Journal of Energy Chemistry ›› 2022, Vol. 65 ›› Issue (2): 149-172.DOI: 10.1016/j.jechem.2021.05.052
Previous Articles Next Articles
Satpal Singh Sekhona,b,*, Jaeyoung Leec, Jin-Soo Parka,d,*
Received:
2021-01-08
Revised:
2021-05-27
Accepted:
2021-05-28
Online:
2022-02-15
Published:
2022-10-26
Contact:
*E-mail address: sekhon.gndu@gmail.com (S.S. Sekhon).
About author:
Satpal Singh Sekhon received his doctoral degree in Physics from Punjabi University, Patiala, India. He worked as a Professor of Physics and Applied Physics at Guru Nanak Dev University, Amritsar, India and at The University of the West Indies, St Augustine, Trinidad and Tobago. He also worked as Brain Pool Scientist at Fuel Cell Research Centre, Korea Institute of Energy Research, Daejeon, South Korea. He is currently a University Honorary Professor at Guru Nanak Dev University, Amritsar, India, and an Invited Scientist under Brain Pool program of NRF Korea, at Sangmyung University, Cheonan, South Korea. He has been awarded MRSI Medal by Material Research Society of India for his outstanding contribution in the field of Materials Science and Engineering. He has published over 100 research papers and was recently listed among the Top 2% scientists of the world (Energy) in a global list compiled by Stanford University scientists. His current research interests include heteroatom-doped metal free electrocatalysts based on carbon nanomaterials and biomass for fuel cells and other energy technologies.Satpal Singh Sekhon, Jaeyoung Lee, Jin-Soo Park. Biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reaction: A review[J]. Journal of Energy Chemistry, 2022, 65(2): 149-172.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2021.05.052
[1] J.P. Painuly, Renew. Energy 24 (2001) 73-89. [2] H. Ibrahim, A. Ilinca, J. Perron, Renew. Sust. Energ. Rev. 12 (2008) 1221-1250. [3] Z. Yang, J. Zhang, M.C.W.Kintner-Meyer, X.Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev. 111 (2011) 3577-3613. [4] S. Park, Y. Shao, J. Liu, Y. Wang, Energy Environ. Sci. 5 (2012) 9331-9344. [5] F. Cheng, J. Chen, Chem. Soc. Rev. 41 (2012) 2172-2192. [6] D. Larcher, J.M. Tarascon, Nat. Chem. 7 (2015) 19-29. [7] H.-F.Wang, C. Tang, B. Wang, B.-Q. Li, Q. Zhang, Adv. Mater. 29 (2017) 1702327. [8] R. Schlögl, ChemSusChem. 3 (2010) 209-222. [9] M. Winter, R.J. Brodd, Chem. Rev. 104 (2004) 4245-4269. [10] L. Yang, D. Wang, Y. Lv, D. Cao, Carbon 144 (2019) 8-14. [11] W.L. Yao, J. Yang, J.L. Wang, Y.N. Nuli, Electrochem. Commun. 9 (2007) 1029-1034. [12] H.B. Yang, J. Miao, S.-F.Hung, J. Chen, H.B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao, H.M. Chen, L. Dai, B. Liu, Sci. Adv. 2 (2016) e1501122. [13] Y. Zheng, Y. Jiao, S.Z. Qiao, Adv. Mater. 27 (2015) 5372-5378. [14] M.K. Debe, Nature 486 (2012) 43-51. [15] J. