Journal of Energy Chemistry ›› 2022, Vol. 66 ›› Issue (3): 306-313.DOI: 10.1016/j.jechem.2021.08.019
Previous Articles Next Articles
Chao Yanga, Shanshan Shangb, Qinfen Guc, Jin Shangb, Xiao-yan Lia,d,*
Received:
2021-03-02
Revised:
2021-07-15
Accepted:
2021-08-09
Published:
2022-10-25
Contact:
* E-mail address: Chao Yang, Shanshan Shang, Qinfen Gu, Jin Shang, Xiao-yan Li. Metal-organic framework-derived carbon nanotubes with multi-active Fe-N/Fe sites as a bifunctional electrocatalyst for zinc-air battery[J]. Journal of Energy Chemistry, 2022, 66(3): 306-313.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2021.08.019
Pump type | Advantages | Disadvantages |
---|---|---|
Syringe pump | compact structure, stable during experiment, no check valve in pump head, convenient maintenance | limited delivery time due to pump cavity, inevitable system equilibrating procedure before every analysis |
Continuous flow pump | no limit to delivery time, fast equilibration between continuous experiments | complex structure and control algorithm, higher failure rate caused by multiple check valves |
Table 1 Advantages and disadvantages of the two types of splitless nanoliter pumps
Pump type | Advantages | Disadvantages |
---|---|---|
Syringe pump | compact structure, stable during experiment, no check valve in pump head, convenient maintenance | limited delivery time due to pump cavity, inevitable system equilibrating procedure before every analysis |
Continuous flow pump | no limit to delivery time, fast equilibration between continuous experiments | complex structure and control algorithm, higher failure rate caused by multiple check valves |
Type | Driving principle | Flow rate range/ (nL/min) | Maximum pressure/ MPa | Continuous delivery or not | References |
---|---|---|---|---|---|
Pneumatic amplifying pump | pneumatic with multiple amplification | 12-1.7×106 | 900 | no | [ |
Active flow splitting systems | split ratio is inversely proportional to resistance ratio | 50-2.5×106 | 40 | yes | [ |
Continuous flow pump | high precision motors driving double pistons in | 20-1×105 | 100 | yes | [ |
series/parallel | |||||
Syringe pump | high precision motor driving single piston | 20-2×103 | 120 | no | [ |
Electroosmotic pump | electroosmotic phenomenon | 0-5×104 | 40 | no | [ |
Magnetostriction pump | magnetostrictive effect | - | 130 kN | no | [ |
Thermal expansion pump | thermal expansion of liquid | 10-5×104 | 10 | no | [ |
Phase transition pump | volume change during phase transition of liquid or solid | minimum 100 | 80 | no | [ |
Table 2 Specifications of available nanoliter pumps
Type | Driving principle | Flow rate range/ (nL/min) | Maximum pressure/ MPa | Continuous delivery or not | References |
---|---|---|---|---|---|
Pneumatic amplifying pump | pneumatic with multiple amplification | 12-1.7×106 | 900 | no | [ |
Active flow splitting systems | split ratio is inversely proportional to resistance ratio | 50-2.5×106 | 40 | yes | [ |
Continuous flow pump | high precision motors driving double pistons in | 20-1×105 | 100 | yes | [ |
series/parallel | |||||
Syringe pump | high precision motor driving single piston | 20-2×103 | 120 | no | [ |
Electroosmotic pump | electroosmotic phenomenon | 0-5×104 | 40 | no | [ |
Magnetostriction pump | magnetostrictive effect | - | 130 kN | no | [ |
Thermal expansion pump | thermal expansion of liquid | 10-5×104 | 10 | no | [ |
