Journal of Energy Chemistry ›› 2022, Vol. 69 ›› Issue (6): 466-489.DOI: 10.1016/j.jechem.2022.01.035
Previous Articles Next Articles
Mohamedazeem M. Mohideena, Adiyodi Veettil Radhamanib, Seeram Ramakrishnac, Yen Weid,*, Yong Liua,*
Received:
2021-09-03
Revised:
2022-01-17
Accepted:
2022-01-22
Online:
2022-06-15
Published:
2022-10-25
Contact:
* E-mail addresses: weiyen@mail.tsinghua.edu.cn (Y. Wei), yongliu@mail.buct.edu.cn (Y. Liu).
About author:
Mohamedazeem M. Mohideen is presently pursuing his doctoral degree under the guidance of Prof Yong Liu at Beijing University of Chemical Technology, China. He finished his Master’s in materials science at Anna university, Chennai, India, and his M.Sc dissertation work is focused on the application of quantum dots. Presently his area of research at BUCT is focused on the development of non-precious electrocatalysts for oxygen reduction reaction on the application of proton exchange membrane fuel cell.Mohamedazeem M. Mohideen, Adiyodi Veettil Radhamani, Seeram Ramakrishna, Yen Wei, Yong Liu. Recent insights on iron based nanostructured electrocatalyst and current status of proton exchange membrane fuel cell for sustainable transport[J]. Journal of Energy Chemistry, 2022, 69(6): 466-489.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2022.01.035
[1] C. Bertram, G. Luderer, F. Creutzig, N. Bauer, F. Ueckerdt, A. Malik, O. Edenhofer, Nat. Clim. Change 11 (2021) 193-196. [2] M.M. Mohideen, S. Ramakrishna, S. Prabu, Y. Liu, J. Energy Chem. 59(2021) 688-705. [3] M.A. Aktar, M.M. Alam, A.Q.Al-Amin, Prod. Consum. 26(2021) 770-781. [4] S. Cloete, O. Ruhnau, L. Hirth, Int. J. Hydrog. Energy. 46(2021) 69-88. [5] Ambient (outdoor) Air Pollution. World Health Organization, (2018). https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health. [6] International Energy Agency, Global Energy Review. (2020) https://www.iea. org/reports/global-energy-review-(2020). [7] International Energy Agency, Changes in transport behavior during the Covid-crisis, (2020). https://www.iea.org/articles/changes-in-transport-behaviour-during-the-covid-19-crisis. [8] International Energy Agency, Green stimulus after the2008 crisis. (2021). https://www.iea.org/articles/green-stimulus-after-the-2008-crisis. [9] International Energy Agency,Net Zero by 2050. 2021. https://www.iea.org/ reports/net-zero-by-2050. [10] D.C. Rode, J.J. Anderson, H. Zhai, P.S. Fischbeck, Environ. Sci. Technol. 56(2022) 10-12. [11] X.X. Wang, M.T. Swihart, G. Wu, Nat. Catal. 2(2019) 578-589. [12] B. Pivovar, Nat. Catal. 2(2019) 562-565. [13] P.M. Grant, Nature. 424(2003) 129. [14] P. Wang, B. Wang, ChemSusChem 13 (2020) 4795-4811. [15] S. Kim, J. Park, J. Hwang, J. Lee, Energychem 3 (2021) 100054. [16] M.M. Mohideen, Y. Liu, S. Ramakrishna, Appl. Energy. 257(2020) 114027. [17] Y. Wang, H. Yuan, A. Martinez, P. Hong, H. Xu, F.R. Bockmiller, Appl. Energy. 2(2021) 100011. [18] L. Wang, X. Wan, S. Liu, L. Xu, J. Shui, J. Energy Chem. 39(2019) 77-87. [19] A. Ganesan, M. Narayanasamy, J. Renew. Sustain. Energy 8 (2019) 18. [20] A. Ostroverkh, V. Johánek, M. Dubau, P. Kúš, I. Khalakhan, B. Šmíd, R. Fiala, M. Václavů, Y. Ostroverkh, V. Matolín, Int. J. Hydrogen Energy 35 (2019) 19344-19356. [21] D. Parra, L. Valverde, F.J. Pino, M.K. Patel, Renew. Sustain. Energy Rev. 101(2019) 279-294. [22] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, Appl. Energy 88 (2011) 981-1007. [23] H. Xu, S. Ci, Y. Ding, G. Wang, Z. Wen, J. Mater. Chem. A 7 (2019) 8006-8029. [24] H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. Wu, Nano Today 11 (2016) 601-625. [25] J.O. Abe, E. Ajenifuja, O.M. Popoola, Int. J. Hydrogen Energy 44 (2019) 15072-15086. [26] B.G. Pollet, S.S. Kocha, I. Staffell, Curr. Opin. Electrochem 16 (2019) 90-95. [27] A. Kregar, A. Kravos, T. Katrašnik, Fuel Cells. 