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 10 (2015) 444-452. [16] L. Yan, J. Yu, J. Houston, N. Flores, H. Luo, Green, Energy Environ. 2 (2017) 84-99. [17] Y. Li, M. Gong, Y. Liang, J. Feng, J.-E.Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Nat. Commun. 4 (2013) 1805. [18] E. Antolini, ACS Catal. 4 (2014) 1426-1440. [19] S.-D. Yim, G.-G. Park, Y.-J. Sohn, W.-Y. Lee, Y.-G. Yoon, T.-H. Yang, S. Um, S.-P. Yu, C.-S. Kim, Int. J. Hydrog. Energy 30 (2005) 1345-1350. [20] K.R. Yoon, G.Y. Lee, J.W. Jung, N.H. Kim, S.O. Kim, I.D. Kim, Nano Lett. 16 (2016) 2076-2083. [21] X. Wu, C. Tang, Y. Cheng, X. Mina, S.P. Jiang, S. Wang, Chem. Eur. J. 26 (2020) 3906-3929. [22] H. Wu, J. Geng, H. Ge, Z. Guo, Y. Wang, G. Zheng, Adv. Energ. Mater. (2016) 1600794. [23] S. Chen, J.J. Duan, M. Jaroniec, S.Z. Qiao, Adv. Mater. 26 (2014) 2925-2930. [24] Z. Wu, X. Xu, B. Hu, H. Liang, Y. Lin, L. Chen, S. Yu, Angew. Chem. 127 (2015) 8297-8301. [25] S. Chen, S. Chen, B. Zhang, J. Zhang, A.C.S. Appl, Mater. Interfaces 11 (2019) 16720-16728. [26] G.L. Tian, Q. Zhang, B. Zhang, Y.G. Jin, J.Q. Huang, D.S. Su, F. Wei, Adv. Funct. Mater. 24 (2014) 5956-5961. [27] Y.H. Cheng, Y.Y. Tian, X.Z. Fan, J.G. Liu, C.W. Yan, Electrochim. Acta. 143 (2014) 291-296. [28] Z.Y. Lin, G.H. Waller, Y. Liu, M.L. Liu, C.P. Wong, Carbon 53 (2013) 130-136. [29] B. Xia, Y. Yan, N. Li, H. Wu, X.W. Lou, X. Wang, Nat. Energy 1 (2016) 15006. [30] Z.L. Wang, D. Xu, H.X. Zhong, J. Wang, F.L. Meng, X. Zhang, Sci. Adv. 1 (2015) 1400035. [31] H.R. Yuan, L.F. Deng, X.X. Cai, S.G. Zhou, Y. Chen, Y. Yuan, RSC Adv. 5 (2015) 56121. [32] R. Li, Z.D. Wei, X.L. Gou, ACS Catal. 5 (2015) 4133-4142. [33] A.S. Aricò, P. Bruce, B. Scrosati, J.-M.Tarascon, W.V. Schalkwijk, Nat. Mater. 4 (2005) 366-377. [34] G.-L. Tian, M.-Q. Zhao, D. Yu, X.-Y. Kong, J.-Q. Huang, Q. Zhang, F. Wei, Small 10 (2014) 2251-2259. [35] M. Borghei, J. Lehtonen, L. Liu, O.J. Rojas, Adv Mater. 30 (2017) 1703691. [36] P. Kaur, G. Verma, S.S. Sekhon, Prog. Mater. Sci. 102 (2019) 1-71. [37] L. Dai, Y. Xue, L. Qu, H.-J.Choi, J.-B. Baek, Chem. Rev. 115 (2015) 4823-4892. [38] Z.-F.Huang, J. Wang, Y. Peng, C.-Y. Jung, A. Fisher, X. Wang, Adv. Energy Mater. 7 (2017) 1700544. [39] A. Morozan, B. Jousselme, S. Palacin, Energy Environ. Sci. 4 (2011) 1238-1254. [40] J.K. Norskov, J. Rossmeisi, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108 (2004) 17886-17892. [41] Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendroff, J.K. Norskov, T.F. Jaramillo, Science 355 (2017) eaad4998. [42] Y. Bu, O. Gwon, G. Nam, H. Jang, S. Kim, Q. Zhong, J. Cho, G. Kim, ACS Nano 11 (2017) 11594-11601. [43] X.-K.Gu, S. Samira, E. Nikolla, Chem. Mat. 30 (2018) 2860-2872. [44] J.-H. Kim, A. Manthiram, J. Mater. Chem. A 3 (2015) 24195-24210. [45] S. Chandrasekaran, D. Ma, Y. Ge, L. Deng, C. Bowen, J. Roscow, Y. Zhang, Z. Lin, R.D.K. Misra, J. Li, P. Zhang, Nano Energy 77 (2020) 105080. [46] B. Hua, Y.