Phase transition pump | volume change during phase transition of liquid or solid | minimum 100 | 80 | no | [ |
Injection mode | Advantages | Disadvantages | References |
---|---|---|---|
Built-in sample loop | simple, robust, no sample loss | limited injection volume and peak capacity, no protection of the separation column | [ |
Variable-volume injection valve | robust, no sample loss, variable injection volume | higher machining precision, no protection of the separation column | [ |
Timed injection | variable injection volume, simple | precision affected by time and flow rate, no protection of the separation column | [ |
Trapped on a vented column | sample wash, greater injection volume, small dead volumes, protection of the separation column | interruption of the flow, pressure and spray, limited robustness, possible sample loss on the trap column | [ |
Trapped by column switching | sample wash, greater injection volume, robust, protection of the separation column | possible sample loss on the trap column, more modules | [ |
TASF | greater injection volume, small dead volumes, lower dispersion | repeatability affected by temperature control, baseline disturbance | [ |
Table 3 Comparison of different injection modes for nano liquid chromatography
Injection mode | Advantages | Disadvantages | References |
---|---|---|---|
Built-in sample loop | simple, robust, no sample loss | limited injection volume and peak capacity, no protection of the separation column | [ |
Variable-volume injection valve | robust, no sample loss, variable injection volume | higher machining precision, no protection of the separation column | [ |
Timed injection | variable injection volume, simple | precision affected by time and flow rate, no protection of the separation column | [ |
Trapped on a vented column | sample wash, greater injection volume, small dead volumes, protection of the separation column | interruption of the flow, pressure and spray, limited robustness, possible sample loss on the trap column | [ |
Trapped by column switching | sample wash, greater injection volume, robust, protection of the separation column | possible sample loss on the trap column, more modules | [ |
TASF | greater injection volume, small dead volumes, lower dispersion | repeatability affected by temperature control, baseline disturbance | [ |
Manufacturer | Model | Pump | Autosampler | |||||
---|---|---|---|---|---|---|---|---|
Flow rate range/ (μL/min) | maximum pressure/ MPa | Flow precision (RSD/%) | Delay volume/ nL | Lowest injection volume/μL | Injection repeatability (RSD) | |||
Thermo Fisher | Ultimate 3000 RSLCnano | 0.02-50 | 80 | 0.2 (300 nL/min) | 25 | 0.01 | 0.4%(full loop, 1 μL) | |
Scientific | ||||||||
Thermo Fisher | EASY-nano LC 1200 | 0.02-2 | 120 | 0.4 | 1000 | 0.1 | 0.2%(pick-up, 5 μL), | |
Scientific | 3.0%(pick-up, 0.1 μL) | |||||||
AB Sciex | Ekspert nanoLC 400 | 0.1-50 | 69 | 0.35 (500 nL/min) | 25 | 0.1 | 0.5%(full loop ), | |
1%(pick-up, >1 μL) | ||||||||
Waters | ACQUITY UPLC M-Class | 0.2-100 | 100 | - | 1000 | 0.1 | 1%(0.2-1.9 μL), | |
0.5%(2-10 μL) | ||||||||
Agilent | 1200 Infinity nano | 0.01-4 | 40 | 0.7 | 300 | - | - | |
Shimadzu | Nano Prominence | 0.001-5 | 40 | - | - | - | - |
Table 4 Specifications of some commercial nano liquid chromatography systems
Manufacturer | Model | Pump | Autosampler | |||||