20(2020) 487-498. [28] Y. Hu, J.O. Jensen, P. Bretzler, L.N. Cleemann, J. Yu, Q. Li, Electrochim. Acta 391 (2021) 138963. [29] G.A. Gebreslase, M.V.Martínez-Huerta, M.J. Lázaro, J. Energy Chem. 67(2022) 101-137. [30] B.W. Zhang, Z.C. Zhang, H.G. Liao, Y. Gong, L. Gu, X.M. Qu, L.X. You, S. Liu, L. Huang, X.C. Tian, R. Huang, Nano Energy 19 (2016) 198-209. [31] M. Kiani, J. Zhang, Y. Luo, C. Jiang, J. Fan, G. Wang, J. Chen, R. Wang, J. Energy Chem. 27(2018) 1124-1139. [32] X. Ren, Y. Wang, A. Liu, Z. Zhang, Q. Lv, B. Liu, J. Mater. Chem. A 8 (2020) 24284-24306. [33] S. Wang, Z. Teng, C. Wang, G. Wang, ChemSusChem 11 (2018) 2267-2295. [34] X. Liu, H. Liu, C. Chen, L. Zou, Y. Zou, Q. Zhang, B. Yang, Z. Zou, H. Yang, Nano Res. 12(2019) 1651-1657. [35] Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Chem. Soc. Rev. 49(2020) 3484-3524. [36] S. Specchia, P. Atanassov, J.H. Zagal, Curr. Opin. Electrochem. 27(2021) 100687. [37] L. Osmieri, Q. Meyer, Curr. Opin. Electrochem. 31(2022) 100847. [38] Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 44(2015) 2060-2086. [39] A. Kumar, V.K. Vashistha, D.K. Das, S. Ibraheem, G. Yasin, R. Iqbal, T.A.Nguyen R.K. Gupta, M.R. Islam, Fuel 304 (2021) 121420. [40] J.A. Keith, G. Jerkiewicz, T. Jacob, ChemPhysChem 1 (2010) 2779-2794. [41] Y. Li, Q. Li, H. Wang, L. Zhang, D.P. Wilkinson, J. Zhang, Electrochem. Energy Rev. 2(2019) 518-538. [42] H.X. Zhong, Y. Zhang, X.B. Zhang, Chem 4 (2018) 196-198. [43] S.T. Thompson, A.R. Wilson, P. Zelenay, D.J. Myers, K.L. More, K.C. Neyerlin, D. Papageorgopoulos, Solid State Ion 319 (2018) 68-76. [44] J.A. Keith, G. Jerkiewicz, T. Jacob, ChemPhysChem 11 (2010) 2779-2794. [45] X. Wang, Z. Li, Y. Qu, T. Yuan, W. Wang, Y. Wu, Y. Li, Chem 5 (2019) 1486-1511. [46] M. Primbs, Y. Sun, A. Roy, D. Malko, A. Mehmood, M.T. Sougrati, P.Y. Blanchard, G. Granozzi, T. Kosmala, G. Daniel, P. Atanassov, Energy Environ Sci. 13(2020) 2480-2500. [47] Z.F. Huang, J. Song, S. Dou, X. Li, J. Wang, X. Wang, Matter 1 (2019) 1494-1518. [48] Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu, T.F. Jaramillo, Nat. Catal. 1(2018) 156-162. [49] B. Liu, B. Huang, C. Lin, J. Ye, L. Ouyang, Appl. Surf. Sci. 411(2017) 487-493. [50] A. Muthukrishnan, Y. Nabae, T. Okajima, T. Ohsaka, ACS Catal. 5(2015) 5194-5202. [51] W. Wang, Q. Jia, S. Mukerjee, S. Chen, ACS Catal. 9(2019) 10126-10141. [52] U. Tylus, Q. Jia, K. Strickland, N. Ramaswamy, A. Serov, P. Atanassov, S. Mukerjee, J. Phys. Chem. C 118 (2014) 8999-9008. [53] S. Kattel, G. Wang, J. Phys. Chem.Lett. 5(2014) 452-456. [54] H. Wang, C.C. Weng, Z.Y. Yuan, J. Energy Chem. 56(2021) 470-485. [55] T. Asset, P. Atanassov, Joule 4 (2020) 33-44. [56] R. Jasinski, Nature 201 (1964) 1212. [57] S. Gupta, D. Tryk, I. Bae, W. Aldred, E. Yeager, J. Appl. Electrochem. 19(1989) 19-27. [58] M. Shen, C. Wei, K. Ai, L. Lu, Nano Res. 10(2017) 1449-1470. [59] F. Pan, T. Jin, W. Yang, H. Li, Y. Cao, J. Hu, X. Zhou, H. Liu, X. Duan, Chem Catal. 1(2021) 734-745. [60] W. Gu, L. Hu, J. Li, E. Wang, Electroanalysis 30 (2018) 1217-1228. [61] C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Chem. Soc. Rev. 45(2016) 517-531. [62] C.H. Choi, W.S. Choi, O. Kasian, A.K. Mechler, M.T. Sougrati, S. Brüller, K. Strickland, Q. Jia, S. Mukerjee, K.J.J.Mayrhofer, F. Jaouen, Angew. Chem. Int. Ed. 56(2017) 8809-8812. [63] U.I. Kramm, J. Herranz, N. Larouche, T.M. Arruda, M. Lefevre, F. Jaouen, P. Bogdanoff, S. Fiechter, I. Abs-Wurmbach, S. Mukerjee, J.P. Dodelet, Phys. Chem. Chem. Phys. 14(2012) 11673-11688. [64] X. Xu, Z. Xia, X. Zhang, R. Sun, X. Sun, H. Li, C. Wu, J. Wang, S. Wang, G. Sun, Appl. Catal. B. 259(2019) 118042. [65] M. Lefevre, J.P. Dodelet, P. Bertrand, J. Phys. Chem. B 109 (2005) 16718-16724. [66] S. Kim, D. Tryk, I.T. Bae, M. Sandifer, R. Carr, M.R. Antonio, D.A. Scherson, J. Phys. Chem. B 