Journal of Energy Chemistry ›› 2022, Vol. 64 ›› Issue (1): 263-275.DOI: 10.1016/j.jechem.2021.04.059
Previous Articles Next Articles
Xinyan Liua,b, Bo-Quan Lic, Bing Nid, Lei Wange, Hong-Jie Penga,*
Received:
2021-03-18
Revised:
2021-04-21
Accepted:
2021-04-22
Online:
2022-01-15
Published:
2022-10-28
Contact:
*E-mail address: hjpeng@uestc.edu.cn (H.-J. Peng).
Xinyan Liu, Bo-Quan Li, Bing Ni, Lei Wang, Hong-Jie Peng. A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts[J]. Journal of Energy Chemistry, 2022, 64(1): 263-275.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2021.04.059
[1] P.M. Cox, R.A. Betts, C.D. Jones, S.A. Spall, I.J. Totterdell, Nature 408 (2000) 184-187. [2] G.A. Olah, G.K.S.Prakash, A. Goeppert, J.Am. Chem. Soc. 133 (2011) 12881-12898. [3] X. Lan, B.D. Hall, G. Dutton, J. Mühle, J.W. Elkins, Atmospheric composition: Long-lived greenhouse gases, in: R.J.H. Dunn, D.M. Stanitski, N. Gobron, K.M. Willett (Eds.) State of the Climate in 2019, Chapter 2: Global Climate, The Bulletin of the American Meteorological Society, 2020, pp. S70-S74. [4] A.M. Appel, J.E. Bercaw, A.B. Bocarsly, H. Dobbek, D.L.DuBois, M. Dupuis, J.G. Ferry, E. Fujita, R. Hille, P.J.A. Kenis, C.A. Kerfeld, R.H. Morris, C.H.F. Peden, A.R. Portis, S.W. Ragsdale, T.B. Rauchfuss, J.N.H. Reek, L.C. Seefeldt, R.K. Thauer, G.L. Waldrop, Chem. Rev. 113 (2013) 6621-6658. [5] J.L. Qiao, Y.Y. Liu, F. Hong, J.J. Zhang, Chem. Soc. Rev. 43 (2014) 631-675. [6] Q. Lu, F. Jiao, Nano Energy 29 (2016) 439-456. [7] D.D. Zhu, J.L. Liu, S.Z. Qiao, Adv. Mater. 28 (2016) 3423-3452. [8] L. Zhang, Z.J. Zhao, J.L. Gong, Angew. Chem. Int. Ed. 56 (2017) 11326-11353. [9] S. Nitopi, E. Bertheussen, S.B. Scott, X.Y. Liu, A.K. Engstfeld, S. Horch, B. Seger, I. E.L.Stephens, K. Chan, C.Hahn, J.K. Nørskov, T.F. Jaramillo, I. Chorkendorff, Chem. Rev. 119 (2019) 7610-7672. [10] M.B. Ross, P. De Luna, Y.F. Li, C.T. Dinh, D. Kim, P. Yang, E.H. Sargent, Nat. Catal. 2 (2019) 648-658. [11] Y.Y. Birdja, E. Perez-Gallent, M.C. Figueiredo, A.J. Gottle, F. Calle-Vallejo, M.T. M. Koper, Nat. Energy 4 (2019) 732-745. [12] National Energy Administration, http://www.nea.gov.cn/2021-01/30/c_139708580.htm. [13] Y. Hori, Electrochemical CO2 Reduction on Metal Electrodes, in: C.G. Vayenas, R.E. White, M.E. GamboaAldeco (Eds.) , Modern Aspects of Electrochemistry, No 42, 2008, pp. 89-189. [14] C. Costentin, S. Drouet, M. Robert, J.M. Saveant, Science 338 (2012) 90-94. [15] C.W. Li, J. Ciston, M.W. Kanan, Nature 508 (2014) 504-507. [16] S. Gao, Y. Lin, X.C. Jiao, Y.F. Sun, Q.Q. Luo, W.H. Zhang, D.Q. Li, J.L. Yang, Y. Xie, Nature 529 (2016) 68-71. [17] S. Liu, H.B. Yang, X. Su, J. Ding, Q. Mao, Y.Q. Huang, T. Zhang, B. Liu, J. Energy Chem. 36 (2019) 95-105. [18] D.M. Weekes, D.A. Salvatore, A. Reyes, A.X. Huang, C.P. Berlinguette, Accounts. Chem. Res. 51 (2018) 910-918. [19] D. Higgins, C. Hahn, C.X. Xiang, T.F. Jaramillo, A.Z. Weber, ACS Energy Lett. 4 (2019) 317-324. [20] T. Burdyny, W.A. Smith, Energy Environ. Sci. 12 (2019) 1442-1453. [21] C.T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo, F.P.G. de Arquer, A. Kiani, J.P. Edwards, P. De Luna, O.S. Bushuyev, C.Q. Zou, R. Quintero-Bermudez, Y.J. Pang, D. Sinton, E.H. Sargent, Science 360 (2018) 783-787. [22] M. Jouny, W. Luc, F. Jiao, Nat. Catal. 