Journal of Energy Chemistry ›› 2022, Vol. 66 ›› Issue (3): 295-305.DOI: 10.1016/j.jechem.2021.08.032
Previous Articles Next Articles
Bo Zhaoa, Jin Lia, Maxime Guillaumeb, Jolien Dendoovena, Christophe Detaverniera,*
Received:
2021-03-16
Revised:
2021-08-08
Accepted:
2021-08-12
Published:
2022-10-25
Contact:
* E-mail address: Bo Zhao, Jin Li, Maxime Guillaume, Jolien Dendooven, Christophe Detavernier. In vacuo XPS investigation of surface engineering for lithium metal anodes with plasma treatment[J]. Journal of Energy Chemistry, 2022, 66(3): 295-305.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2021.08.032
[1] M. Li, J. Lu, Z.W. Chen, K. Amine, Adv. Mater. 30(2018) 1800561. [2] E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang, Y. Yao, R. Chen, F. Wu, Chem. Rev. 120(2020) 7020-7063. [3] N. Mahmood, T.Y. Tang, Y.L. Hou, Adv. Energy Mater. 6(2016) 1600374. [4] S. Chae, S.H. Choi, N. Kim, J. Sung, J. Cho, Angew. Chem. Int. Edit. 59(2020) 110-135. [5] J.W. Choi, D. Aurbach, Nat. Rev. Mater. 1(2016) 16013. [6] R. Younesi, G.M. Veith, P. Johansson, K. Edstrom, T. Vegge, Energy Environ. Sci.8(2015) 1905-1922. [7] B. Liu, J.G. Zhang, W. Xu, Joule 2 (2018) 833-845. [8] M. Wang, Y. Wu, M. Qiu, X. Li, C. Li, R. Li, J. He, G. Lin, Q. Qian, Z. Wen, X. Li, Z. Wang, Q. Chen, Q. Chen, J. Lee, Y.-W.Mai, Y. Chen, J. Energy Chem. 61(2021) 253-268. [9] K.H. Chen, K.N. Wood, E. Kazyak, W.S. LePage, A.L. Davis, A.J. Sanchez, N.P. Dasgupta, J. Mater. Chem. A 5 (2017) 11671-11681. [10] D. Lu, Y. Shao, T. Lozano, W.D. Bennett, G.L. Graff, B. Polzin, J. Zhang, M.H. Engelhard, N.T. Saenz, W.A. Henderson, Adv. Energy Mater. 5(2015) 1400993. [11] H. Liu, X.B. Cheng, R. Xu, X.Q. Zhang, C. Yan, J.Q. Huang, Q. Zhang, Adv. Energy Mater. 9(2019) 1902254. [12] K.N. Wood, E. Kazyak, A.F. Chadwick, K.-H.Chen, J.-G. Zhang, K. Thornton, N.P. Dasgupta, ACS Central Sci. 2(2016) 790-801. [13] X. Liang, Q. Pang, I.R. Kochetkov, M.S. Sempere, H. Huang, X.Q. Sun, L.F. Nazar, Nat. Energy 2 (2017) 17119. [14] J. Zhao, G. Zhou, K. Yan, J. Xie, Y. Li, L. Liao, Y. Jin, K. Liu, P.-C.Hsu, J. Wang, Nat. Nanotechnol. 12(2017) 993-999. [15] H. Qiu, T. Tang, M. Asif, W. Li, T. Zhang, Y. Hou, Nano Energy 65 (2019) 103989. [16] Q. Li, S. Zhu, Y. Lu, Adv. Funct. Mater. 27(2017) 1606422. [17] C.-P.Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, Y.-G. Guo, Nat. Commun. 6(2015) 1-9. [18] K.H. Chen, A.J. Sanchez, E. Kazyak, A.L. Davis, N.P. Dasgupta, Adv. Energy Mater. 9(2019) 1802534. [19] Y.L. An, H.F. Fei, G.F. Zeng, X.Y. Xu, L.J. Ci, B.J. Xi, S.L. Xiong, J.K. Feng, Y.T. Qian, Nano Energy 47 (2018) 503-511. [20] H. Zhao, D.N. Lei, Y.B. He, Y.F. Yuan, Q.B. Yun, B. Ni, W. Lv, B.H. Li, Q.H. Yang, F.Y. Kang, J. Lu, Adv. Energy Mater. 8(2018) 1800266. [21] R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang, C. Yan, Q. Zhang, Angew. Chem. Int. Edit. 129(2017) 7872-7876. [22] H. Zhang, X. Liao, Y. Guan, Y. Xiang, M. Li, W. Zhang, X. Zhu, H. Ming, L. Lu, J. Qiu, Nat. Commun. 9(2018) 1-11. [23] S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng, J. Cai, J. Shen, Y. Zhu, K. Zhang, W. Zhang, Adv. Mater. 