99 (1995) 10359-10364. [67] J.A. Varnell, J.S. Sotiropoulos, T.M. Brown, K. Subedi, R.T. Haasch, C.E. Schulz, A.A. Gewirth, ACS Energy Lett. 3(2018) 823-828. [68] J. Masa, W. Xia, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 54(2015) 10102-10120. [69] P.H. Matter, E. Wang, J.M.M. Millet, U.S. Ozkan, J. Phys. Chem. C 111 (2007) 1444-1450. [70] P. Wang, Z. Ma, Z. Zhao, L. Jia, J. Electroanal. Chem. 611(2007) 87-95. [71] M.T. Sougrati, V. Goellner, A.K. Schuppert, L. Stievano, F. Jaouen, Catal. Today 262 (2016) 110-120. [72] X. Hu, Y. Min, L.L. Ma, J.Y. Lu, H.C. Li, W.J. Liu, J.J. Chen, H.Q. Yu, Appl. Catal. B 268 (2020) 118405. [73] J. Yang, W.H. Li, S. Tan, K. Xu, Y. Wang, D. Wang, Y. Li, Angew. Chem. Int. Ed. 133(2021) 19233-19239. [74] T. Sharifi, E. Gracia-Espino, A. Chen, G. Hu, T. Wågberg, Adv. Energy Mater. 10(2020) 1902084. [75] Q. Jia, N. Ramaswamy, U. Tylus, K. Strickland, J. Li, A. Serov, K. Artyushkova, P. Atanassov, J. Anibal, C. Gumeci, S.C. Barton, Nano Energy 29 (2016) 65-82. [76] H.R. Byon, J. Suntivich, Y. Shao-Horn, Chem. Mater. 23(2011) 3421-3428. [77] L. Qu, Z. Wang, X. Guo, W. Song, F. Xie, L. He, Z. Shao, B. Yi, J. Energy Chem. 35(2019) 95-103. [78] A. Zitolo, N. Ranjbar-Sahraie, T. Mineva, J. Li, Q. Jia, S. Stamatin, G.F. Harrington, S.M. Lyth, P. Krtil, S. Mukerjee, E. Fonda, Nat. Commun. 8(2017) 957. [79] R. Ma, G. Lin, Y. Zhou, Q. Liu, T. Zhang, G. Shan, M. Yang, J. Wang, NPJ Comput. Mater. 5(2019) 1-15. [80] H. Shen, T. Thomas, S.A. Rasaki, A. Saad, C. Hu, J. Wang, M. Yang, Electrochem. Energy Rev. 2(2019) 252-276. [81] A. Zitolo, V. Goellner, V. Armel, M.T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 14(2015) 937-942. [82] M. Lefèvre, J.P. Dodelet, P. Bertrand, J. Phys. Chem. B 106 (2002) 8705-8713. [83] S. Kabir, K. Artyushkova, B. Kiefer, P. Atanassov, Phys. Chem. Chem. Phys. 17(2015) 17785-17789. [84] H. Chun, E. Lee, K. Nam, J.H. Jang, W. Kyoung, S.H. Noh, B. Han, Chem. Catal. 1(2021) 855-869. [85] H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby, K.L. More, P. Zelenay, Science 357 (2017) 479-484. [86] K. Mao, L. Yang, X. Wang, Q. Wu, Z. Hu, J. Phys. Chem.Lett. 11(2020) 2896-2901. [87] Z. Yang, Y. Wang, M. Zhu, Z. Li, W. Chen, W. Wei, T. Yuan, Y. Qu, Q. Xu, C. Zhao, X. Wang, P. Li, Y. Li, Y. Wu, Y. Li, ACS Catal. 9(2019) 2158-2163. [88] J. Li, M. Chen, D.A. Cullen, S. Hwang, M. Wang, B. Li, K. Liu, S. Karakalos, M. Lucero, H. Zhang, C. Lei, Nat. Catal. 1(2018) 935-945. [89] Q. Wang, L. Shang, D. Sun-Waterhouse, T. Zhang, G. Waterhouse, SmartMat 2 (2021) 154-175. [90] H. Zhang, H. Osgood, X. Xie, Y. Shao, G. Wu, Nano Energy 31 (2017) 331-350. [91] J. Wang, Z. Li, Y. Wu, Y. Li, Adv. Mater. 30(2018) 1801649. [92] Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.C. Idrobo, S.J. Pennycook, H. Dai, Nat. Nanotechnol. 7(2012) 394. [93] L. Zhuang, Trends Chem. 2(2020) 872-873. [94] F. Jaouen, M. Lef‘evre, J.P. Dodelet, M. Cai, J. Phys. Chem. B 110 (2006) 5553-5558. [95] F. Jaouen, F. Charreteur, J.P. Dodelet, J. Electrochem. Soc. 153(2006) A689-A698. [96] J. Guo, J. Huo, Y. Liu, W. Wu, Y. Wang, M. Wu, H. Liu, G. Wang, Small Methods 3 (2019) 1900159. [97] J. Li, H. Zhang, W. Samarakoon, Angew. Chem. Int. Ed. 58(2019) 18971-18980. [98] Y. Qian, P. Du, P. Wu, C. Cai, D.F. Gervasio, J. Phys. Chem.C. 120(2016) 9884-9896. [99] B. You, N. Jiang, M. Sheng, W.S. Driskell, J. Yano, Y. Sun, ACS Catal. 5(2015) 7068-7076. [100] J. Zhang, Z. Wang, Z. Zhu, J. Electrochem. Soc. 162(2015) F1262. [101] D. Li, Y. Jia, G. Chang, J. Chen, H. Liu, J. Wang, Y. Hu, Y. Xia, D. Yang, X. Yao, Chem 4 (2018) 2345-2356. [102] K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M.T. Sougrati, F. Jaouen, S. Mukerjee, Nat. Commun. 