---|---|---|---|---|---|---|---|---|
Flow rate range/ (μL/min) | maximum pressure/ MPa | Flow precision (RSD/%) | Delay volume/ nL | Lowest injection volume/μL | Injection repeatability (RSD) | |||
Thermo Fisher | Ultimate 3000 RSLCnano | 0.02-50 | 80 | 0.2 (300 nL/min) | 25 | 0.01 | 0.4%(full loop, 1 μL) | |
Scientific | ||||||||
Thermo Fisher | EASY-nano LC 1200 | 0.02-2 | 120 | 0.4 | 1000 | 0.1 | 0.2%(pick-up, 5 μL), | |
Scientific | 3.0%(pick-up, 0.1 μL) | |||||||
AB Sciex | Ekspert nanoLC 400 | 0.1-50 | 69 | 0.35 (500 nL/min) | 25 | 0.1 | 0.5%(full loop ), | |
1%(pick-up, >1 μL) | ||||||||
Waters | ACQUITY UPLC M-Class | 0.2-100 | 100 | - | 1000 | 0.1 | 1%(0.2-1.9 μL), | |
0.5%(2-10 μL) | ||||||||
Agilent | 1200 Infinity nano | 0.01-4 | 40 | 0.7 | 300 | - | - | |
Shimadzu | Nano Prominence | 0.001-5 | 40 | - | - | - | - |
[1] Y. Li, H. Dai, Chem. Soc. Rev. 43(2014) 5257-5275. [2] D. Jiao, Z. Ma, J. Li, Y. Han, J. Mao, T. Ling, S. Qiao, J. Energy Chem. 44(2020) 1-7. [3] Y. Li, M. Gong, Y. Liang, J. Feng, J.E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Nat. Commun. 4(2013) 1-7. [4] Y. Chen, H. Wang, F. Liu, H. Gai, S. Ji, V. Linkov, R. Wang, Chem. Eng. J. 353(2018) 472-480. [5] X. Liu, X. Cui, K. Dastafkan, H. Wang, C. Tang, C. Zhao, A. Chen, C. He, M. Han, Q. Zhang, J. Energy Chem. 53(2021) 290-302. [6] H. Wang, C. Tang, Q. Zhang, Catal. Today 301 (2018) 25-31. [7] S. Ren, X. Duan, S. Liang, M. Zhang, H. Zheng, J. Mater. Chem. A 8 (2020) 6144-6182. [8] M. Mao, X. Wu, Y. Hu, Q. Yuan, Y. He, F. Kang, J. Energy Chem. 52(2021) 277-283. [9] B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. García-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, Science 352 (2016) 333-337. [10] L.Y. Zhang, M.R. Wang, Y.Q. Lai, X.Y. Li, J. Power Sources 359 (2017) 71-79. [11] J. Qin, Z. Liu, D. Wu, J. Yang, Appl. Catal. B-Environ. 278(2020) 119300. [12] W. Wang, Q. Jia, S. Mukerjee, S. Chen, ACS Catal. 9(2019) 10126-10141. [13] Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 44(2015) 2060-2086. [14] C. Tang, Q. Zhang, Adv. Mater. 29(2017) 1604103. [15] Z. Wang, H. Jin, T. Meng, K. Liao, W. Meng, J. Yang, D. He, Y. Xiong, S. Mu, Fe, Cu-Adv. Funct. Mater. 28(2018) 1802596. [16] H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C. Wang, D. Su, Y. Shao, G. Wu, J. Am. Chem.Soc. 139(2017) 14143-14149. [17] N. Shang, C. Wang, X. Zhang, S. Gao, S. Zhang, T. Meng, J. Wang, H. Wang, C. Du, T. Shen, J. Huang, Chem. Eng. J. (2020) 127345. [18] Z. Li, L. Wei, W. Jiang, Z. Hu, H. Luo, W. Zhao, T. Xu, W. Wu, M. Wu, J. Hu, Appl. Catal. B-Environ. 251(2019) 240-246. [19] B. Bayatsarmadi, Y. Zheng, A. Vasileff, S.Z. Qiao, Small 13 (2017) 1700191. [20] Z. Liang, C. Qu, D. Xia, R. Zou, Q. Xu, Angew. Chem. Int. Ed. 57(2018) 9604-9633. [21] W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.J. Zhang, J.Q. Wang, J.S. Hu, Z. Wei, L. J. Wan, J. Am. Chem.Soc. 138(2016) 3570-3578. [22] J. Han, X. Meng, L. Lu, J. Bian, Z. Li, C. Sun, Adv. Funct. Mater. 29(2019) 1808872. [23] D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao, Angew. Chem. Int. Ed. 52(2013) 371-375. [24] X. Wang, Y. Li, T. Jin, J. Meng, L. Jiao, M. Zhu, J. Chen, Nano Lett. 17(2017) 7989-7994. [25] H.L. Jiang, B. Liu, Y.Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, J. Am. Chem.Soc. 133(2011) 11854-11857. [26] G. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Nano Lett. 11(2011) 4462-4467. [27] T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 53(2014) 7281-7285. [28] Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan, W. Zhou, M. Ni, Z. Shao, Adv. Funct. Mater. 29(2019) 1904481. [29] X. Li, Y. Fang, S. Zhao, J. Wu, F. Li, M. Tian, X. Long, J. Jin, J. Ma, J. Mater. Chem. A 4 (2016) 13133-13141. [30] H.F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, Chem. Soc. Rev. 49(2020) 1414-1448. [31] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 10(2011) 780-786. [32] C. Tang, Y. Jiao, B. Shi, J. Liu, Z. Xie, X. Chen, Q. Zhang, S. Qiao, Angew. Chem. Int. Ed. 59(2020) 9171-9176. [33] X. Xu, X. Zhang, Z. Xia, R. Sun, H. Li, J. Wang, S. Yu, S. Wang, G. Sun, J. Energy Chem. 54(2021) 579-586. [34] J.A.Rodriguez-Manzo, M.Terrones, H. Terrones, H.W. Kroto, L. Sun, F. Banhart, Nat. Nanotechnol. 2(2007) 307-311. [35] C. Emmenegger, J.-M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Züttel, L. Schlapbach, Carbon 41 (2003) 539-547. [36] Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, ACS Nano 5 (2011) 4350-4358. [37] I.S. Amiinu, X. Liu, Z. Pu, W. Li, Q. Li, J. Zhang, H. Tang, H. Zhang, S. Mu, Adv. Funct. Mater. 28(2018) 1704638. [38] Y. Deng, Y. Dong, G. Wang, K. Sun, X. Shi, L. Zheng, X. Li, S. Liao, ACS Appl. Mater. Interfaces 9 (2017) 9699-9709. [39] X. Chen, L. Yu, S. Wang, D. Deng, X. Bao, Nano Energy 32 (2017) 353-358. [40] D. Nguyen, G. Kang, M.C. Hersam, G.C. Schatz, R.P.Van Duyne, J.Phys. Chem. Lett. 10(2019) 3966-3971. [41] Y.J. Sa, D.J. Seo, J. Woo, J.T. Lim, J.Y. Cheon, S.Y. Yang, J.M. Lee, D. Kang, T.J. Shin, H.S. Shin, H.Y. Jeong, C.S. Kim, M.G. Kim, T.Y. Kim, S.H. Joo, J. Am. Chem.Soc. 138(2016) 15046-15056. [42] L. Jiao, G. Wan, R. Zhang, H. Zhou, S.H. Yu, H.L. Jiang, Angew. Chem. Int. Ed. 57(2018) 8525-8529. [43] A. Zitolo, V. Goellner, V. Armel, M.T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 14(2015) 937-942. [44] Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong, W.C. Cheong, R. Shen, X. Wen, L. Zheng, A.I. Rykov, S. Cai, H. Tang, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 9(2018) 5422. [45] H. Yin, C. Zhang, F. Liu, Y. Hou, Adv. Funct. Mater. 24(2014) 2930-2937. [46] M. Xiao, J. Zhu, L. Ma, Z. Jin, J. Ge, X. Deng, Y. Hou, Q. He, J. Li, Q. Jia, S. Mukerjee, R. Yang, Z. Jiang, D. Su, C. Liu, W. Xing, ACS Catal. 8(2018) 2824-2832. |
[1] | Zhengyan Du, Zeshuo Meng, Chao Jiang, Chenxu Zhang, Yanan Cui, Yaxin Li, Chong Wang, Xiaoying Hu, Shansheng Yu, Hongwei Tian. Enhanced reconstruction of Fe5Ni4S8 by implanting pyrrolidone to unlock efficient oxygen evolution [J]. Journal of Energy Chemistry, 2023, 84(9): 112-121. |
[2] | Rin Na, Kyeongseok Min, Hyejin Kim, Yujin Son, Sang Eun Shim, Sung-Hyeon Baeck. Boosting electrocatalytic activity with the formation of abundant heterointerfaces and N, S dual-doped carbon nanotube for rechargeable Zn-air battery [J]. Journal of Energy Chemistry, 2023, 84(9): 140-152. |
[3] | Mengxin Chen, Yuanyuan Zhang, Ran Wang, Bin Zhang, Bo Song, Yanchao Guan, Siwei Li, Ping Xu. Surface reconstruction of Se-doped NiS2 enables high-efficiency oxygen evolution reaction [J]. Journal of Energy Chemistry, 2023, 84(9): 173-180. |
[4] | Shaohui Zhang, Suying Liu, Jingwen Huang, Haikun Zhou, Xuanzhi Liu, Pengfei Tan, Haoyun Chen, Yili Liang, Jun Pan. Microbial synthesis of N, P co-doped carbon supported PtCu catalysts for oxygen reduction reaction [J]. Journal of Energy Chemistry, 2023, 84(9): 486-495. |