30(2018) 1705830. [24] L.Y. Qi, Z.W. Wu, B.L. Zhao, B.J. Liu, W.Y. Wang, H. Pei, Y.Q. Dong, S.J. Zhang, Z.J. Yang, L.L. Qu, W. Zhang, Chem.-Eur.J. 26(2020) 4193-4203. [25] R. Xu, X.B. Cheng, C. Yan, X.Q. Zhang, Y. Xiao, C.Z. Zhao, J.Q. Huang, Q. Zhang, Matter 1 (2019) 317-344. [26] Y. Zhao, M. Amirmaleki, Q. Sun, C. Zhao, A. Codirenzi, L.V. Goncharova, C. Wang, K. Adair, X. Li, X. Yang, F. Zhao, R. Li, T. Filleter, M. Cai, X. Sun, Matter 1 (2019) 1215-1231. [27] M.H. Ryou, D.J. Lee, J.N. Lee, Y.M. Lee, J.K. Park, J.W. Choi, Adv. Energy Mater. 2(2012) 645-650. [28] C.F. Li, S.H. Liu, C.G. Shi, G.H. Liang, Z.T. Lu, R.W. Fu, D.C. Wu, Nat. Commun. 10(2019) 1363. [29] J.Y. Chen, J. Zhao, L.N. Lei, P. Li, J. Chen, Y. Zhang, Y.Z. Wang, Y.W. Ma, D. Wang, Nano Lett. 20(2020) 3403-3410. [30] X.Y. Zhang, A.X. Wang, R.J. Lv, J.Y. Luo, Energy Storage Mater. 18(2019) 199-204. [31] H. Zhang, G.G. Eshetu, X. Judez, C.M. Li, L.M.Rodriguez-Martinez, M.Armand, Angew. Chem. Int. Edit. 57(2018) 15002-15027. [32] S. Li, Z. Luo, L. Li, J. Hu, G. Zou, H. Hou, X. Ji, Energy Storage Mater. 32(2020) 306-319. [33] J.-X.Chen, X.-Q. Zhang, B.-Q. Li, X.-M. Wang, P. Shi, W. Zhu, A. Chen, Z. Jin, R. Xiang, J.-Q. Huang, Q. Zhang, J. Energy Chem. 47(2020) 128-131. [34] C.Z. Zhao, X.B. Cheng, R. Zhang, H.J. Peng, J.Q. Huang, R. Ran, Z.H. Huang, F. Wei, Q. Zhang, Energy Storage Mater. 3(2016) 77-84. [35] K. Thanner, A. Varzi, D. Buchholz, S.J. Sedlmaier, S. Passerini, A.C.S. Appl, Mater. Interfaces 12 (2020) 32851-32862. [36] R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J.-P.Bonnet, T.N. Phan, D. Bertin, D. Gigmes, D. Devaux, Nat. Mater. 12(2013) 452-457. [37] S.X. Xia, J. Lopez, C. Liang, Z.C. Zhang, Z.N. Bao, Y. Cui, W. Liu, Adv. Sci. 6(2019) 1802353. [38] X. Miao, H. Wang, R. Sun, C. Wang, Z. Zhang, Z. Li, L. Yin, Energy Environ. Sci. 13(2020) 3780-3822. [39] A. Banerjee, X. Wang, C. Fang, E.A. Wu, Y.S. Meng, Chem. Rev. 120(2020) 6878-6933. [40] Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, Y. Huang, Adv. Mater. 30(2018) 1705702. [41] Y.Z. Li, Y.B. Li, Y.M. Sun, B. Butz, K. Yan, A.L. Koh, J. Zhao, A. Pei, Y. Cui, Nano Lett. 17(2017) 5171-5178. [42] M.M. Markowitz, D.A. Boryta, J. Chem. Eng. Data 7 (1962) 586-591. [43] W. Irvine, J. Lund, J. Electrochem. Soc. 110(1963) 141-144. [44] M. Klanchar, B.D. Wintrode, J.A. Phillips, Energy Fuel. 11(1997) 931-935. [45] H.R. Grady, J. Power Sources 5 (1980) 127-135. [46] C.F. Lin, A.C. Kozen, M. Noked, C.Y. Liu, G.W. Rubloff, Adv. Mater. Interfaces 3 (2016) 1600426. [47] N. Delaporte, Y.S. Wang, K. Zaghib, Front. Mater. 6(2019) 267. [48] S. Dou, L. Tao, R.L. Wang, S. El Hankari, R. Chen, S.Y. Wang, Adv. Mater. 30(2018) 1705850. [49] C.H. Yi, Y.H. Lee, G.Y. Yeom, Surf. Coat. Tech. 171(2003) 237-240. [50] C. Arpagaus, G. Oberbossel, P.R.von Rohr, Plasma Processes Polym. 15(2018) e1800133. [51] A. Ricard, J. Phys.D: Appl. Phys. 30(1997) 2261-2269. [52] P.K. Alaboina, S. Rodrigues, M. Rottmayer, S.