6(2015) 7343. [103] Y. Dai, J. Yu, C. Cheng, P. Tan, M. Ni, Chem. Eng. J. 397(2020) 125516. [104] J. Zhang, Z. Xia, L. Dai, Sci. Adv. 1(2015) e1500564. [105] K. Artyushkova, A. Serov, S. Rojas-Carbonell, P. Atanassov, J. Phys. Chem. C 119 (2015) 25917-25928. [106] V.A. Setyowati, H.C. Huang, C.C. Liu, C.H. Wang, Electrochim. Acta 211 (2016) 933-940. [107] L. Qu, Y. Liu, J.B. Baek, L. Dai, ACS Nano 4 (2010) 1321-1326. [108] D. Yu, Q. Zhang, L. Dai, J. Am. Chem.Soc. 132(2010) 15127-15129. [109] K. Parvez, S. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng, K. Müllen, ACS Nano 6 (2012) 9541-9550. [110] R. Liu, D. Wu, X. Feng, K. Müllen, Angew. Chem. 122(2010) 2619-2623. [111] L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, Energy Environ. Sci. 5(2012) 7936-7942. [112] D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 351 (2016) 361-365. [113] X. Cui, S. Yang, X. Yan, J. Leng, S. Shuang, P.M. Ajayan, Z. Zhang, Adv. Funct. Mater. 26(2016) 5708-5717. [114] X. Huang, X. Wu, Y. Niu, C. Dai, M. Xu, W. Hu, Catal. Sci. Technol. 9(2019) 711-717. [115] J. Stacy, Y.N. Regmi, B. Leonard, M. Fan, Renew. Sust. Energy Rev. 69(2017) 401-414. [116] J.H. Zagal, S. Specchia, P. Atanassov, Curr. Opin. Electrochem. 27(2021) 100683. [117] L. Osmieri, J. Park, D.A. Cullen, P. Zelenay, D.J. Myers, K.C. Neyerlin, Curr. Opin. Electrochem. 25(2021) 00627. [118] D.K. Madheswaran, A. Jayakumar, Bull. Mater. Sci. 44(2021) 1-12. [119] S.T. Thompson, D. Papageorgopoulos, Nat. Catal. 2(2019) 558-561. [120] R. Granados-Fernández, M.A. Montiel, S. Díaz-Abad, M.A. Rodrigo, J. Lobato, Catalysts 11 (2021) 937. [121] D. Banham, S. Ye, ACS Energy Lett. 2(2017) 629-638. [122] X. Ren, Q. Lv, L. Liu, B. Liu, Y. Wang, A. Liu, G. Wu, Sustain. Energy Fuels 4 (2020) 15-30. [123] Y. Zeng, X. Zhang, X. Mao, P. K. Shen, D. R.MacFarlane, iScience. 24(2021) 102547. [124] Z. Xia, L. An, P. Chen, D. Xia, Adv. Energy Mater. 6(2016) 1600458. [125] Q. Li, R. Cao, J. Cho, G. Wu, Adv. Energy Mater. 4 (2014) 1301415. [126] L. Lin, Q. Zhu, A.W. Xu, [J]. Am. Chem. Soc. 136(2014) 11027-11033. [127] C. Zhang, W. Zhang, W. Zheng, ChemCatChem. 11(2019) 655-668. [128] R. Pavlicek, S.C. Barton, N. Leonard, H. Romero, S. McKinney, G. McCool, A. Serov, D. Abbott, P. Atanassov, S. Mukerjee, J. Electrochem. Soc. 165(2018) F589-F596. [129] T. Chen, J. Wu, C. Zhu, Z. Liu, W. Zhou, C. Zhu, C. Guan, G. Fang, Chem. Eng. J 405 (2021) 125956. [130] S. Tanaka, Y.V. Kaneti, N.L.W.Septiani, S.X. Dou, Y. Bando, M.S.A. Hossain, J. Kim, Y. Yamauchi, Small Methods. 3(2019) 1800512. [131] M. Gong, H. Dai, Nano Res. 8 (2015) 23-39. [132] X. Liu, W. Hu, RSC Adv. 6(2016) 29848-29854. [133] W.R.P.Barros, Q. Wei, G.Zhang, S. Sun, M.R.V. Lanza, A.C. Tavares, Electrochim. Acta. 162(2015) 263-270. [134] S. Lee, J.Y. Cheon, W.J. Lee, S.O. Kim, S.H. Joo, S. Park, Carbon 80 (2014) 127-134. [135] B. Zhao, Y. Zheng, F. Ye, X. Deng, X. Xu, M. Liu, Z. Shao, ACS Appl. Mater. Interfaces. 7(2015) 14446-14455. [136] M. Ma, Y. Dai, J.L. Zou, L. Wang, K. Pan, H.G. Fu, ACS Appl. Mater. Interfaces. 6(2014) 13438-13447. [137] Y. Ma, H. Wang, J. Key, V. Linkov, S. Ji, X. Mao, Q. Wang, R. Wang, Int. J. Hydrogen Energy. 39(2014) 14777-14782. [138] R. Karunagaran, C. Coghlan, T.T. Tung, S. Kabiri, D.N.H.Tran, C.J. Doonan, D. Losic, New J.Chem. 41(2017) 15180-15186. [139] W.J. Niu, J.Z. He, B.N. Gu, M.C. Liu, Y.L. Chueh, Adv. Funct. Mater. 31(2021) 2103558. [140] Y. Zhang, P. Wang, J. Yang, K. Li, X. Long, M. Li, K. Zhang, J. Qiu, Chem. Eng. J. 401(2020) 126001. [141] L. Zong, X. Chen, S. Liu, K. Fan, S. Dou, J. Xu, X. Zhao, W. Zhang, Y. Zhang, W. Wu, F. Lu, J. Energy Chem. 56(2021) 72-79. [142] X. Cheng, P. Yan, S. Liu, M. Qian, B. Wang, Z. Wan, Z. Tian, X.C. Shen, T.T. Isimjan, X. Yang, Int. J. Hydrogen Energy 44 (2019) 12127-12137. [143] W. Yan, Y. Wu, Y. Chen, Q. Liu, K. Wang, N. Cao, F. Dai, X. Li, J. Jiang, J. Energy Chem. 44(2019) 121-130. [144] Y. Wang, R. Gan, H. Liu, M. Dirican, C. Wei, C. Ma, J. Shi, X. Zhang, J. Mater. Chem. A 9 (2020) 2764-2774. [145] J. Huang, Q.Q. Cheng, Y.C. Huang, H.C. Yao, H.B. Zhu, H. Yang, A.C.S.Appl. Energy Mater. 