-F.Sun, M. Li, N. Yan, J. Chen, Y.-Q. Zhang, Y. Zeng, B.S. Amirkhiz, J.-L. Luo, Chem. Mat. 29 (2017) 6228-6237. [47] H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu, L. Wang, W. Li, Z. Chen, X. Ji, J. Li, Energy Environ. Sci. 12 (2019) 322-333. [48] J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Nørskov, J. Electroanal. Chem. 607 (2007) 83-89. [49] H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, ChemCatChem. 2 (2010) 724-761. [50] C. Tang, M.-M.Titirici, Q. Zhang, J. Energy Chem. 26 (2017) 1077-1093. [51] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 323 (2009) 760-764. [52] Y. Jiao, Y. Zheng, K. Davey, S.Z. Qiao, Nat. Energy 1 (2016) 16130. [53] M.T. Li, L.P. Zhang, Q. Xu, J.B. Niu, Z.H. Xia, J. Catal. 314 (2014) 66-72. [54] J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 51 (2012) 11496-11500. [55] D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 351 (2016) 361-365. [56] Y.P. Zhu, Y. Jing, A. Vasileff, T. Heine, S.Z. Qiao, Adv. Energy Mater. 7 (2017) 1602928. [57] H.-F.Wang, C. Tang, Q. Zhang, Adv. Funct. Mater. 28 (2018) 1803329. [58] C. Tang, H.F. Wang, X. Chen, B.Q. Li, T.Z. Hou, B.S. Zhang, Q. Zhang, M.M. Titirici, F. Wei, Adv. Mater. 28 (2016) 6845-6851. [59] J.W.F.To, J.W.D.Ng, S. Siahrostami, A.L. Koh, Y.J. Lee, Z.H. Chen, K.D. Fong, S.C. Chen, J.J. He, W.G. Bae, J. Wilcox, H.Y. Jeong, K. Kim, F. Studt, J.K. Norskov, T.F. Jaramillo, Z.N. Bao, Nano Res. 10 (2017) 1163-1177. [60] Y. Li, Y. Tong, F. Peng, J. Energy Chem. 48 (2020) 308-321. [61] Y. Shen, Y. Li, G. Yang, Q. Zhang, H. Liang, F. Peng, J. Energy Chem. 44 (2020) 106-114. [62] Z.H. Zhao, M.T. Li, L.P. Zhang, L.M. Dai, Z.H. Xia, Adv. Mater. 27 (2015) 6834-6840. [63] K. Wan, Z.P. Yu, X.H. Li, M.Y. Liu, G. Yang, J.H. Piao, Z.X. Liang, ACS Catal. 5 (2015) 4325-4332. [64] L. Chen, X. Xu, W. Yang, J. Jia, Chin. Chem. Lett. 31 (2020) 626-634. [65] C. Han, W. Li, S.X. Dou, H. Liu, J. Wang, Mater. Horiz. 6 (2019) 1812-1827. [66] H. Han, H. Choi, S. Mhin, Y.-R.Hong, K.M. Kim, J. Kwon, G. Ali, K.Y. Chung, M. Je, H.N. Umh, D.H. Lim, K. Davey, S.Z. Qiao, U. Paik, T. Song, Energy Environ. Sci. 12 (2019) 2443-2454. [67] Y. Zhu, C. Su, X. Xu, W. Zhou, R. Ran, Z. Shao, Chemistry 20 (2014) 15533-15542. [68] H.-Y. Jung, S. Park, B.N. Popov, J. Power Sources 191 (2009) 357-361. [69] Y. Meng, W. Song, H. Huang, Z. Ren, S.-Y.Chen, S.L. Suib, J. Am. Chem. Soc. 136 (2014) 11452-11464. [70] J.R. Petrie, V.R. Cooper, J.W. Freeland, T.L. Meyer, Z. Zhang, D.A. Lutterman, H. N. Lee, J. Am. Chem.Soc. 138 (2016) 2488-2491. [71] H. Wang, H.W. Lee, Y. Deng, Z. Lu, P.C. Hsu, Y. Liu, D. Lin, Y. Cui, Nat. Commun. 6 (2015) , Article number 7261. [72] F.-D.Kong, S. Zhang, G.-P. Yin, J. Liu, A.-X. Ling, Catal. Lett. 144 (2014) 242-247. [73] Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C.L. Brown, X. Yao, Adv. Mater. 