-J. Cho, A.C.S. Appl, Mater. Interfaces 10 (2018) 32801-32808. [53] S.S.T.Vandenbroucke, E. Levrau, M.M. Minjauw, M. Van Daele, E. Solano, R. Vos, J. Dendooven, C. Detavernier, Phys. Chem. Chem. Phys. 22(2020) 9262-9271. [54] A.C. Kozen, A.J. Pearse, C.-F. Lin, M.A. Schroeder, M. Noked, S.B. Lee, G.W. Rubloff, J. Phys. Chem. C 118 (2014) 27749-27753. [55] K.P.C.Yao, D.G. Kwabi, R.A. Quinlan, A.N. Mansour, A. Grimaud, Y.-L. Lee, Y.-C. Lu, Y. Shao-Horn, J. Electrochem. Soc. 160(2013) A824-A831. [56] J.R. Hoenigman, R.G. Keil, Appl. Surf. Sci. 18(1984) 207-222. [57] K.N. Wood, G. Teeter, A.C.S.Appl, Energy Mater. 1(2018) 4493-4504. [58] G. Xu, J. Li, C. Wang, X. Du, D. Lu, B. Xie, X. Wang, C. Lu, H. Liu, S. Dong, Angew. Chem. Int. Ed. 133(2021) 7849-7855. [59] Z. Shadike, H. Lee, O. Borodin, X. Cao, X. Fan, X. Wang, R. Lin, S.-M.Bak, S. Ghose, K. Xu, Nat. Nanotechnol. 16(2021) 549-554. [60] Z. Zhang, Z. Ye, Z. Wang, F. Gou, B. Shen, A. Wu, Y. He, P. He, H. Wang, B. Chen, J. Chen, K. Zhang, J. Wei, Appl. Surface Sci. 475(2019) 143-150. [61] S.L. Koch, B.J. Morgan, S. Passerini, G. Teobaldi, J. Power Sources 296 (2015) 150-161. [62] Y.J. Zhang, W. Wang, H. Tang, W.Q. Bai, X. Ge, X.L. Wang, C.D. Gu, J.P. Tu, J. Power Sources 277 (2015) 304-311. [63] K. Chen, R. Pathak, A. Gurung, E.A. Adhamash, B. Bahrami, Q.Q. He, H. Qiao, A.L. Smirnova, J.J. Wu, Q.Q. Qiao, Y. Zhou, Energy Storage Mater. 18(2019) 389-396. [64] S.-E. Sheng, L. Sheng, L. Wang, N. Piao, X. He, J. Power Sources 476 (2020) 228749. [65] L. Chen, J.G. Connell, A.M. Nie, Z.N. Huang, K.R. Zavadil, K.C. Klavetter, Y.F. Yuan, S. Sharifi-Asl, R. Shahbazian-Yassar, J.A. Libera, A.U. Mane, J.W. Elam, J. Mater. Chem. A 5 (2017) 12297-12309. [66] H. Chen, A. Pei, D. Lin, J. Xie, A. Yang, J. Xu, K. Lin, J. Wang, H. Wang, F. Shi, D. Boyle, Y. Cui, Adv. Energy Mater. 9(2019) 1900858. [67] Y. Cui, S. Liu, D. Wang, X. Wang, X. Xia, C. Gu, J. Tu, Adv. Funct. Mater., 2006380. [68] J. Ko, Y.S. Yoon, Ceram. Int. 45(2019) 30-49. [69] J. Lang, Y. Long, J. Qu, X. Luo, H. Wei, K. Huang, H. Zhang, L. Qi, Q. Zhang, Z. Li, H. Wu, Energy Storage Mater. 16(2019) 85-90. [70] C. Cui, C. Yang, N. Eidson, J. Chen, F. Han, L. Chen, C. Luo, P.-F.Wang, X. Fan, C. Wang, Adv. Mater. 32(2020) 1906427. |
[1] | Lei Zhai, Kai Yang, Fuyi Jiang, Wenbao Liu, Zhenhua Yan, Jianchao Sun. High-performance solid-state lithium metal batteries achieved by interface modification [J]. Journal of Energy Chemistry, 2023, 79(4): 357-364. |
[2] | Yuliang Gao, Fahong Qiao, Nan Li, Jingyuan You, Yong Yang, Jun Wang, Chao Shen, Ting Jin, Xi Li, Keyu Xie. Full-chain enhanced ion transport toward stable lithium metal anodes [J]. Journal of Energy Chemistry, 2023, 79(4): 390-397. |
[3] | Yuhao Zhu, Xieyu Xu, Qingpeng Guo, Yu Han, Haolong Jiang, Huize Jiang, Hui Wang, Pavel V. Evdokimov, Olesya O. Kapitanova, Valentyn S. Volkov, Yongjing Wang, Shizhao Xiong, Chunman Zheng, Kai Xie, Xingxing Jiao, Yangyang Liu. Reinforced interface endows the lithium anode with stable cycle at high-temperature of 80℃ [J]. Journal of Energy Chemistry, 2023, 78(3): 325-332. |
