Journal of Energy Chemistry ›› 2022, Vol. 69 ›› Issue (6): 456-465.DOI: 10.1016/j.jechem.2022.01.023
Previous Articles Next Articles
Meiqi Yanga, Zhongxu Wanga, Dongxu Jiaoa, Yu Tianb,*, Yongchen Shanga, Lichang Yinc,*, Qinghai Caia,d, Jingxiang Zhaoa,*
Received:
2021-11-19
Revised:
2022-01-07
Accepted:
2022-01-13
Online:
2022-06-15
Published:
2022-10-25
Contact:
* E-mail addresses: tiany516@nenu.edu.cn (Y. Tian), lcyin@imr.ac.cn (L. Yin), zhaojingxiang@hrbnu.edu.cn (J. Zhao).
Meiqi Yang, Zhongxu Wang, Dongxu Jiao, Yu Tian, Yongchen Shang, Lichang Yin, Qinghai Cai, Jingxiang Zhao. Tuning precise numbers of supported nickel clusters on graphdiyne for efficient CO2 electroreduction toward various multi-carbon products[J]. Journal of Energy Chemistry, 2022, 69(6): 456-465.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2022.01.023
[1] G.A. Olah, G.K.S.Prakash, A. Goeppert, J.Am. Chem. Soc. 133(2011) 12881-12898. [2] Q. Lu, F. Jiao, Nano Energy 29 (2016) 439-456. [3] M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 114(2014) 1709-1742. [4] W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang, Z. Jin, Adv. Sci. 5(2018) 1700275. [5] A.M. Appel, J.E. Bercaw, A.B. Bocarsly, H. Dobbek, D.L.DuBois, M. Dupuis, J.G. Ferry, E. Fujita, R. Hille, P.J.A. Kenis, C.A. Kerfeld, R.H. Morris, C.H.F. Peden, A.R. Portis, S.W. Ragsdale, T.B. Rauchfuss, J.N.H. Reek, L.C. Seefeldt, R.K. Thauer, G.L. Waldrop, Chem. Rev. 113(2013) 6621-6658. [6] K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, Energy Environ. Sci. 5(2012) 7050-7059. [7] D. Kim, C.S. Kley, Y. Li, P. Yang, P. Natl, Acad. Sci. USA 114 (2017) 10560-10565. [8] B. Zhang, J. Zhang, J. Energy Chem. 26(2017) 1050-1066. [9] Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta 39 (1994) 1833-1839. [10] A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, Energy Environ. Sci. 3(2010) 1311-1315. [11] J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 43(2014) 631-675. [12] A. Vasileff, Y. Zheng, S.Z. Qiao, Adv. Energy Mater. 7(2017) 1700759. [13] Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, S.-Z.Qiao, J. Am. Chem. Soc. 141(2019) 7646-7659. [14] Q. Wang, Y. Lei, D. Wang, Y. Li, Energy Environ. Sci. 12(2019) 1730-1750. [15] Y. Wang, Y. Liu, W. Liu, J. Wu, Q. Li, Q. Feng, Z. Chen, X. Xiong, D. Wang, Y. Lei, Energy Environ. Sci. 13(2020) 4609-4624. [16] W. Ma, H. Wan, L. Zhang, J. Zheng, Z. Zhou, J. Energy Chem.(2021), https://doi. org/10.1016/j.jechem.2021.08.041. [17] A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2(2018) 65-81. [18] R. Xiao, K. Chen, X. Zhang, Z. Yang, G. Hu, Z. Sun, H. Cheng, F. Li, J. Energy Chem. 54(2021) 452-466. [19] B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 3(2011) 634-641. [20] Q. Zhang, J. Guan, Adv. Funct. Mater. 30(2020) 2000768. [21] Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Joule 2 (2018) 1242-1264. [22] C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Angew. Chem. Int. Ed. 56(2017) 13944-13960. [23] L. Liu, D.M. Meira, R. Arenal, P. Concepcion, A.V. Puga, A. Corma, ACS Catal. 9(2019) 10626-10639. [24] L. Wang, J. Diao, M. Peng, Y. Chen, X. Cai, Y. Deng, F. Huang, X. Qin, D. Xiao, Z. Jiang, N. Wang, T. Sun, X. Wen, H. Liu, D. Ma, ACS Catal. 