28 (2016) 9532-9538. [74] R.M. Yadav, J. Wu, R. Kochandra, L. Ma, C.S. Tiwary, L. Ge, G. Ye, R. Vajtai, J. Lou, P.M. Ajayan, A.C.S. Appl, Mater. Interfaces 7 (2015) (2000) 11991-12001. [75] Y. Gao, Z. Xiao, D. Kong, R. Iqbal, Q.-H. Yang, L. Zhi, Nano Energy 64 (2019) 103879. [76] S.S. Shinde, C.H. Lee, J.Y. Yu, D.H. Kim, S.U. Lee, J.H. Lee, ACS Nano 12 (2018) 596-608. [77] T. Sun, J. Wang, C. Qiu, X. Ling, B. Tian, W. Chen, C. Su, Adv. Sci. 5 (2018) 1800036. [78] M.S. Ahmed, B. Choi, Y.B. Kim, Sci. Rep. 8 (2018) 2543. [79] X. Zheng, Y. Cao, D. Liu, M. Cai, J. Ding, X. Liu, J. Wang, W. Hu, C. Zhong, A.C.S. Appl, Mater. Interfaces 11 (2019) 15662-15669. [80] F.P. Pan, Z.Y. Cao, Q.P. Zhao, H.Y. Liang, J.Y. Zhang, J. Power Sources 272 (2014) 8-15. [81] T.D. Nguyen, K.E. Shopswitz, M.J. Maclachlan, J. Mater. Chem. A 2 (2014) 5915-5921. [82] X. Liu, L. Li, W. Zhou, Y. Zhou, W. Niu, S. Chen, Chemelectrochem. 2 (2015) 803-810. [83] X. Wu, S. Li, B. Wang, J. Liu, M. Yu, Microporous Mesoporous Mater. 240 (2017) 216-226. [84] J.T. Jin, X.G. Fu, Q. Liu, J.Y. Zhang, J. Mater. Chem. A 1 (2013) 10538-10545. [85] Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 4 (2013) 2390. [86] X. Zhao, J. Zhu, L. Liang, C. Li, C. Liu, J. Liao, W. Xing, Appl. Catal. B-Environ.154-155 (2014) 177-182. [87] B. Duan, F. Liu, M. He, L.N. Zhang, Green Chem. 16 (2014) 2835-2845. [88] Q.M. Yu, J.X. Xu, C.X. Wu, L.H. Guan, RSC Adv. 5 (2015) 65303-65307. [89] C. Jin, F.L. Lu, X.C. Cao, Z.R. Yang, R.Z. Yang, J. Mater. Chem. A 1 (2013) 12170-12177. [90] Y.H. Su, H.L. Jiang, Y.H. Zhu, X.L. Yang, J.H. Shen, W.J. Zou, J.D. Chen, C.Z. Li, J. Mater. Chem. A 2 (2014) 7281-7287. [91] K.G. Qu, Y. Zheng, S. Dai, S.Z. Qiao, Nano Energy 19 (2016) 373-381. [92] K.L. Ai, Y.L. Liu, C.P. Ruan, L.H. Lu, G.Q. Lu, Adv. Mater. 25 (2013) 998-1003. [93] C.H. Choi, S.H. Park, S.I. Woo, ACS Nano 8 (2012) 7084-7091. [94] T. Xing, Y. Zheng, L.H. Li, B.C.C. Cowie, D. Gunzelmann, S.Z. Qiao, S.M. Huang, Y. Chen, ACS Nano 8 (2014) 6856-6862. [95] M. Li, Z. Liu, F. Wang, J. Xuan, J. Energy Chem. 26 (2017) 422-427. [96] Z.W. Liu, F. Wang, M. Li, Z.H. Ni, RSC Adv. 6 (2016) 37500-37505. [97] Y. Huang, D. Wu, D. Cao, D. Cheng, Int. J. Hydrog. Energy 43 (2018) 8611-8622. [98] X. Liu, Y. Zhou, W. Zhou, L. Li, S. Huang, S. Chen, Nanoscale 7 (2015) 6136-6142. [99] Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 44 (2015) 2168-2201. [100] G.S. Chai, I.S. Shin, J.S. Yu, Adv. Mater. 16 (2004) 2057-2061. [101] X. Zheng, X. Cao, X. Li, J. Tian, C. Jin, R. Yang, Nanoscale 9 (2016) 1059-1067. [102] W. Ding, L. Li, K. Xiong, Y. Wang, W. Li, Y. Nie, S.G. Chen, X.Q. Qi, Z.D. Wei, J. Am. Chem.Soc. 137 (2015) 5414-5420. [103] J. Deng, M. Li, Y. Wang, Green Chem. 18 (2016) 4824-4854. [104] K.Y. Lam, J. Chen, C.T. Lam, Q. Wu, P. Yao, T.T. Dong, H. Lin, K.W. Tsim, PLoS ONE 11 (2016) e0163337. [105] Q. Li, T. He, Y.