[4] | Yu Ye, Xinyan Ye, Haoxian Zhu, Juncao Bian, Haibin Lin, Jinlong Zhu, Yusheng Zhao. Elucidating the suppression of lithium dendrite growth with a void-reduced anti-perovskite solid-state electrolyte pellet for stable lithium metal anodes [J]. Journal of Energy Chemistry, 2023, 77(2): 62-69. |
[5] | Yahao Li, Yue Li, Lulu Zhang, Huachao Tao, Qingyu Li, Jiujun Zhang, Xuelin Yang. Lithiophilicity: The key to efficient lithium metal anodes for lithium batteries [J]. Journal of Energy Chemistry, 2023, 77(2): 123-136. |
[6] | Lin Lin, Wei Lu, Feipeng Zhao, Siru Chen, Jia Liu, Haiming Xie, Yulong Liu. 20 µm Li metal modified with phosphate rich polymer-inorganic interphase applied in commercial carbonate electrolyte [J]. Journal of Energy Chemistry, 2023, 76(1): 233-238. |
[7] | Wenzhu Cao, Weimin Chen, Mi Lu, Cheng Zhang, Du Tian, Liang Wang, Faquan Yu. In situ generation of Li3N concentration gradient in 3D carbon-based lithium anodes towards highly-stable lithium metal batteries [J]. Journal of Energy Chemistry, 2023, 76(1): 648-656. |
[8] | Piao Qing, Zhibin Wu, Yuejiao Chen, Fengcheng Tang, Hao Yang, Libao Chen. Powder metallurgical 3D nickel current collectors with plasma-induced Ni3N nanocoatings enabling long-life and dendrite-free lithium metal anode [J]. Journal of Energy Chemistry, 2022, 72(9): 149-157. |
[9] | Feng-Ni Jiang, Shi-Jie Yang, Xin-Bing Cheng, Peng Shi, Jun-Fan Ding, Xiang Chen, Hong Yuan, Lei Liu, Jia-Qi Huang, Qiang Zhang. Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries [J]. Journal of Energy Chemistry, 2022, 72(9): 158-165. |
[10] | Rui Zhang, Xin Shen, Yu-Tong Zhang, Xia-Lin Zhong, Hao-Tian Ju, Tian-Xiao Huang, Xiang Chen, Jun-Dong Zhang, Jia-Qi Huang. Dead lithium formation in lithium metal batteries: A phase field model [J]. Journal of Energy Chemistry, 2022, 71(8): 29-35. |
[11] | Shi-Jie Yang, Xin Shen, Xin-Bing Cheng, Feng-Ni Jiang, Rui Zhang, He Liu, Lei Liu, Hong Yuan. Plating current density distribution of lithium metal anodes in pouch cells [J]. Journal of Energy Chemistry, 2022, 69(6): 70-75. |
[12] | Nicolas Lucero, Dayannara Vilcarino, Dibakar Datta, Meng-Qiang Zhao. The roles of MXenes in developing advanced lithium metal anodes [J]. Journal of Energy Chemistry, 2022, 69(6): 132-149. |
[13] | Xiang-Qun Xu, Feng-Ni Jiang, Shi-Jie Yang, Ye Xiao, He Liu, Fangyang Liu, Lei Liu, Xin-Bing Cheng. Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries [J]. Journal of Energy Chemistry, 2022, 69(6): 205-210. |
[14] | Liwen Tan, Chuanliang Wei, Yuchan Zhang, Shenglin Xiong, Hui Li, Jinkui Feng. Self-assembled, highly-lithiophilic and well-aligned biomass engineered MXene paper enables dendrite-free lithium metal anode in carbonate-based electrolyte [J]. Journal of Energy Chemistry, 2022, 69(6): 221-230. |
[15] | Haowen Liu, Jifang Zhang, Yang Liu, Yang Wei, Shuaiyang Ren, Ludi Pan, Yi Su, Jianhua Xiao, Haiyan Fan, Yitao Lin, Yipeng Su, Yuegang Zhang. A flexible artificial solid-electrolyte interlayer supported by compactness-tailored carbon nanotube network for dendrite-free lithium metal anode [J]. Journal of Energy Chemistry, 2022, 69(6): 421-427. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||