. Chueh, S. Yan, Y.-D. Chuang, W. Yang, Condensed Matter 4 (2019) 5. [17] K. Dai, J. Wu, Z. Zhuo, Q. Li, S. Sallis, J. Mao, G. Ai, C. Sun, Z. Li, W.E. Gent, W.C. Chueh, Y.-D. Chuang, R. Zeng, Z.-X. Shen, F. Pan, S. Yan, L.F.J. Piper, Z. Hussain, G. Liu, W. Yang, Joule 3 (2019) 518-541. [18] Z. Zhuo, K. Dai, R. Qiao, R. Wang, J. Wu, Y. Liu, J. Peng, L. Chen, Y.-D. Chuang, F. Pan, Z.-X. Shen, G. Liu, H. Li, T.P. Devereaux, W. Yang, Joule 5 (2021) 975-997. [19] W. Yang, Nat. Energy 3 (2018) 619-620. [20] E. Hu, X. Yu, R. Lin, X. Bi, J. Lu, S. Bak, K.-W. Nam, H.L. Xin, C. Jaye, D.A. Fischer, K. Amine, X.-Q. Yang, Nat. Energy 3 (2018) 690-698. [21] Q. Li, R. Qiao, L.A. Wray, J. Chen, Z. Zhuo, Y. Chen, S. Yan, F. Pan, Z. Hussain, W. Yang, J. Phys.D: Appl. Phys. 49(2016) 413003. [22] F. Lin, Y. Liu, X. Yu, L. Cheng, A. Singer, O.G. Shpyrko, H.L. Xin, N. Tamura, C. Tian, T.-C.Weng, X.-Q. Yang, Y.S. Meng, D. Nordlund, W. Yang, M.M. Doeff, Chem. Rev. 117(2017) 13123-13186. [23] X. Liu, W. Yang, Z. Liu, Adv. Mater. 26(2014) 7710-7729. [24] W. Yang, X. Liu, R. Qiao, P. Olalde-Velasco, J.D. Spear, L. Roseguo, J.X. Pepper, Y.-D.Chuang, J.D. Denlinger, Z. Hussain, J. Electron Spectrosc. 190(2013) 64-74. [25] B. Fromme, M. Möller, C. Bethke, U. Brunokowski, E. Kisker, Phys. Rev. B 57 (1998) 12069-12076. [26] T. Yamamoto, X-Ray Spectrometry 37 (2008) 572-584. [27] Z. Gu, C. Cheng, T. Yan, G. Liu, J. Jiang, J. Mao, K. Dai, J. Li, J. Wu, L. Zhang, Nano Energy 86 (2021) 106111. [28] M. Sikora, C. Kapusta, K. Knížek, Z. Jirák, C. Autret, M. Borowiec, C.J. Oates, V. Procházka, D. Rybicki, D. Zajac, Phys. Rev. B 73 (2006) 094426. [29] T. Tamura, T. Ohwaki, A. Ito, Y. Ohsawa, R. Kobayashi, S. Ogata, Model. Simul. Mater. Sc. 20(2012) 045006. [30] P. Zeng, C. Liu, C. Cheng, C. Yuan, K. Dai, J. Mao, L. Zheng, J. Zhang, L.-Y. Chang, S.-C. Haw, T.-S. Chan, H. Lin, L. Zhang, J. Mater. Chem. A 9 (2021) 18526-18536. [31] U. Maitra, R.A. House, J.W. Somerville, N. Tapia-Ruiz, J.G. Lozano, N. Guerrini, R. Hao, K. Luo, L. Jin, M.A.Perez-Osorio, F.Massel, D.M. Pickup, S. Ramos, X. Lu, D. E. McNally, A.V. Chadwick, F. Giustino, T. Schmitt, L.C. Duda, M.R. Roberts, P.G. Bruce, Nat. Chem. 10(2018) 288-295. [32] N. Li, S. Sallis, J.K. Papp, J. Wei, B.D.McCloskey, W. Yang, W.Tong, ACS Energy Lett. 4(2019) 2836-2842. [33] J. Mao, X. Liu, J. Liu, H. Jiang, T. Zhang, G. Shao, G. Ai, W. Mao, Y. Feng, W. Yang, G. Liu, K. Dai, J. Electrochem. Soc. 166(2019) A3980-A3986. [34] R. Qiao, L.A. Wray, J.-H. Kim, N.P.W. Pieczonka, S.J. Harris, W. Yang, J. Phys. Chem. C 119 (2015) 27228-27233. [35] R. Qiao, Y. Wang, P. Olalde-Velasco, H. Li, Y.-S. Hu, W. Yang, J. Power Sources 273 (2015) 1120-1126. [36] R. Qiao, K. Dai, J. Mao, T.-C. Weng, D. Sokaras, D. Nordlund, X. Song, V.S. Battaglia, Z. Hussain, G. Liu, W. Yang, Nano Energy 16 (2015) 186-195. [37] M. Ding, C. Cheng, Q. Wei, Y. Hu, Y. Yan, K. Dai, J. Mao, J. Guo, L. Zhang, L. Mai, J. Energy Chem. 53(2021) 124-131. [38] C. Cheng, M. Ding, T. Yan, K. Dai, J. Mao, N. Zhang, L. Zhang, J. Guo, Energies 13 (2020) 5729. [39] D. Asakura, E. Hosono, Y. Nanba, H. Zhou, J. Okabayashi, C. Ban, P.