-Q.Zhang, H. Wu, J. Liu, Y. Qi, Y. Lei, H. Chen, Z. Sun, C. Peng, L. Yi, Y. Zhang, A.C.S. Sustain, Chem. Eng. 7 (2019) 17039-17046. [106] D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater. 29 (2017) 1606459. [107] X. Peng, L. Zhang, Z. Chen, L. Zhong, D. Zhao, X. Chi, X. Zhao, L. Li, X. Lu, K. Leng, C. Liu, W. Liu, W. Tang, K.P. Loh, Adv. Mater. 31 (2019) 1900341. [108] X. Liu, L. Dai, Nat. Rev. Mater. 1 (2016) 16064. [109] H. Zhu, W. Luo, P.N. Ciesielski, Z.Q. Fang, J.Y. Zhu, G. Henriksson, M.E. Himmel, L.B. Hu, Chem. Rev. 116 (2016) 9305-9374. [110] H.W. Liang, Z.Y. Wu, L.F. Chen, C. Li, S.H. Yu, Nano Energy 11 (2015) 366-376. [111] W.H. Niu, L.G. Li, X.J. Liu, N. Wang, J. Liu, W.J. Zhou, Z.H. Tang, S.W. Chen, J. Am. Chem.Soc. 137 (2015) 5555-5562. [112] U.G.K.Wegst, H. Bai, E.Saiz, A.P. Tomsia, R.O. Ritchie, Nat. Mater. 14 (2015) 23-36. [113] N. Ma, Y. Alec) Jia, X. Yang, X. She, L. Zhang, Z. Peng, X. Yao, D. Yang, J. Mater. Chem. A 4 (2016) 6376-6384. [114] G. Wang, Y. Deng, J. Yu, L. Zheng, L. Du, H. Song, S. Liao, A.C.S. Appl, Mater. Interfaces 9 (2017) 32168-32178. [115] J. Guan, Z. Zhang, J. Ji, M. Dou, F. Wang, A.C.S. Appl, Mater. Interfaces 9 (2017) 30662-30669. [116] L. Yang, X. Zeng, D. Wang, D. Cao, Energy Storage Mater. 12 (2018) 277-283. [117] X. Chen, L. Wei, Y. Wang, S. Zhai, Z. Chen, S. Tan, Z. Zhou, A.K. Ng, X. Liao, Y. Chen, Energy Storage Mater. 11 (2018) 134-143. [118] Y. Tian, L. Xu, J. Bao, J. Qian, H. Su, H. Li, H. Gu, C. Yan, H. Li, J. Energy Chem. 33 (2019) 59-66. [119] K. Sun, J. Li, L. Huang, S. Ji, P. Kannan, D. Li, L. Liu, S. Liao, J. Power Sources 412 (2019) 433-441. [120] Y. Xiao, S. Deng, M. Li, Q. Zhou, L. Xu, H. Zhang, D. Sun, Y. Tang, Front. Chem. 7 (2019) , Article 523. [121] Y. Niu, X. Teng, S. Gong, Z. Chen, J. Mater. Chem. A 8 (2020) 13725-13734. [122] Y. Liu, K. Sun, X. Cui, B. Li, J. Jiang, A.C.S.Sustain, Chem. Eng. 8 (2020) 2981-2989. [123] B. Wang, L. Xu, G. Liu, P. Zhang, W. Zhu, J. Xia, H. Li, J. Mater. Chem. A 5 (2017) 20170-20179. [124] V.C. Hoang, V.G. Gomes, K.N. Dinh, Electrochim. Acta 314 (2019) 49-60. [125] C. Sathiskumar, S. Ramakrishnan, M. Vinothkannan, A.R. Kim, S. Karthikeyan, D.J. Yoo, Nanomater. 10 (2020) 76. [126] W. Zhang, J. Chu, S. Li, Y. Li, L. Li, J. Energy Chem. 51 (2020) 323-332. [127] X. Lv, Z. Xiao, H. Wang, X. Wang, L. Shan, F. Wang, C. Wei, X. Tang, Y. Chen, J. Energy Chem. 54 (2021) 626-638. [128] J. Lv, S.C. Abbas, Y. Huang, Q. Liu, M. Wu, Y. Wang, L. Dai, Nano Energy 43 (2018) 130-137. [129] Y. Feng, L. Tao, Z. Zheng, H. Huang, F. Lin, Energy Storage Mater. 31 (2020) 274-309. [130] B. Huang, Y. Liu, Z. Xie, J. Energy Chem. 54 (2021) 795-814. [131] Y. Li, X.G. Wang, S.M. Dong, X. Chen, G.L. Cui, Adv. Energy Mater. 6 (2016) 1600751. [132] J. Fu, Z.P. Cano, M.G. Park, A.P. Yu, M. Fowler, Z.W. Chen, Adv. Mater. 29 (2017) 1604685. [133] Y. Bae, H. Park, Y. Ko, H. Kim, S.K. Park, K. Kang, Batteries & Supercaps. 