2(2019) 3194-3203. [146] J. Lilloja, E. Kibena-Põldsepp, A. Sarapuu, J.C. Douglin, M. Käärik, J. Kozlova, P. Paiste, A. Kikas, J. Aruväli, J. Leis, V. Sammelselg, ACS Catal. 11(2021) 1920-1931. [147] Z. Guo, J. Chen, J.J. Byun, R. Cai, M. Perez-Page, M. Sahoo, Z. Ji, S.J. Haigh, S.M. Holmes, J. Energy Chem. 64(2022) 323-334. [148] A. Song, L. Cao, W. Yang, Y. Li, X. Qin, G. Shao, ACS Sustain. Chem. Eng. 6(2018) 4890-4898. [149] H. Tan, J. Tang, J. Kim, Y.V. Kaneti, Y.M. Kang, Y. Sugahara, Y. Yamauchi, J. Mater.Chem A. 7(2019) 1380-1393. [150] Y. Gao, M. Hou, L. He, M. Qi, H. Chen, S. Hong, Y. Jiang, Z. Shao, B. Yi, J. Energy Chem. 42(2020) 126-132. [151] R. Zhang, K. Huang, D. Wang, N. Hussain, A. Zhang, H. Wei, G. Ou, W. Zhao, C. Zhang, H. Wu, Electrochim. Acta 313 (2019) 255-260. [152] M. Chen, Y. Jiang, P. Mei, Y. Zhang, X. Zheng, W. Xiao, Q. You, X. Yan, H. Tang, Polymers 11 (2019) 767. [153] M. Wu, J. Xie, A. Liu, W. Jia, Y. Cao, J. Colloid Interface Sci. 566(2020) 194-201. [154] H. Peng, M. Zhang, K. Sun, X. Xie, H. Lei, G. Ma, Appl. Surf. Sci. 529(2020) 147174. [155] L. Cui, Q. Zhang, X. He, J. Electroanal. Chem. 871(2020) 114316. [156] Z. Yang, H. Nie, X. Chen, S. Huang, J. Power Sources 236 (2013) 238-249. [157] M. Wu, Q. Tang, F. Dong, Z. Bai, L. Zhang, J. Qiao, J. Catal. 352(2017) 208-217. [158] Z. Li, Q. Gao, X. Liang, H. Zhang, H. Xiao, P. Xu, Z. Liu, Carbon 150 (2019) 93-100. [159] J. Lai, L. Gan, K. Zhang, J. Fang, Y. Lai, J. Li, Electroanal. Chem. 873(2020) 114369. [160] X. Yu, T. Zhou, J. Ge, C. Wu, ACS Mater. Lett. 2(2020) 1423-1434. [161] A. Behera, Adv. Mater, first edition., Springer, Cham, 2022, pp. 597-616. [162] Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R.S. Rawat, H.J. Fan, Angew. Chem. Int. Ed. 128(2016) 8812-8816. [163] H. Yin, C. Zhang, F. Liu, Y. Hou, Adv. Funct. Mater. 24(2014) 2930-2937. [164] S.A. Shafiee, S.C. Perry, H.H. Hamzah, M.M. Mahat, F.A.Al-lolage, M.Z.Ramli, Electrochem. Commun. 120(2020) 106828. [165] T. Varga, L. Vásárhelyi, G. Ballai, H. Haspel, A. Oszkó, Á. Kukovecz, Z. Kónya, ACS Omega 4 (2019) 130-139. [166] N. Xue, J. Liu, P. Wang, C. Wang, S. Li, H. Zhu, J. Yin, J. Colloid Interface Sci. 580(2020) 460-469. [167] T. Li, M. Li, M. Zhang, X. Li, K. Liu, M. Zhang, X. Liu, D. Sun, L. Xu, Y. Zhang, Y. Tang, Carbon 153 (2019) 364-371. [168] X. Zhang, Y.B. Mollamahale, D. Lyu, L. Liang, F. Yu, M. Qing, Y. Du, X. Zhang, Z. Q. Tian, P.K. Shen, J. Catal. 372(2019) 245-257. [169] A. Radwan, H. Jin, B. Liu, Z. Chen, Q. Wu, X. Zhao, D. He, S. Mu, Carbon. 171(2020) 368-375. [170] Y. Shi, M. Li, Y. Yu, B. Zhang, Energy Environ. Sci. 13(2020) 4564-4582. [171] Z. Zhao, L. Liu, S. Zhang, T. Yu, F. Li, G. Yang, RSC Adv. 7(2017) 15986-15991. [172] L. Zhao, R. Wu, J. Wang, Z. Li, X. Wei, J.S. Chen, Y. Chen, J. Energy Chem. 60(2021) 61-74. [173] K.P. Singh, E.J. Bae, J.S. Yu, J. Am. Chem.Soc. 137(2015) 3165-3168. [174] J.F. Callejas, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Chem. Mater. 28(2016) 6017-6044. [175] P.E. Blanchard, A.P. Grosvenor, R.G. Cavell, A. Mar, Chem. Mater. 20(2008) 7081-7088. [176] Y. Lv, X. Wang, Catal. Sci. Technol. 7(2017) 3676. [177] W. Kiciń ski, J.P. Se˛ k, A. Kowalczyk, S. Turczyniak-Surdacka, A.M. Nowicka, S. Dyjak, B. Budner, M. Donten, J. Energy Chem. 64(2022) 296-308. [178] N. Norouzi, F. Choudhury, H.M.El-Kaderi, ACS Appl. Energy Mater. 