1 (2018) 748-755. [23] C.M. Gabardo, C.P.O'Brien, J.P.Edwards, C. McCallum, Y. Xu, C.T. Dinh, J. Li, E. H. Sargent, D. Sinton, Joule 3 (2019) 2777-2791. [24] M. Jouny, W. Luc, F. Jiao, Ind. Eng. Chem. Res. 57 (2018) 2165-2177. [25] P. De Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo, E.H. Sargent, Science, 364 (2019) eaav3506. [26] D.F. Gao, R.M.Aran-Ais, H.S. Jeon, B. Roldan Cuenya, Nat. Catal. 2 (2019) 198-210. [27] L. Fan, C. Xia, F.Q. Yang, J. Wang, H.T. Wang, Y.Y. Lu, Sci. Adv., 6 (2020) eaay3111. [28] R.M. Aran-Ais, F. Scholten, S. Kunze, R. Rizo, B. Roldan Cuenya, Nat. Energy 5 (2020) 317-325. [29] H. Xiao, T. Cheng, W.A. Goddard, J. Am. Chem.Soc. 139 (2017) 130-136. [30] A.J. Garza, A.T. Bell, M. Head-Gordon, ACS Catal. 8 (2018) 1490-1499. [31] X.Y. Liu, P. Schlexer, J.P. Xiao, Y.F. Ji, L. Wang, R.B. Sandberg, M. Tang, K.S. Brown, H.J. Peng, S. Ringe, C. Hahn, T.F. Jaramillo, J.K. Nørskov, K.R. Chan, Nat. Commun. 10 (2019) 32. [32] H.J. Peng, M.T. Tang, P.S. Lamoureux, M. Bajdich, F. Abild-Pedersen, Energy Environ. Sci. 14 (2021) 473-482. [33] B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple, P.J.A. Kenis, R.I. Masel, Science 334 (2011) 643-644. [34] Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G.G.Chen, F. Jiao, Nat. Commun. 5 (2014) 3242. [35] X. Zhang, Z.S. Wu, X. Zhang, L.W. Li, Y.Y. Li, H.M. Xu, X.X. Li, X.L. Yu, Z.S.Zhang, Y.Y. Liang, H.L. Wang, Nat. Commun. 8 (2017) 14675. [36] H.B. Yang, S.F. Hung, S. Liu, K.D. Yuan, S. Miao, L.P. Zhang, X. Huang, H.Y. Wang, W.Z. Cai, R. Chen, J.J. Gao, X.F. Yang, W. Chen, Y.Q. Huang, H.M. Chen, C. M. Li, T. Zhang, B. Liu, Nat. Energy 3 (2018) 140-147. [37] J. Gu, C.S. Hsu, L.C. Bai, H.M. Chen, X.L. Hu, Science 364 (2019) 1091-1094. [38] S. Zhang, P. Kang, T.J. Meyer, J. Am. Chem.Soc. 136 (2014) 1734-1737. [39] X.L. Zu, X.D. Li, W. Liu, Y.F. Sun, J.Q. Xu, T. Yao, W.S. Yan, S. Gao, C.M. Wang, S. Q. Wei, Y. Xie, Adv. Mater. 31 (2019) 1808135. [40] F. Yang, A.O. Elnabawy, R. Schimmenti, P. Song, J.W. Wang, Z.Q. Peng, S. Yao, R.P. Deng, S.Y. Song, Y. Lin, M. Mavrikakis, W.L. Xu, Nat. Commun. 11 (2020) 1088. [41] K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, T.F. Jaramillo, J. Am. Chem.Soc. 136 (2014) 14107-14113. [42] P. Tang, Q.J. Zhu, Z.X. Wu, D. Ma, Energy Environ. Sci. 7 (2014) 2580-2591. [43] R. Horn, R. Schlogl, Catal. Lett. 145 (2015) 23-39. [44] X.G. Meng, X.J. Cui, N.P. Rajan, L. Yu, D.H. Deng, X.H. Bao, Chem 5 (2019) 2296-2325. [45] A. Goeppert, M. Czaun, J.P. Jones, G.K.S.Prakash, G.A. Olah, Chem. Soc. Rev. 43 (2014) 