11(2021) 11469-11477. [25] M. Peng, C. Dong, R. Gao, D. Xiao, H. Liu, D. Ma, ACS Central Sci. 7(2021) 262-273. [26] S. Yao, X. Zhang, W. Zhou, R. Gao, W. Xu, Y. Ye, L. Lin, X. Wen, P. Liu, B. Chen, E. Crumlin, J. Guo, Z. Zuo, W. Li, J. Xie, L. Lu, C.J. Kiely, L. Gu, C. Shi, J.A. Rodriguez, D. Ma, Science 357 (2017) 389-393. [27] G. Zheng, L. Li, Z. Tian, X. Zhang, L. Chen, J. Energy Chem. 54(2021) 612-619. [28] Y. Wang, J. Ma, X. Wang, Z. Zhang, J. Zhao, J. Yan, Y. Du, H. Zhang, D. Ma, ACS Catal. 11(2021) 11820-11830. [29] S. Mitchell, J. Pérez-Ramírez, Nat. Rev. Mater. 6(2021) 969-985. [30] Y. Feng, Z. Li, S. Li, M. Yang, R. Ma, J. Wang, J. Energy Chem. 66(2022) 493-501. [31] J. Zhang, Y. Deng, X. Cai, Y. Chen, M. Peng, Z. Jia, Z. Jiang, P. Ren, S. Yao, J. Xie, D. Xiao, X. Wen, N. Wang, H. Liu, D. Ma, ACS Catal. 9(2019) 5998-6005. [32] S. Tian, B. Wang, W. Gong, Z. He, Q. Xu, W. Chen, Q. Zhang, Y. Zhu, J. Yang, Q. Fu C. Chen, Y. Bu, L. Gu, X. Sun, H. Zhao, D. Wang, Y. Li, Nat. Commun. 12(2021) 3181. [33] S. Ji, Y. Chen, Q. Fu, Y. Chen, J. Dong, W. Chen, Z. Li, Y. Wang, L. Gu, W. He, C. Chen, Q. Peng, Y. Huang, X. Duan, D. Wang, C. Draxl, Y. Li, J. Am. Chem.Soc. 139(2017) 9795-9798. [34] C. Liu, B. Yang, E. Tyo, S. Seifert, J. DeBartolo, B. von Issendorff, P.Zapol, S. Vajda, L.A. Curtiss, J. Am. Chem. Soc. 137(2015) 8676-8679. [35] T. Imaoka, Y. Akanuma, N. Haruta, S. Tsuchiya, K. Ishihara, T. Okayasu, W.-J.Chun, M. Takahashi, K. Yamamoto, Nat. Commun. 8(2017) 688. [36] R. Wang, G. Liu, S. Kim, K. Bowen, X. Zhang, J. Energy Chem.(2021), https://doi. org/10.1016/j.jechem.2021.09.030. [37] G. Luo, Y. Jing, Y. Li, J. Mater. Chem. A 8 (2020) 15809-15815. [38] W. Rong, H. Zou, W. Zang, S. Xi, S. Wei, B. Long, J. Hu, Y. Ji, L. Duan, Angew. Chem. Int. Ed. 60(2021) 466-472. [39] L. Kong, Z. Chen, Q. Cai, L. Yin, J. Zhao,Chinese Chem. Lett.(2021), https://doi. org/10.1016/j.cclet.2021.09.010. [40] M. Li, Y. Cui, X. Zhang, Y. Luo, Y. Dai, Y. Huang, J. Phys. Chem.Lett. 11(2020) 8128-8137. [41] G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Chem. Commun. 46(2010) 3256-3258. [42] B. Li, C. Lai, M. Zhang, G. Zeng, S. Liu, D. Huang, L. Qin, X. Liu, H. Yi, F. Xu, N. An, L. Chen, Adv. Energy Mater. 10(2020) 2000177. [43] Z. Zuo, Y. Li, Joule 3 (2019) 899-903. [44] Y. Du, W. Zhou, J. Gao, X. Pan, Y. Li, Acc. Chem. Res. 53(2020) 459-469. [45] X. Gao, H. Liu, D. Wang, J. Zhang, Chem. Soc. Rev. 48(2019) 908-936. [46] G. Shi, Y. Xie, L. Du, Z. Fan, X. Chen, X. Fu, W. Xie, M. Wang, M. Yuan, Nano Energy 74 (2020) 104852. [47] D.-H. Xing, C.-Q. Xu, Y.-G. Wang, J. Li, J. Phys. Chem. C 123 (2019) 10494-10500. [48] D. Ma, Z. Zeng, L. Liu, Y. Jia, J. Energy Chem. 54(2021) 501-509. [49] Z. Xiao, W. Zhao, X. Wu, C. Xing, J. Ji, J. Mao, Fuel 303 (2021) 121266. [50] Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, Y. Li, Nat. Commun. 9(2018) 1460. [51] Q. Bing, W. Liu, W. Yi, J.-Y. Liu, J. Power Sources 413 (2019) 399-407. [52] X. Zhang, C. Liu, Y. Zhao, L. Li, Y. Chen, F. Raziq, L. Qiao, S.-X.Guo, C. Wang, G.G. Wallace, A.M. Bond, J. Zhang, Appl. Catal. B-Environ. 