3(2020) 2537-2546. [179] A.K. Yousef, Y. Kim, P. Bhanja, P. Mei, M. Pramanik, M.M.S.Sanad, M.M. Rashad, A.Y. El-Sayed, A.A. Alshehri, Y.G. Alghamdi, K.A. Alzahrani, RSC Adv. 9(2019) 25240-25247. [180] H.H. Wang, L.B. Lv, S.N. Zhang, H. Su, G.Y. Zhai, W.W. Lei, X.H. Li, J.S. Chen, Nano Res. 13(2020) 2079-2084. [181] Y. Li, Z. Xu, X. Sun, J. Han, R. Guo, J. Colloid Interface Sci. 602(2021) 376-383. [182] K. Yuan, D. Lützenkirchen-Hecht, L. Li, L. Shuai, Y. Li, R. Cao, M. Qiu, X. Zhuang M.K. Leung, Y. Chen, U. Scherf, J. Am. Chem.Soc. 142(2020) 2404-2412. [183] Y. Sun, C. Huang, J. Shen, Y. Zhong, J. Ning, Y. Hu, J. Colloid Interface Sci. 558(2020) 1-8. [184] J. Theerthagiri, K. Karuppasamy, G. Durai, A.U.H.S. Rana, P. Arunachalam, K. Sangeetha, P. Kuppusami, H.S. Kim, Nanomaterials 8 (2018) 256. [185] H. Geng, L. Zhu, W. Li, H. Liu, Sol. Energy 147 (2017) 61-67. [186] D. Heift, Inorganics 7 (2019) 75. [187] M. Seredych, T.J. Bandosz, Carbon 66 (2014) 227-233. [188] N. Jia, J. Liu, Y. Liu, L. Wang, P. Chen, Z. An, X. Chen, Y. Chen, J. Colloid Interface Sci. 558(2020) 323-333. [189] S. Chen, Y. Yan, P. Hao, M. Li, J. Liang, J. Guo, Y. Zhang, S. Chen, W. Ding, X. Guo, ACS Appl. Mater. Interfaces. 12(2020) 12686-12695. [190] B. Ni, R. Chen, L. Wu, X. Xu, C. Shi, P. Sun, T. Chen, ACS Appl. Mater. Interfaces 12 (2020) 23995-24006. [191] H. Wang, X. Qiu, W. Wang, L. Jiang, H. Liu, Front. Chem. 7(2019) 855. [192] J. Gautam, D.T. Tran, T.I.N.H. Singh, J.H. Kim, Lee,, J. Power Sources 427 (2019) 91-100. [193] L. Li, B. Huang, X. Tang, Y. Hong, W. Zhai, T. Hu, K. Yuan, Y. Chen, Adv. Funct. Mater. 3(2021) 2103857. [194] Y. Wang, D. Wang, Y. Li, Adv. Energy Mater. 33(2021) 2008151. [195] C. Wan, X. Duan, Y. Huang, Adv. Energy Mater. 10(2020) 1903815. [196] Q. Zhang, J. Guan, Adv. Funct. Mater. 30(2020) 2000768. [197] J. Su, R. Ge, Y. Dong, F. Hao, L. Chen, J. Mater.Chem A. 6(2018) 14025-14042. [198] M. Liu, L. Wang, K. Zhao, S. Shi, Q. Shao, L. Zhang, X. Sun, Y. Zhao, J. Zhang, Energy Environ. Sci. 12(2019) 2890-2923. [199] M. Chen, Y. He, J.S. Spendelow, G. Wu, ACS Energy Lett. 4(2019) 1619-1633. [200] X. Li, C.S. Cao, S.F. Hung, Y.R. Lu, W. Cai, A.I. Rykov, S. Miao, S. Xi, H. Yang, Z. Hu, J. Wang, Chem 6 (2020) 3440-3454. [201] X. Ao, W. Zhang, Z. Li, J.G. Li, L. Soule, X. Huang, W.H. Chiang, H.M. Chen, C. Wang, M. Liu, X.C. Zeng, ACS Nano 13 (2019) 11853-11861. [202] S. Wang, M. Qiao, Y. Wang, Q. Wang, G. Hu, X. Mamat, S. Zhang, Angew. Chem. Int. Ed. Engl. 7(2019) 2688-2694. [203] Y. Zhao, P. Zhang, C. Xu, X.Y. Zhou, L.M. Liao, P.J. Wei, E. Liu, H. Chen, Q. He, J.G. Liu, ACS Appl. Mater. Interfaces. 12(2020) 17334-17342. [204] J.C. Li, S. Maurya, Y.S. Kim, T. Li, L. Wang, Q. Shi, D. Liu, S. Feng, Y. Lin, M. Shao, ACS Catal. 10(2020) 2452-2458. [205] X. Shi, Z. Pu, B. Chi, M. Liu, S. Yu, L. Zheng, L. Yang, T. Shu, S. Liao, J. Energy Chem. 59(2021) 388-395. [206] K. Wang, H. Chen, X. Zhang, Y. Tong, S. Song, P. Tsiakaras, Y. Wang, Appl. Catal. B 264 (2020) 118468. [207] T. Reshetenko, A. Serov, A. Kulikovsky, P. Atanassov, J. Electrochem. Soc. 166(2019) F653-F660. [208] L. Li, S. Shen, G. Wei, X. Li, K. Yang, Q. Feng, J. Zhang, ACS Appl. Mater. Interfaces 11 (2019) 14126-14135. [209] N. Zhang, T. Zhou, J. Ge, Y. Lin, Z. Du, W. Wang, Q. Jiao, R. Yuan, Y. Tian, W. Chu, C. Wu, Matter 3 (2020) 509-521. [210] X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nat. Catal. 2(2019) 259-268. [211] O.T. Holton, J.W. Stevenson, Platin. Met. Rev. 57(2013) 259-271. [212] J. Weiss, H. Zhang, P. Zelenay, J. Electroanal. Chem. 875(2020) 114696. [213] G.S. Harzer, J.N. Schwämmlein, A.M. Damjanovic´, S. Ghosh, H.A. Gasteiger, J. Electrochem. Soc. 165(2018) F3118. [214] V. Yarlagadda, M.K. Carpenter, T.E. Moylan, R.S. Kukreja, R. Koestner, W. Gu, L. Thompson, A. Kongkanand, ACS Energy Lett. 3(2018) 618-621. [215] D. Banham, J. Zou, S. Mukerjee, Z. Liu, D. Yang, Y. Zhang, Y. Peng, A. Dong, J. Power Sources. 