7995-8048. [46] I. Ganesh, Renew. Sust. Energ. Rev 31 (2014) 221-257. [47] J. Albo, M. Alvarez-Guerra, P. Castano, A. Irabien, Green Chem. 17 (2015) 2304-2324. [48] S. Sarp, S. Gonzalez Hernandez, C. Chen, S.W. Sheehan, Joule 5 (2021) 59-76. [49] M.J. da Silva, Fuel Process. Technol 145 (2016) 42-61. [50] W. Wang, S.P. Wang, X.B. Ma, J.L. Gong, Chem. Soc. Rev. 40 (2011) 3703-3727. [51] Y.S. Wu, Z. Jiang, X. Lu, Y.Y. Liang, H.L. Wang, Nature 575 (2019) 639-642. [52] E. Boutin, M. Wang, J.C. Lin, M. Mesnage, D. Mendoza, B. Lassalle-Kaiser, C. Hahn, T.F. Jaramillo, M. Robert, Angew. Chem. Int. Ed. 58 (2019) 16172-16176. [53] C.M. Lieber, N.S. Lewis, J. Am. Chem.Soc. 106 (1984) 5033-5034. [54] S. Kapusta, N. Hackerman, J. Electrochem. Soc. 131 (1984) 1511-1514. [55] T.V. Magdesieva, T. Yamamoto, D.A. Tryk, A. Fujishima, J. Electrochem. Soc. 149 (2002) D89-D95. [56] S. Lin, C.S. Diercks, Y.B. Zhang, N. Kornienko, E.M. Nichols, Y.B. Zhao, A.R. Paris, D. Kim, P. Yang, O.M. Yaghi, C.J. Chang, Science 349 (2015) 1208-1213. [57] N. Kornienko, Y.B. Zhao, C.S. Kiley, C.H. Zhu, D. Kim, S. Lin, C.J. Chang, O.M. Yaghi, P.D. Yang, J. Am. Chem.Soc. 137 (2015) 14129-14135. [58] C.A. Trickett, A. Helal, B.A.Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, Nat. Rev. Mater. 2 (2017) 17045. [59] P. Shao, L.C. Yi, S.M. Chen, T.H. Zhou, J. Zhang, J. Energy Chem. 40 (2020) 156-170. [60] S.X. Ren, D. Joulie, D. Salvatore, K. Torbensen, M. Wang, M. Robert, C.P. Berlinguette, Science 365 (2019) 367-369. [61] Y. Hori, K. Kikuchi, S. Suzuki, Chem. Lett. 14 (1985) 1695-1698. [62] D.P. Summers, S. Leach, K.W. Frese, J. Electroanal. Chem. 205 (1986) 219-232. [63] M. Le, M. Ren, Z. Zhang, P.T. Sprunger, R.L. Kurtz, J.C. Flake, J. Electrochem. Soc. 158 (2011) E45-E49. [64] A. Bandi, H.M. Kuhne, J. Electrochem. Soc. 139 (1992) 1605-1610. [65] J. Albo, A. Irabien, [J]. Catal. 343 (2016) 232-239. [66] J.Z. Huang, Q. Hu, X.R. Guo, Q. Zeng, L.S. Wang, Green Chem. 20 (2018) 2967-2972. [67] S. Mezzavilla, Y. Katayama, R. Rao, J. Hwang, A. Regoutz, Y. Shao-Horn, I. Chorkendorff, I.E.L. Stephens, J. Phys. Chem. C 123 (2019) 17765-17773. [68] D.T. Whipple, E.C. Finke, P.J.A.Kenis, Electrochem. Solid State Lett. 13 (2010) D109-D111. [69] G. Seshadri, C. Lin, A.B. Bocarsly, J. Electroanal. Chem. 372 (1994) 145-150. [70] H.P. Yang, Y.N. Yue, S. Qin, H. Wang, J.X. Lu, Green Chem. 18 (2016) 3216-3220. [71] X.F. Sun, Q.G. Zhu, X.C. Kang, H.Z. Liu, Q.L. Qian, Z.F. Zhang, B.X. Han, Angew. Chem. Int. Ed. 55 (2016) 6771-6775. [72] L. Lu, X.F. Sun, J. Ma, D.X. Yang, H.H. Wu, B.X. Zhang, J.L. Zhang, B.X. Han, Angew. Chem. Int. Ed. 57 (2018) 14149-14153. [73] E.E. Barton, D.M. Rampulla, A.B. Bocarsly, J. Am. Chem.Soc. 130 (2008) 6342-6344. [74] R. Francke, B. Schille, M. Roemelt, Chem. Rev. 118 (2018) 4631-4701. [75] L. Sun, V. Reddu, A.C. Fisher, X. Wang, Energy Environ. Sci. 13 (2020) 374-403. [76] S. Zhang, Q. Fan, R. Xia, T.J. Meyer, Accounts. Chem. Res. 53 (2020) 255-264. [77] J. Shen, R. Kortlever, R. Kas, Y.Y. Birdja, O. Diaz-Morales, Y. Kwon, I. Ledezma-Yanez, K.J.P.Schouten, G. Mul, M.T.M. Koper, Nat. Commun. 