2 (2019) 311-325. [134] E. Davari, D.G. Ivey, Sustainable Energy Fuels 2 (2018) 39-67. [135] I.S. Amiinu, X.B. Liu, Z.H. Pu, W.Q. Li, Q.D. Li, J. Zhang, H.L. Tang, H.N. Zhang, S. C. Mu, Adv. Funct. Mater. 28 (2018) 1704638. [136] Z. Zhang, J. Sun, F. Wang, L. Dai, Angew. Chem. Int. Ed. 57 (2018) 9038-9043. [137] B.Q. Li, C.X. Zhao, S. Chen, J.-N.Liu, X. Chen, L. Song, Q. Zhang, Adv. Mater. 31 (2019) 1900592. [138] Y.-J.Wang, B. Fang, X. Wang, A. Ignaszak, Y. Liu, A. Li, L. Zhang, J. Zhang, Prog. Mater. Sci. 98 (2018) 108-167. [139] D.H. Li, Y. Jia, G.J. Chang, J. Chen, H.W. Liu, J.C. Wang, Y.F. Hu, Y.Z. Xia, D.J. Yang, X.D. Yao, Chem. 4 (2018) 2345-2356. [140] J. Zhang, J. Zhang, F. He, Y. Chen, J. Zhu, D. Wang, S. Mu, H.Y. Yang, Nano-Micro Lett. 13 (2021) , Article number 65. [141] G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Chem. Commun. 46 (2010) 3256-3258. [142] Y. Zhao, J. Wan, H. Yao, L. Zhang, K. Lin, L. Wang, N. Yang, D. Liu, L. Song, J. Zhu, L. Gu, L. Liu, H. Zhao, Y. Li, D. Wang, Nat. Chem. 10 (2018) 924-931. [143] S. Zhang, Y. Cai, H. He, Y. Zhang, R. Liu, H. Cao, M. Wang, J. Liu, G. Zhang, Y. Li, H. Liu, B. Li, J. Mater. Chem. A 4 (2016) 4738-4744. [144] A.D. Doyle, J.H. Montoya, A. Vojvodic, ChemCatChem 7 (2015) 738-742. [145] G. Wu, A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke, H. Zhang, H.-L. Wang, L. Dai, Nano Energy 29 (2016) 83-110. |
[1] | Mengxia Li, Tianxi Zheng, Dongfei Lu, Shiwei Dai, Xin Chen, Xinchen Pan, Dibo Dong, Rengui Weng, Gang Xu, Fanan Wang. Facet effect on the reconstructed Cu-catalyzed electrochemical hydrogenation of 5-hydroxymethylfurfural (HMF) towards 2,5-bis (hydroxymethy)furan (BHMF) [J]. Journal of Energy Chemistry, 2023, 84(9): 101-111. |
[2] | Yanan Ma, Shaoru Tang, Haimeng Wang, Yuxuan Liang, Dingyu Zhang, Xiaoyang Xu, Qian Wang, Wei Li. Bimetallic ZIFs-derived electrospun carbon nanofiber membrane as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery [J]. Journal of Energy Chemistry, 2023, 83(8): 138-149. |
[3] | Mingren Jin, Seyed Mohsen Sadeghzadeh, Jinzhu Chen. Visible light-induced synthesis of biomass-derived quinoxaline by using Co phthalocyanine immobilized on pyridine-doped g-C3N4 [J]. Journal of Energy Chemistry, 2023, 82(7): 638-652. |
[4] | Aditya Velidandi, Pradeep Kumar Gandam, Madhavi Latha Chinta, Srilekha Konakanchi, Anji reddy Bhavanam, Rama Raju Baadhe, Minaxi Sharma, James Gaffey, Quang D. Nguyen, Vijai Kumar Gupta. State-of-the-art and future directions of machine learning for biomass characterization and for sustainable biorefinery [J]. Journal of Energy Chemistry, 2023, 81(6): 42-63. |
[5] | Kai Zhang, Zixiang Zhan, Minzhi Zhu, Haiwei Lai, Xiangyang He, Weiping Deng, Qinghong Zhang, Ye Wang. An efficient electrocatalytic system composed of nickel oxide and nitroxyl radical for the oxidation of bio-platform molecules to dicarboxylic acids [J]. Journal of Energy Chemistry, 2023, 80(5): 58-67. |