-A.Glans, J. Guo, T. Mizokawa, G. Chen, A.J. Achkar, D.G. Hawthron, T.Z. Regier, H. Wadati, AIP Adv. 6(2016) 035105. [40] A.J. Achkar, T.Z. Regier, H. Wadati, Y.J. Kim, H. Zhang, D.G. Hawthorn, Phys. Rev. B 83 (2011) 081106. [41] A.J. Achkar, T.Z. Regier, E.J. Monkman, K.M. Shen, D.G. Hawthorn, Sci. Rep. 1(2011) 182. [42] Z. Zhuo, K. Dai, J. Wu, L. Zhang, N. Tamura, Y.-D.Chuang, J. Feng, J. Guo, Z.-X. Shen, G. Liu, F. Pan, W. Yang, ACS Energy Lett. 6(2021) 3417-3424. [43] R. Qiao, Q. Li, Z. Zhuo, S. Sallis, O. Fuchs, M. Blum, L. Weinhardt, C. Heske, J. Pepper, M. Jones, A. Brown, A. Spucces, K. Chow, B. Smith, P.-A.Glans, Y. Chen, S. Yan, F. Pan, L.F.J. Piper, J. Denlinger, J. Guo, Z. Hussain, Y.-D. Chuang, W. Yang, Rev. Sci. Instrum. 88(2017) 033106. [44] Y.-D.Chuang, Y.-C. Shao, A. Cruz, K. Hanzel, A. Brown, A. Frano, R. Qiao, B. Smith, E. Domning, S.-W. Huang, L.A. Wray, W.-S. Lee, Z.-X. Shen, T.P. Devereaux, J.-W. Chiou, W.-F. Pong, V.V. Yashchuk, E. Gullikson, R. Reininger, W. Yang, J. Guo, R. Duarte, Z. Hussain, Rev. Sci. Instrum. 88(2017) 013110. [45] J. Wu, S. Sallis, R. Qiao, Q. Li, Z. Zhuo, K. Dai, Z. Guo, W. Yang, J. Vis. Exp. 134(2018) e57415. [46] R. Qiao, T. Chin, S.J. Harris, S. Yan, W. Yang, Curr. Appl. Phys. 13(2013) 544-548. [47] K.M. Shaju, P.G. Bruce, Chem. Mater. 20(2008) 5557-5562. [48] D. Kovacheva, H. Gadjov, K. Petrov, S. Mandal, M.G. Lazarraga, L. Pascual, J.M. Amarilla, R.M. Rojas, P. Herrero, J.M. Rojo, J. Mater. Chem. 12(2002) 1184-1188. [49] Z. Zhuo, C.D. Pemmaraju, J. Vinson, C. Jia, B. Moritz, I. Lee, S. Sallis, Q. Li, J. Wu, K. Dai, Y.-D.Chuang, Z. Hussain, F. Pan, T.P. Devereaux, W. Yang, J. Phys. Chem. Lett. 9(2018) 6378-6384. [50] J. Xu, M. Sun, R. Qiao, S.E. Renfrew, L. Ma, T. Wu, S. Hwang, D. Nordlund, D. Su, K. Amine, J. Lu, B.D.McCloskey, W. Yang, W.Tong, Nat. Commun. 9(2018) 947. [51] K. Dai, J. Mao, Z. Li, Y. Zhai, Z. Wang, X. Song, V. Battaglia, G. Liu, J. Power Sources 248 (2014) 22-27. [52] Z. Zhuo, P. Olalde-Velasco, T. Chin, V. Battaglia, S.J. Harris, F. Pan, W. Yang, Appl. Phys. Lett. 110(2017) 093902. [53] W. Song, X. Ji, J. Chen, Z. Wu, Y. Zhu, K. Ye, H. Hou, M. Jing, C.E. Banks, Phys. Chem. Chem. Phys. 17(2015) 159-165. |
[1] | Haitang Zhang, Jianken Chen, Baodan Zhang, Xiaohong Wu, Zhengang Li, Leiyu Chen, Junhao Wang, Xiaoyu Yu, Haiyan Luo, Jiyuan Xue, Yu-Hao Hong, Yu Qiao, Shi-Gang Sun. Tracking gassing behavior in pouch cell by operando on-line electrochemical mass spectrometry [J]. Journal of Energy Chemistry, 2023, 84(9): 286-291. |
[2] | Yi-Zhou Quan, Qing-Song Liu, Mei-Chen Liu, Guo-Rui Zhu, Gang Wu, Xiu-Li Wang, Yu-Zhong Wang. Flame-retardant oligomeric electrolyte additive for self-extinguishing and highly-stable lithium-ion batteries: Beyond small molecules [J]. Journal of Energy Chemistry, 2023, 84(9): 374-384. |
[3] | Xin Lai, Zheng Meng, Fangnan Zhang, Yong Peng, Weifeng Zhang, Lei Sun, Li Wang, Fei Gao, Jie Sheng, Shufa Su, Yuejiu Zheng, Xuning Feng. Mitigating thermal runaway hazard of high-energy lithium-ion batteries by poison agent [J]. Journal of Energy Chemistry, 2023, 83(8): 3-15. |