6 (2015) 8177. [78] S. Gonglach, S. Paul, M. Haas, F. Pillwein, S.S. Sreejith, S. Barman, R. De, S. Mullegger, P. Gerschel, U.P. Apfel, H. Coskun, A. Aljabour, P. Stadler, W. Schofberger, S. Roy, Nat. Commun. 10 (2019) 3864. [79] Z. Weng, J.B. Jing, Y.S. Wu, Z.S. Wu, X.T. Guo, K.L. Materna, W. Liu, V.S.Batista, G.W. Brudvig, H.L. Wang, J. Am. Chem. Soc. 138 (2016) 8076-8079. [80] J. Albo, D. Vallejo, G. Beobide, O. Castillo, P. Castano, A. Irabien, Chem. Sus. Chem. 10 (2017) 1100-1109. [81] Z. Weng, Y.S. Wu, M.Y. Wang, J.B. Jiang, K. Yang, S.J. Huo, X.F. Wang, Q. Ma, G. W. Brudvig, V.S. Batista, Y.Y. Liang, Z.X. Feng, H.L. Wang, Nat. Commun. 9 (2018) 415. [82] D. Karapinar, N.T. Huan, N.R. Sahraie, J.K. Li, D. Wakerley, N. Touati, S. Zanna, D. Taverna, L.H.G.Tizei, A. Zitolo, F.Jaouen, V. Mougel, M. Fontecave, Angew. Chem. Int. Ed. 58 (2019) 15098-15103. [83] A.X. Guan, Z. Chen, Y.L. Quan, C. Peng, Z.Q. Wang, S.K. Sham, C. Yang, Y.L. Ji, L. P. Qian, X. Xu, G.F. Zheng, ACS Energy Lett. 5 (2020) 1044-1053. [84] K. Zhao, X.W. Nie, H.Z. Wang, S. Chen, X. Quan, H.T. Yu, W.Y. Choi, G.H. Zhang, B. Kim, J.G.G.Chen, Nat. Commun. 11 (2020) 2455. [85] H.P. Xu, D. Rebollar, H.Y. He, L.N. Chong, Y.Z. Liu, C. Liu, C.J. Sun, T. Li, J.V. Muntean, R.E. Winans, D.J. Liu, T. Xu, Nat. Energy 5 (2020) 623-632. [86] Z. Cheng, X.D. Wang, H.P. Yang, X.Y. Yu, Q. Lin, Q. Hu, C.X. He, J. Energy Chem. 54 (2021) 1-6. [87] W.W. Kramer, C.C.L.McCrory, Chem. Sci. 7 (2016) 2506-2515. [88] Z. Zhang, J.P. Xiao, X.J. Chen, S. Yu, L. Yu, R. Si, Y. Wang, S.H. Wang, X.G. Meng, Y. Wang, Z.Q. Tian, D.H. Deng, Angew. Chem. Int. Ed. 57 (2018) 16339-16342. [89] Y. Pan, R. Lin, Y.J. Chen, S.J. Liu, W. Zhu, X. Cao, W.X. Chen, K.L. Wu, W.C. Cheong, Y. Wang, L.R. Zheng, J. Luo, Y. Lin, Y.Q. Liu, C.G. Liu, J. Li, Q. Lu, X. Chen, D.S. Wang, Q. Peng, C. Chen, Y.D. Li, J. Am. Chem.Soc. 140 (2018) 4218-4221. [90] X.M. Hu, M.H. Ronne, S.U. Pedersen, T. Skrydstrup, K. Daasbjerg, Angew. Chem. Int. Ed. 56 (2017) 6468-6472. [91] N. Han, Y. Wang, L. Ma, J.G. Wen, J. Li, H.C. Zheng, K.Q. Nie, X.X. Wang, F.P. Zhao, Y.F. Li, J. Fan, J. Zhong, T.P. Wu, D.J. Miller, J. Lu, S.T. Lee, Y.G. Li, Chem 3 (2017) 652-664. [92] M. Wang, L.J. Chen, T.C. Lau, M. Robert, Angew. Chem. Int. Ed. 57 (2018) 7769-7773. [93] M. Wang, K. Torbensen, D. Salvatore, S.X. Ren, D. Joulie, F. Dumoulin, D. Mendoza, B. Lassalle-Kaiser, U. Isci, C.P. Berlinguette, M. Robert, Nat. Commun. 10 (2019) 3602. [94] J.J. Su, J.J. Zhang, J.C. Chen, Y. Song, L.B. Huang, M.H. Zhu, B.I. Yakobson, B.Z. Tang, R.Q. Ye, Energy Environ. Sci. 14 (2021) 483-492. [95] Y.R. Wang, Q. Huang, C.T. He, Y.F. Chen, J. Liu, F.C. Shen, Y.Q. Lan, Nat. Commun. 