[5] | Shengli Pang, Yifan Song, Meng Cui, Xin Tang, Chao Long, Lingfeng Ke, Gongmei Yang, Ting Fang, Yong Guan, Chonglin Chen. Rapid and durable oxygen reduction reaction enabled by a perovskite oxide with self-cleaning surface [J]. Journal of Energy Chemistry, 2023, 83(8): 333-340. |
[6] | Yifei Li, Xilin Yuan, Ping Wang, Lulin Tang, Miao He, Pangen Li, Jiang Li, Zhenxing Li. Rare earth alloy nanomaterials in electrocatalysis [J]. Journal of Energy Chemistry, 2023, 83(8): 574-594. |
[7] | Keyru Serbara Bejigo, Kousik Bhunia, Jungho Kim, Chaehyeon Lee, Seoin Back, Sang-Jae Kim. Upcycling end of lithium cobalt oxide batteries to electrocatalyst for oxygen reduction reaction in direct methanol fuel cell via sustainable approach [J]. Journal of Energy Chemistry, 2023, 82(7): 148-157. |
[8] | Jing Wang, Haihong Zhong, Jun Yang, Huiyu Li, Pinggui Tang, Yongjun Feng, Dianqing Li. Tuning the atomic configuration environment of MnN4 sites by Co cooperation for efficient oxygen reduction [J]. Journal of Energy Chemistry, 2023, 82(7): 547-559. |
[9] | So Jung Kim, Heechae Choi, Jeong Ho Ryu, Kang Min Kim, Sungwook Mhin, Arpan Kumar Nayak, Junghwan Bang, Minyeong Je, Ghulam Ali, Kyung Yoon Chung, Kyeong-Han Na, Won-Youl Choi, Sunghwan Yeo, Jin Uk Jang, HyukSu Han. Zn-doped nickel iron (oxy)hydroxide nanocubes passivated by polyanions with high catalytic activity and corrosion resistance for seawater oxidation [J]. Journal of Energy Chemistry, 2023, 81(6): 82-92. |
[10] | Xiaolin Hu, Ronghua Wang, Wenlin Feng, Chaohe Xu, Zidong Wei. Electrocatalytic oxygen evolution activities of metal chalcogenides and phosphides: Fundamentals, origins, and future strategies [J]. Journal of Energy Chemistry, 2023, 81(6): 167-191. |
[11] | Hao Sun, Yizhe Li, Liyao Gao, Mengyao Chang, Xiangrong Jin, Boyuan Li, Qingzhen Xu, Wen Liu, Mingyue Zhou, Xiaoming Sun. High throughput screening of single atomic catalysts with optimized local structures for the electrochemical oxygen reduction by machine [J]. Journal of Energy Chemistry, 2023, 81(6): 349-357. |
[12] | Ansheng Wang, Shan Gao, Jiaguo Yan, Chunning Zhao, Meng Yu, Weichao Wang. Vacancy-modified bimetallic FeMoSx/CoNiPx heterostructure array for efficient seawater splitting and Zn-air battery [J]. Journal of Energy Chemistry, 2023, 81(6): 533-542. |
[13] | Lingxue Meng, Wenwei Liu, Yang Lu, Zhenyi Liang, Ting He, Jinying Li, Haoxiong Nan, Shengxu Luo, Jia Yu. Lamellar-stacked cobalt-based nanopiles integrated with nitrogen/sulfur co-doped graphene as a bifunctional electrocatalyst for ultralong-term zinc-air batteries [J]. Journal of Energy Chemistry, 2023, 81(6): 633-641. |
[14] | Cheng Zhang, Xuchao Zheng, Yongyue Ning, Zihan Li, Zhongdong Wu, Xiaoyu Feng, Gangyong Li, Zhongyuan Huang, Zongqian Hu. Enhancing long-term stability of bio-photoelectrochemical cell by defect engineering of a WO3-x photoanode [J]. Journal of Energy Chemistry, 2023, 80(5): 584-593. |
[15] | Rongrong Zhang, Beibei Guo, Lun Pan, Zhen-Feng Huang, Chengxiang Shi, Xiangwen Zhang, Ji-Jun Zou. Metal-oxoacid-mediated oxyhydroxide with proton acceptor to break adsorption energy scaling relation for efficient oxygen evolution [J]. Journal of Energy Chemistry, 2023, 80(5): 594-602. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||