490(2021) 229515. [216] Y. Li, Z. Zheng, X. Chen, Y. Liu, M. Liu, J. Li, D. Xiong, J. Xu, Int. J. Hydrogen Energy 45 (2020) 23519-23525. [217] P. Zelenay, Non-precious metal fuel cell cathodes: catalyst development and electrode structure design. In US Department of Energy, Energy Efficiency and Renewable Energy, Annual Merit Review meeting. (2016). https://www.hydrogen.energy.gov/pdfs/progress16/v_a_1_zelenay_2016.pdf. [218] Y. Sun, S. Polani, F. Luo, S. Ott, P. Strasser, F. Dionigi, Nat. Commun. 12(2021) 1-14. [219] AFC TCP survey on the number of fuel cell vehicles, hydrogen refueling stations and targets. International Energy Agency, (2019). https://www.ieafuelcell.com/fileadmin/publications/2019-04_AFC_TCP_survey_status_FCEV_2018.pdf. [220] I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah, K. R. Ward, Energy Environ. Sci. 12(2019) 463-491. [221] M. Ball, M. Weeda, Int. J. Hydrog. Energy. 40(2015) 7903-7919. [222] M. Li, Y. Bai, C. Zhang, Y. Song, S. Jiang, D. Grouset, M. Zhang, Int. J. Hydrog. Energy 44 (2019) 10677-10693. [223] T. Yoshida, K. Kojima, Electrochem. Soc. Interface 24 (2015) 45. [224] Technology Roadmap -Hydrogen and Fuel Cells. International Energy Agency, (2015). https://www.iea.org/reports/technology-roadmap-hydrogen-and-fuel-cells. [225] Hydrogen: renewable energy perspective. International Renewable Energy Agency, (2019). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Hydrogen_2019.pdf. [226] D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, Energy Strategy Rev. 24(2019) 38-50. [227] D.A. Cullen, K.C. Neyerlin, R.K. Ahluwalia, R. Mukundan, K.L. More, R.L.Borup A.Z. Weber, D.J. Myers, A. Kusoglu, Nat. Energy 6 (2021) 462-474. [228] A.F. Ambrose, A.Q.Al-Amin, R.Rasiah, R. Saidur, N. Amin, Int. J. Hydrog. Energy. 42(2017) 9125-9134. [229] P.M. Falcone, M. Hiete, A. Sapio, Curr. Opin. Green Sustain.Chem. 31(2021) 100506. [230] B. Verheul. Overview of hydrogen and fuel cell developments in China. Holland Innovation Network China, (2019). https://www.nederlandwereldwijd.nl/binaries/nederlandwereldwijd/documenten/publicaties/2019/03/01/waterstof-in-china/Holland+Innovation+Network+in+China+-+Hydrogen+developments.+January+2019.pdf. [231] C. Lee, R. Carvalho, J.J. So. An Analytical Approach on Transport Resilience with Smart Transport Systems. (2021). https://www.unescap.org/sites/default/files/Aricle%202_Analytical%20Approach%20on%20Transport%20Resilience%20with%20Smart%20Transport%20Systems.pdf. [232] Y. Balali, S. Stegen, Renew. Sustain. Energy Rev. 135(2021) 110185. [233] International Energy Agency, Tracking Transport. (2020). https://www.iea.org/report/tracking-transport-(2020). [234] Making the transition to zero-emission mobility. European Automobile Manufacturers’ Association, (2018). https://www.acea.be. [235] N. Brahy. Fuel Cell Electric Buses -Potential for Sustainable Public Transport in Europe. Fuel Cells and Hydrogen Joint Undertaking (FCH JU), (2015). https://www.fch.europa.eu/publications/fuel-cell-electric-buses-%E2%80%93-potential-sustainable-public-transport-europe. [236] F.W. Geels, G.I. Pereira, J. Pinkse, Energy Res. Soc. Sci. 84(2022) 102368. [237] United Nation, Mobilizing Sustainable Transport for Development: Analysis and Policy Recommendations from the United Nations Secretary-General’s High-Level Advisory Group on Sustainable Transport. https://sustainabledevelopment.un.org/content/documents/2375Mobilizing%20Sustainable%20Transport.pdf. [238] International Renewable Energy Agency, Measuring the socio-economics of transition: Focus of jobs. (2020). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/(2020)/Feb/IRENA_Transition_jobs_(2020).pdf. |
[1] | Yuanyuan Cong, Fanchao Meng, Haibin Wang, Di Dou, Qiuping Zhao, Chunlei Li, Ningshuang Zhang, Junying Tian. RuO2-PdO nanowire networks with rich interfaces and defects supported on carbon toward the efficient alkaline hydrogen oxidation reaction [J]. Journal of Energy Chemistry, 2023, 83(8): 255-263. |