9 (2018) 4466. [96] J.Y. Han, P.F. An, S.H. Liu, X.F. Zhang, D.W. Wang, Y. Yuan, J. Guo, X.Y. Qiu, K. Hou, L. Shi, Y. Zhang, S.L. Zhao, C. Long, Z.Y. Tang, Angew. Chem. Int. Ed. 58 (2019) 12711-12716. [97] X.Q. Wang, Z. Chen, X.Y. Zhao, T. Yao, W.X. Chen, R. You, C.M. Zhao, G. Wu, J. Wang, W.X. Huang, J.L. Yang, X. Hong, S.Q. Wei, Y. Wu, Y.D. Li, Angew. Chem. Int. Ed. 57 (2018) 1944-1948. [98] H.P. Yang, Q. Lin, Y. Wu, G.D. Li, Q. Hu, X.Y. Chai, X.Z. Ren, Q.L. Zhang, J.H. Liu, C.X. He, Nano Energy 70 (2020) 104454. [99] J. Grodkowski, T. Dhanasekaran, P. Neta, P. Hambright, B.S. Brunschwig, K. Shinozaki, E. Fujita, J. Phys. Chem. A 104 (2000) 11332-11339. [100] S.Z. Xu, E.A. Carter, Chem. Rev. 119 (2019) 6631-6669. [101] A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, Energy Environ. Sci. 3 (2010) 1311-1315. [102] T. Cheng, H. Xiao, W.A. Goddard, Proc. Natl. Acad. Sci. USA 114 (2017) 1795-1800. [103] X.Y. Liu, J.P. Xiao, H.J. Peng, X. Hong, K. Chan, J.K. Nørskov, Nat. Commun. 8 (2017) 15438. [104] X.W. Nie, M.R. Esopi, M.J. Janik, A. Asthagiri, Angew. Chem. Int. Ed. 52 (2013) 2459-2462. [105] M.T. Tang, H.J. Peng, P.S. Lamoureux, M. Bajdich, F. Abild-Pedersen, Appl. Catal. B 279 (2020) 119384. [106] F. Calle-Vallejo, M.T.M.Koper, ACS Catal. 7 (2017) 7346-7351. [107] D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic, D. vander Vliet, A.P. Paulikas, V.R. Stamenkovic, N.M. Markovic, Nat. Chem. 5 (2013) 300-306. [108] H. Ooka, M.C. Figueiredo, M.T.M. Koper, Langmuir 33 (2017) 9307-9313. [109] S. Ringe, C.G.Morales-Guio, L.D. Chen, M. Fields, T.F. Jaramillo, C. Hahn, K. Chan, Nat. Commun. 11 (2020) 33. [110] T. Cheng, H. Xiao, W.A. Goddard, J. Am. Chem.Soc. 138 (2016) 13802-13805. [111] M.R. Singh, J.D. Goodpaster, A.Z. Weber, M. Head-Gordon, A.T. Bell, Proc. Natl. Acad. Sci. USA 114 (2017) E8812-E8821. [112] J. Shen, M.J. Kolb, A.J. Gottle, M.T.M. Koper, J. Phys. Chem. C 120 (2016) 15714-15721. [113] X.H. Zhao, Y.Y. Liu, J. Am. Chem.Soc. 142 (2020) 5773-5777. [114] M.D. Hossain, Y.F. Huang, T.H. Yu, W.A. Goddard, Z.T. Luo, Nat. Commun. 11 (2020) 2256. [115] S. Vijay, J.A. Gauthier, H.H. Heenen, V.J. Bukas, H.H. Kristoffersen, K.R. Chan, ACS Catal. 10 (2020) 7826-7835. [116] V. Tripkovic, M. Vanin, M. Karamad, M.E. Bjorketun, K.W. Jacobsen, K.S. Thygesen, J. Rossmeisl, J. Phys. Chem. C 117 (2013) 9187-9195. [117] G. Kour, X. Mao, A.J. Du, J. Phys. Chem. C 124 (2020) 7708-7715. [118] G.L. Miessler, D.A. Tarr, Inorganic Chemistry, 3rd., Edition Pearson College Div, 2003. [119] A.A. Peterson, J.K. Nørskov, J. Phys. Chem.Lett. 3 (2012) 251-258. [120] F. Abild-Pedersen, M.P. Andersson, Surf. Sci. 601 (2007) 1747-1753. [121] Y. Jiao, Y. Zheng, K. Davey, S.Z. Qiao, Nat. Energy 1 (2016) 16130. [122] M.D. Sampson, A.D. Nguyen, K.A. Grice, C.E. Moore, A.L. Rheingold, C.P. Kubiak, J. Am. Chem.Soc. 136 (2014) 5460-5471. [123] S. Roy, B. Sharma, J. Peaut, P. Simon, M. Fontecave, P.D. Tran, E. Derat, V. Artero, J. Am. Chem.Soc. 139 (2017) 3685-3696. [124] A. Bruix, J.T. Margraf, M. Andersen, K. Reuter, Nat. Catal. 