[6] | Zhe-Fan Wang, Cheng Tang, Qian Sun, Ya-Lu Han, Zhi-Jian Wang, Lijing Xie, Shou-Chun Zhang, Fang-Yuan Su, Cheng-Meng Chen. Effect of N-doping-derived solvent adsorption on electrochemical double layer structure and performance of porous carbon [J]. Journal of Energy Chemistry, 2023, 80(5): 120-127. |
[7] | Jin Deng, Lingshuai Meng, Duo Ma, Yujie Zhou, Xianyang Wang, Xiaodong Luo, Shenfu Yuan. High H2 selective performance of Ni-Fe-Ca/H-Al catalysts for steam reforming of biomass and plastic [J]. Journal of Energy Chemistry, 2023, 80(5): 215-227. |
[8] | Siwen Wang, Honghong Lin, Yui Wakabayashi, Li Qin Zhou, Charles A. Roberts, Debasish Banerjee, Hongfei Jia, Chen Ling. Transfer learning aided high-throughput computational design of oxygen evolution reaction catalysts in acid conditions [J]. Journal of Energy Chemistry, 2023, 80(5): 744-757. |
[9] | Fuyan Kang, Cai Shi, Yeling Zhu, Malin Eqi, Junming Shi, Min Teng, Zhanhua Huang, Chuanling Si, Feng Jiang, Jinguang Hu. Dual-functional marigold-like ZnxCd1-xS homojunction for selective glucose photoreforming with remarkable H2 coproduction [J]. Journal of Energy Chemistry, 2023, 79(4): 158-167. |
[10] | Baoyu Wang, Peng Zhou, Ximing Yan, Hu Li, Hongguo Wu, Zehui Zhang. Cooperative catalysis of Co single atoms and nanoparticles enables selective CAr—OCH3 cleavage for sustainable production of lignin-based cyclohexanols [J]. Journal of Energy Chemistry, 2023, 79(4): 535-549. |
[11] | Weiping Deng, Ye Wang. Research perspectives for catalytic valorization of biomass [J]. Journal of Energy Chemistry, 2023, 78(3): 102-104. |
[12] | Shanjian Liu, An Zhao, Jia Liu, Mengqian Yin, Fupeng Huang, Dongmei Bi. Insight into the ammonia torrefaction and pyrolysis system of cellulose: Unraveling the evolution of chemical structure and nitrogen migration mechanism [J]. Journal of Energy Chemistry, 2023, 78(3): 135-147. |
[13] | Biying Liu, Zhikeng Zheng, Yaoyu Liu, Man Zhang, Yuchen Wang, Yangyang Wan, Kai Yan. Efficient electrooxidation of biomass-derived aldehydes over ultrathin NiV-layered double hydroxides films [J]. Journal of Energy Chemistry, 2023, 78(3): 412-421. |
[14] | Mei Yang, Zhenya Luo, Xiao Wang, Xinxin Cao, Weiguo Mao, Yong Pan, Cuiying Dai, Junan Pan. Revealing sodium storage mechanism of hard carbon anodes through in-situ investigation of mechano-electrochemical coupling behavior [J]. Journal of Energy Chemistry, 2023, 86(11): 227-236. |
[15] | Wansen Ma, Zeming Qiu, Jinzhou Li, Liwen Hu, Qian Li, Xuewei Lv, Jie Dang. Interfacial electronic coupling of V-doped Co2P with high-entropy MXene reduces kinetic energy barrier for efficient overall water splitting [J]. Journal of Energy Chemistry, 2023, 85(10): 301-309. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||