291(2021) 120030. [53] K.S. Joya, L. Sinatra, L.G. AbdulHalim, C.P. Joshi, M.N. Hedhili, O.M. Bakr, I. Hussain, Nanoscale 8 (2016) 9695-9703. [54] M.-J.Sun, Z.-W. Gong, J.-D. Yi, T. Zhang, X. Chen, R. Cao, Chem. Commun. 56(2020) 8798-8801. [55] G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558-561. [56] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186. [57] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979. [58] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775. [59] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868. [60] S. Grimme, J. Comput. Chem. 27(2006) 1787-1799. [61] G.J. Martyna, M.L. Klein, M. Tuckerman, J. Chem. Phys. 97(1992) 2635-2643. [62] G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113(2000) 9901-9904. [63] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108 (2004) 17886-17892. [64] Z. Feng, Y. Ma, Y. Li, R. Li, Y. Tang, X. Dai, Phys. Chem. Chem. Phys. 22(2020) 1493-1501. [65] J. Xu, Q. Wan, M. Anpo, S. Lin, J. Phys. Chem. C 124 (2020) 6624-6633. [66] G. Xu, R. Wang, Y. Ding, Z. Lu, D. Ma, Z. Yang, J. Phys. Chem. C 122 (2018) 23481-23492. [67] X. Liu, Z. Wang, Y. Tian, J. Zhao, J. Phys. Chem. C 124 (2020) 3722-3730. [68] X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen, S. Huang, ACS Catal. 9(2019) 11042-11054. [69] X. Bai, Q. Li, L. Shi, X. Niu, C. Ling, J. Wang, Small 16 (2020) 1901981. [70] G. Gao, Y. Jiao, E.R. Waclawik, A. Du, J. Am. Chem. Soc. 138 (2016) 6292-6297. [71] S. Hu, W.-X. Li, Science 374 (2021) 1360-1365. [72] K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T.A. Arias, R.G. Hennig, J. Chem. Phys. 140(2014) 084106. [73] S. Tang, X. Zhou, S. Zhang, X. Li, T. Yang, W. Hu, J. Jiang, Y. Luo, ACS Appl. Mater. Inter. 11(2019) 906-915. [74] J.H. Montoya, A.A. Peterson, J.K. Nørskov, ChemCatChem 5 (2013) 737-742. [75] G. Zhu, Y. Li, H. Zhu, H. Su, S.H. Chan, Q. Sun, ACS Catal. 6(2016) 6294-6301. [76] Y. Li, H. Su, S.H. Chan, Q. Sun, ACS Catal. 5(2015) 6658-6664. [77] H. Dong, Y. Li, D.-E. Jiang, J. Phys. Chem. C 122 (2018) 11392-11398. [78] C. Ling, Q. Li, A. Du, J. Wang, ACS Appl. Mater. Inter. 10(2018) 36866-36872. [79] S. Back, J. Lim, N.-Y.Kim, Y.-H. Kim, Y. Jung, Chem. Sci. 8(2017) 1090-1096. [80] M. Gattrell, N. Gupta, A. Co, J. Electroanal. Chem. 594(2006) 1-19. [81] W. Pei, S. Zhou, J. Zhao, X. Xu, Y. Du, S.X. Dou, Nano Energy 76 (2020) 105049. |
[1] | Hua-Qing Yin, Zuo-Shu Sun, Qiu-Ping Zhao, Lu-Lu Yang, Tong-Bu Lu, Zhi-Ming Zhang. Electrochemical urea synthesis by co-reduction of CO2 and nitrate with FeII-FeIIIOOH@BiVO4 heterostructures [J]. Journal of Energy Chemistry, 2023, 84(9): 385-393. |
[2] | Wa Gao, Yinwen Li, Dequan Xiao, Ding Ma. Advances in photothermal conversion of carbon dioxide to solar fuels [J]. Journal of Energy Chemistry, 2023, 83(8): 62-78. |
[3] | Zi-Yang Zhang, Hao Tian, Lei Bian, Shi-Ze Liu, Yuan Liu, Zhong-Li Wang. Cu-Zn-based alloy/oxide interfaces for enhanced electroreduction of CO2 to C2+ products [J]. Journal of Energy Chemistry, 2023, 83(8): 90-97. |