2 (2019) 659-670. [125] J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Nat. Chem. 1 (2009) 37-46. [126] A.J. Medford, M.R. Kunz, S.M. Ewing, T. Borders, R. Fushimi, ACS Catal. 8 (2018) 7403-7429. [127] P.S. Lamoureux, K.T. Winther, J.A.G. Torres, V. Streibel, M. Zhao, M. Bajdich, F. Abild-Pedersen, T. Bligaard, ChemCatChem 11 (2019) 3579-3599. [128] T. Toyao, Z. Maeno, S. Takakusagi, T. Kamachi, I. Takigawa, K. Shimizu, ACS Catal. 10 (2020) 2260-2297. [129] A. Jain, S.P. Ong, W. Chen, B. Medasani, X.H. Qu, M. Kocher, M. Brafman, G. Petretto, G.M. Rignanese, G. Hautier, D. Gunter, K.A. Persson, Concurr. Comput.-Pract. Exp. 27 (2015) 5037-5059. [130] K. Tran, Z.W. Ulissi, Nat. Catal. 1 (2018) 696-703. [131] M. Zhong, K. Tran, Y.M. Min, C.H. Wang, Z.Y. Wang, C.T. Dinh, P. De Luna, Z.Q. Yu, A.S. Rasouli, P. Brodersen, S. Sun, O. Voznyy, C.S. Tan, M. Askerka, F.L. Che, M. Liu, A. Seifitokaldani, Y.J. Pang, S.C. Lo, A. Ip, Z. Ulissi, E.H. Sargent, Nature 581 (2020) 178-183. [132] A.A. Peterson, J. Chem. Phys. 145 (2016) 074106. [133] O.P. Koistinen, F.B. Dagbjartsdottir, V. Asgeirsson, A. Vehtari, H. Jonsson, J. Chem. Phys. 147 (2017) 152720. [134] J.A.G.Torres, P.C. Jennings, M.H. Hansen, J.R. Boes, T. Bligaard, Phys. Rev. Lett. 122 (2019) 156001. [135] C. Shang, Z.P. Liu, J. Chem.Theory Comput. 9 (2013) 1838-1845. [136] D.F. Cheng, Z.J. Zhao, G. Zhang, P.P. Yang, L.L. Li, H. Gao, S.H. Liu, X. Chang, S. Chen, T. Wang, G.A. Ozin, Z.P. Liu, J.L. Gong, Nat. Commun. 12 (2021) 395. [137] C.W. Gao, J.W. Allen, W.H. Green, R.H. West, Comput. Phys. Commun. 203 (2016) 212-225. [138] Z.W. Ulissi, A.J. Medford, T. Bligaard, J.K. Norskov, Nat. Commun. 8 (2017) 14621. [139] P.L. Kang, C. Shang, Z.P. Liuo, J. Am. Chem.Soc. 141 (2019) 20525-20536. [140] Z.W. Ulissi, M.T. Tang, J.P. Xiao, X.Y. Liu, D.A. Torelli, M. Karamad, K. Cummins, C. Hahn, N.S. Lewis, T.F. Jaramillo, K.R. Chan, J.K. Nørskov, ACS Catal. 7 (2017) 6600-6608. [141] J. Noh, S. Back, J. Kim, Y. Jung, Chem. Sci. 9 (2018) 5152-5159. [142] S. Stocker, G. Csanyi, K. Reuter, J.T. Margraf, Nat. Commun. 11 (2020) 5505. [143] R.A. Flores, C. Paolucci, K.T. Winther, A. Jain, J.A.G.Torres, M. Aykol, J.Montoya, J.K. Norskov, M. Bajdich, T. Bligaard, Chem. Mater. 32 (2020) 5854-5863. [144] D.H. Won, H. Shin, M.W. Chung, H. Jung, K.H. Chae, H.S. Oh, Y.J. Hwang, B.K. Min, Appl. Catal. B 258 (2019) 117961. [145] B.H. Ko, B. Hasa, H. Shin, E. Jeng, S. Overa, W. Chen, F. Jiao, Nat. Commun. 11 (2020) 5856. [146] A.D. Handoko, F.X. Wei, B.S. Jenndy, Z.W.S.Yeo, Nat. Catal. 1 (2018) 922-934. [147] S.Q. Zhu, T.H. Li, W.B. Cai, M.H. Shao, ACS Energy Lett. 4 (2019) 682-689. [148] M. Dunwell, Q. Lu, J.M. Heyes, J. Rosen, J.G.G.Chen, Y.S. Yan, F. Jiao, B.J. Xu, J. Am. Chem. Soc. 139 (2017) 3774-3783. [149] N.J. Firet, W.A. Smith, ACS Catal. 