[2] | Yong Zhang, Shu-Qin Song, Yong Gao, Tian-Fu Liu, Hong Zhao. Lithium film with abundant stepped structures: A promising route for homogeneous Li ion deposition to conquer lithium dendrite issue and its action mechanism [J]. Journal of Energy Chemistry, 2022, 72(9): 166-175. |
[3] | Tong Shen, Xiaoxiao Huang, Shibo Xi, Wei Li, Shengnan Sun, Yanglong Hou. The ORR electron transfer kinetics control via Co-Nx and graphitic N sites in cobalt single atom catalysts in alkaline and acidic media [J]. Journal of Energy Chemistry, 2022, 68(5): 184-194. |
[4] | Haonan Ren, Lingxiao Yu, Leping Yang, Zheng-Hong Huang, Feiyu Kang, Ruitao Lv. Efficient electrocatalytic overall water splitting and structural evolution of cobalt iron selenide by one-step electrodeposition [J]. Journal of Energy Chemistry, 2021, 60(9): 194-201. |
[5] | Mohamedazeem M. Mohideen, Seeram Ramakrishna, Sivaprasath Prabu, Yong Liu. Advancing green energy solution with the impetus of COVID-19 pandemic [J]. Journal of Energy Chemistry, 2021, 59(8): 688-705. |
[6] | Shuchang Wu, Linhui Yu, Guodong Wen, Zailai Xie, Yangming Lin. Recent progress of carbon-based metal-free materials in thermal-driven catalysis [J]. Journal of Energy Chemistry, 2021, 58(7): 318-335. |
[7] | Yaotian Yan, Pengcheng Wang, Jinghuang Lin, Jian Cao, Junlei Qi. Modification strategies on transition metal-based electrocatalysts for efficient water splitting [J]. Journal of Energy Chemistry, 2021, 58(7): 446-462. |
[8] | Ming Zhong, Ming Liu, Na Li, Xian-He Bu. Recent advances and perspectives of metal/covalent-organic frameworks in metal-air batteries [J]. Journal of Energy Chemistry, 2021, 63(12): 113-129. |
[9] | Donge Wang, Jiahe Li, Huaijun Ma, Chenggong Yang, Zhendong Pan, Wei Qu, Zhijian Tian. Layer-structure adjustable MoS2 catalysts for the slurry-phase hydrogenation of polycyclic aromatic hydrocarbons [J]. Journal of Energy Chemistry, 2021, 63(12): 294-304. |
[10] | Liang Fang, Limin Zhou, Lianmeng Cui, Peixin Jiao, Qinyou An, Kai Zhang. Sulfur-linked carbonyl polymer as a robust organic cathode for rapid and durable aluminum batteries [J]. Journal of Energy Chemistry, 2021, 63(12): 320-327. |
[11] | Kai Feng, Yaning Wang, Man Guo, Jingpeng Zhang, Zhengwen Li, Tianyu Deng, Zhihe Zhang, Binhang Yan. In-situ/operando techniques to identify active sites for thermochemical conversion of CO2 over heterogeneous catalysts [J]. Journal of Energy Chemistry, 2021, 62(11): 153-171. |
[12] | Tingting Liu, Sheng Cai, Genfu Zhao, Zhihui Gao, Shuming Liu, Huani Li, Lijuan Chen, Mian Li, Xiaofei Yang, Hong Guo. Recycling valuable cobalt from spent lithium ion batteries for controllably designing a novel sea-urchin-like cobalt nitride-graphene hybrid catalyst: Towards efficient overall water splitting [J]. Journal of Energy Chemistry, 2021, 62(11): 440-450. |
[13] | Chenyang Zha, Donghai Wu, Yuwei Zhao, Jun Deng, Jinghua Wu, Rong Wu, Meng Yang, Lin Wang, Houyang Chen. Two-dimensional multimetallic sulfide nanosheets with multi-active sites to enhance polysulfide redox reactions in liquid Li2S6-based lithium-polysulfide batteries [J]. Journal of Energy Chemistry, 2021, 52(1): 163-169. |
[14] | Jie Gan, Jiankang Zhang, Baiyan Zhang, Wenyao Chen, Dongfang Niu, Yong Qin, Xuezhi Duan, Xinggui Zhou. Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition [J]. Journal of Energy Chemistry, 2020, 45(6): 59-66. |
[15] | Wenming Zhang, Jingjing Chu, Shifeng Li, Yanan Li, Ling Li ⇑. CoNxC active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs as efficient multifunctional electrocatalyst for rechargeable Zn-air batteries [J]. Journal of Energy Chemistry, 2020, 51(12): 323-332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||