[4] | Xianwei Fu, Tingting Ren, Shilong Jiao, Zhihong Tian, Jianjun Yang, Qiuye Li. Development strategies and improved photocatalytic CO2 reduction performance of metal halide perovskite nanocrystals [J]. Journal of Energy Chemistry, 2023, 83(8): 397-422. |
[5] | Haiwen Wei, Zhen Li, Honglei Wang, Yang Yang, Pengfei Cheng, Peigeng Han, Ruiling Zhang, Feng Liu, Panwang Zhou, Keli Han. Regulation of excitation energy transfer in Sb-alloyed Cs4MnBi2Cl12 perovskites for efficient CO2 photoreduction to CO and water oxidation toward H2O2 [J]. Journal of Energy Chemistry, 2023, 82(7): 18-24. |
[6] | Keyru Serbara Bejigo, Kousik Bhunia, Jungho Kim, Chaehyeon Lee, Seoin Back, Sang-Jae Kim. Upcycling end of lithium cobalt oxide batteries to electrocatalyst for oxygen reduction reaction in direct methanol fuel cell via sustainable approach [J]. Journal of Energy Chemistry, 2023, 82(7): 148-157. |
[7] | Xiaofei Cao, Siqian Xing, Duo Ma, Yuan Tan, Yucheng Zhu, Jun Hu, Yao Wang, Xi Chen, Zhong Chen. Design of high-performance ion-doped CoP systems for hydrogen evolution: From multi-level screening calculations to experiment [J]. Journal of Energy Chemistry, 2023, 82(7): 307-316. |
[8] | Yibo Wu, Cheng He, Wenxue Zhang. Building up a general selection strategy and catalytic performance prediction expressions of heteronuclear double-atom catalysts for N2 reduction [J]. Journal of Energy Chemistry, 2023, 82(7): 375-386. |
[9] | Lei Xue, Qi-Yuan Fan, Yuansong Zhao, Yang Liu, Heng Zhang, Min Sun, Yan Wang, Shanghong Zeng. Ultralow Ag-assisted carbon-carbon coupling mechanism on Cu-based catalysts for electrocatalytic CO2 reduction [J]. Journal of Energy Chemistry, 2023, 82(7): 414-422. |
[10] | Tong Dou, Jinqing He, Shuteng Diao, Yiping Wang, Xuhui Zhao, Fazhi Zhang, Xiaodong Lei. Dynamic reconstructuring of CuS/SnO2-S for promoting CO2 electroreduction to formate [J]. Journal of Energy Chemistry, 2023, 82(7): 497-506. |
[11] | Kamakshaiah Charyulu Devarayapalli, S.V. Prabhakar Vattikuti, Dong Jin Kim, Youngsu Lim, Bolam Kim, Gyuhyeon Kim, Dae Sung Lee. Platinum quantum dots-decorated MXene-derived titanium dioxide nanowire/Ti3C2 heterostructure for use in solar-driven gas-phase carbon dioxide reduction to yield value-added fuels [J]. Journal of Energy Chemistry, 2023, 82(7): 627-637. |
[12] | Lihang Wang, Shu Zhao, Boya Wang, Haijun Yu. Symmetry-breaking of LiMn6 hexatomic-ring in grain surface of Li2MnO3 [J]. Journal of Energy Chemistry, 2023, 81(6): 110-117. |
[13] | Yuman Guo, Xueming Hong, Ziman Chen, Yongqin Lv. Electro-enzyme coupling systems for selective reduction of CO2 [J]. Journal of Energy Chemistry, 2023, 80(5): 140-162. |
[14] | Huan Xie, Ruikuan Xie, Zhiyuan Zhang, Yongyu Pang, Yuting Luo, Jiong Li, Bilu Liu, Maria-Magdalena Titirici, Guoliang Chai. Achieving highly selective electrochemical CO2 reduction to C2H4 on Cu nanosheets [J]. Journal of Energy Chemistry, 2023, 79(4): 312-320. |
[15] | Peng Liu, Baopeng Yang, Ziyi Xiao, Shengyao Wang, Shimiao Wu, Min Liu, Gen Chen, Xiaohe Liu, Renzhi Ma, Ning Zhang. Engineering d-band states of (CuGa)xZn1-2xGa2S4 material for photocatalytic syngas production [J]. Journal of Energy Chemistry, 2023, 79(4): 365-372. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||