7 (2017) 606-612. [150] Y.L. Deng, B.S. Yeo, ACS Catal. 7 (2017) 7873-7889. [151] Z. Chen, S. Jiang, G. Kang, D. Nguyen, G.C. Schatz, R.P.Van Duyne, J.Am. Chem. Soc. 141 (2019) 15684-15692. [152] A.N. Marianov, A.S. Kochubei, T. Roman, O.J. Conquest, C. Stampfl, Y.J. Jiang, ACS Catal. 11 (2021) 3715-3729. [153] G. Wu, P. Zelenay, Accounts. Chem. Res. 46 (2013) 1878-1889. [154] W. Liu, H.X. Zhang, C.M. Li, X. Wang, J.Q. Liu, X.W. Zhang, J. Energy Chem. 47 (2020) 333-345. [155] X.G. Li, W.T. Bi, M.L. Chen, Y.X. Sun, H.X. Ju, W.S. Yan, J.F. Zhu, X.J. Wu, W.S. Chu, C.Z. Wu, Y. Xie, J. Am. Chem.Soc. 139 (2017) 14889-14892. [156] K. Jiang, S. Siahrostami, T.T. Zheng, Y.F. Hu, S. Hwang, E. Stavitski, Y.D. Peng, J. Dynes, M. Gangisetty, D. Su, K. Attenkofer, H.T. Wang, Energy Environ. Sci. 11 (2018) 893-903. [157] F. Yang, P. Song, X.Z. Liu, B.B. Mei, W. Xing, Z. Jiang, L. Gu, W.L. Xu, Angew. Chem. Int. Ed. 57 (2018) 12303-12307. [158] A.S. Varela, N.R. Sahraie, J. Steinberg, W. Ju, H.S. Oh, P. Strasser, Angew. Chem. Int. Ed. 54 (2015) 10758-10762. [159] W. Ju, A. Bagger, X.L. Wang, Y.L. Tsai, F. Luo, T. Moeller, H. Wang, J. Rossmeisl, A.S. Varela, P. Strasser, ACS Energy Lett. 4 (2019) 1663-1671. [160] H.P. Yang, Y. Wu, G.D. Li, Q. Lin, Q. Hu, Q.L. Zhang, J.H. Liu, C. He, J. Am. Chem.Soc. 141 (2019) 12717-12723. [161] D.R. Yang, B. Ni, X. Wang, Adv. Energy Mater. 10 (2020) 2001142. [162] Y.Y. Birdja, M.T.M. Koper, [J]. Am. Chem. Soc. 139 (2017) 2030-2034. [163] C. Xia, P. Zhu, Q. Jiang, Y. Pan, W.T. Liang, E. Stavitsk, H.N. Alshareef, H.T. Wang, Nat. Energy 4 (2019) 776-785. [164] P. Zhu, C. Xia, C.Y. Liu, K. Jiang, G.H. Gao, X. Zhang, Y. Xia, Y.J. Lei, H.N. Alshareef, T.P. Senftle, H.T. Wang, Proc. Natl. Acad. Sci. U. S. A. 118 (2021) e2010868118. [165] C. Xia, Y. Xia, P. Zhu, L. Fan, H.T. Wang, Science 366 (2019) 226-231. |
[1] | Devina Thasia Wijaya, Andi Haryanto, Hyun Woo Lim, Kyoungsuk Jin, Chan Woo Lee. Sub-2 nm mixed metal oxide for electrochemical reduction of carbon dioxide to carbon monoxide [J]. Journal of Energy Chemistry, 2023, 84(9): 303-310. |
[2] | Hua-Qing Yin, Zuo-Shu Sun, Qiu-Ping Zhao, Lu-Lu Yang, Tong-Bu Lu, Zhi-Ming Zhang. Electrochemical urea synthesis by co-reduction of CO2 and nitrate with FeII-FeIIIOOH@BiVO4 heterostructures [J]. Journal of Energy Chemistry, 2023, 84(9): 385-393. |
[3] | Kai S. Exner. Standard-state entropies and their impact on the potential-dependent apparent activation energy in electrocatalysis [J]. Journal of Energy Chemistry, 2023, 83(8): 247-254. |
[4] | Jing Zhang, Jia-Jun Dai, De-Quan Cao, Heng Xu, Xing-Yu Ding, Chun-Hua Zhen, Beate Paulus, Jin-Yu Ye, Qian Liang, Jun-Ke Liu, Shi-Jun Xie, Sai-Sai Deng, Zhen Wang, Jun-Tao Li, Yao Zhou, Shi-Gang Sun. Activating coordinative conjugated polymer via interfacial electron transfer for efficient CO2 electroreduction [J]. Journal of Energy Chemistry, 2023, 83(8): 313-323. |