[4] | Shi Zhou, Xiaohong Zhang, Cong Chen, Ming Chen, Fanpeng Kong, Yingjie Qiao, Jiajun Wang. Uncovering the degradation mechanism induced by ion-diffusion kinetics in large-format lithium-ion pouch cells [J]. Journal of Energy Chemistry, 2023, 83(8): 98-105. |
[5] | Qing-Song Liu, Yi-Zhou Quan, Mei-Chen Liu, Guo-Rui Zhu, Xiu-Li Wang, Gang Wu, Yu-Zhong Wang. Electrode-compatible fluorine-free multifunctional additive regulating solid electrolyte interphase and solvation structure for high-performance lithium-ion batteries [J]. Journal of Energy Chemistry, 2023, 83(8): 239-246. |
[6] | Xingjun Li, Dan Yu, Vilsen Søren Byg, Store Daniel Ioan. The development of machine learning-based remaining useful life prediction for lithium-ion batteries [J]. Journal of Energy Chemistry, 2023, 82(7): 103-121. |
[7] | Keyru Serbara Bejigo, Kousik Bhunia, Jungho Kim, Chaehyeon Lee, Seoin Back, Sang-Jae Kim. Upcycling end of lithium cobalt oxide batteries to electrocatalyst for oxygen reduction reaction in direct methanol fuel cell via sustainable approach [J]. Journal of Energy Chemistry, 2023, 82(7): 148-157. |
[8] | Zhuo Yao, Yong Chen, Chenyu Liu, Hao Chen, Shuxing Wu, Dong Luo, Zhan Lin, Shanqing Zhang. Low-strain Co-free Li-rich layered cathode with excellent voltage and capacity stability [J]. Journal of Energy Chemistry, 2023, 82(7): 513-520. |
[9] | Yongheng Si, Kun Bai, Yaxin Wang, Han Lu, Litong Liu, Ziyan Long, Yujuan Zhao. Defective layered Mn-based cathode materials with excellent performance via ion exchange for Li-ion batteries [J]. Journal of Energy Chemistry, 2023, 82(7): 537-546. |
[10] | Ibrahim Saana Amiinu, Sumair Imtiaz, Hugh Geaney, Tadhg Kennedy, Nilotpal Kapuria, Shalini Singh, Kevin M Ryan. A thin Si nanowire network anode for high volumetric capacity and long-life lithium-ion batteries [J]. Journal of Energy Chemistry, 2023, 81(6): 20-27. |
[11] | Tingzheng Hou, Wentao Xu. Deep dive into anionic metal-organic frameworks based quasi-solid-state electrolytes [J]. Journal of Energy Chemistry, 2023, 81(6): 313-320. |
[12] | Tao Li, Ziyu Chen, Fengwei Bai, Chengzong Li, Yan Li. Diluted low concentration electrolyte for interphase stabilization of high-voltage LiNi0.5Mn1.5O4 cathode [J]. Journal of Energy Chemistry, 2023, 81(6): 404-409. |
[13] | Qinqin Cai, Hao Jia, Guanjie Li, Zhangyating Xie, Xintao Zhou, Zekai Ma, Lidan Xing, Weishan Li. Outstanding performances of graphite||NMC622 pouch cells enabled by a non-inert diluent [J]. Journal of Energy Chemistry, 2023, 81(6): 593-602. |
[14] | Jie Tang, Jiawang Zhou, Xingyu Duan, Yujie Yang, Xinyi Dai, Fuzhong Wu. Constructing the bonding between conductive agents and active materials/binders stabilizes silicon anode in Lithium-ion batteries [J]. Journal of Energy Chemistry, 2023, 80(5): 23-31. |
[15] | Zhenghao Li, Wei Wang, Xinmiao Liang, Jianlin Wang, Yonglin Xu, Wei Li. Fiber swelling to improve cycle performance of paper-based separator for lithium-ion batteries application [J]. Journal of Energy Chemistry, 2023, 79(4): 92-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||