[5] | Shengli Pang, Yifan Song, Meng Cui, Xin Tang, Chao Long, Lingfeng Ke, Gongmei Yang, Ting Fang, Yong Guan, Chonglin Chen. Rapid and durable oxygen reduction reaction enabled by a perovskite oxide with self-cleaning surface [J]. Journal of Energy Chemistry, 2023, 83(8): 333-340. |
[6] | Medhanie Gebremedhin Gebru, Radhey Shyam Yadav, Hanan Teller, Haya Kornweitz, Palaniappan Subramanian, Alex Schechter. Harnessing dimethyl ether and methyl formate fuels for direct electrochemical energy conversion [J]. Journal of Energy Chemistry, 2023, 83(8): 454-464. |
[7] | Yifei Li, Xilin Yuan, Ping Wang, Lulin Tang, Miao He, Pangen Li, Jiang Li, Zhenxing Li. Rare earth alloy nanomaterials in electrocatalysis [J]. Journal of Energy Chemistry, 2023, 83(8): 574-594. |
[8] | Keyru Serbara Bejigo, Kousik Bhunia, Jungho Kim, Chaehyeon Lee, Seoin Back, Sang-Jae Kim. Upcycling end of lithium cobalt oxide batteries to electrocatalyst for oxygen reduction reaction in direct methanol fuel cell via sustainable approach [J]. Journal of Energy Chemistry, 2023, 82(7): 148-157. |
[9] | Xue-Ting Fan, Xiao-Jian Wen, Yong-Bin Zhuang, Jun Cheng. Molecular insight into the GaP(110)-water interface using machine learning accelerated molecular dynamics [J]. Journal of Energy Chemistry, 2023, 82(7): 239-247. |
[10] | Di Liu, Zhejiaji Zhu, Jiani Li, Li-Wei Chen, Hui-Zi Huang, Xiao-Ting Jing, An-Xiang Yin. Rh-Cu alloy nano-dendrites with enhanced electrocatalytic ethanol oxidation activity [J]. Journal of Energy Chemistry, 2023, 82(7): 343-349. |
[11] | Tong Dou, Jinqing He, Shuteng Diao, Yiping Wang, Xuhui Zhao, Fazhi Zhang, Xiaodong Lei. Dynamic reconstructuring of CuS/SnO2-S for promoting CO2 electroreduction to formate [J]. Journal of Energy Chemistry, 2023, 82(7): 497-506. |
[12] | Xiaolin Hu, Ronghua Wang, Wenlin Feng, Chaohe Xu, Zidong Wei. Electrocatalytic oxygen evolution activities of metal chalcogenides and phosphides: Fundamentals, origins, and future strategies [J]. Journal of Energy Chemistry, 2023, 81(6): 167-191. |
[13] | Kai Zhang, Zixiang Zhan, Minzhi Zhu, Haiwei Lai, Xiangyang He, Weiping Deng, Qinghong Zhang, Ye Wang. An efficient electrocatalytic system composed of nickel oxide and nitroxyl radical for the oxidation of bio-platform molecules to dicarboxylic acids [J]. Journal of Energy Chemistry, 2023, 80(5): 58-67. |
[14] | Peiyu Ma, Chen Feng, Huihuang Chen, Jiawei Xue, Xinlong Ma, Heng Cao, Dongdi Wang, Ming Zuo, Ruyang Wang, Xilan Ding, Shiming Zhou, Zhirong Zhang, Jie Zeng, Jun Bao. Directing in-situ self-optimization of single-atom catalysts for improved oxygen evolution [J]. Journal of Energy Chemistry, 2023, 80(5): 284-290. |
[15] | Yang Li, Wei An. Synergistic double-atom catalysts of metal-boron anchored on g-C2N for electrochemical nitrogen reduction: Mechanistic insight and catalyst screening [J]. Journal of Energy Chemistry, 2023, 80(5): 350-360. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||