Journal of Energy Chemistry ›› 2023, Vol. 80 ›› Issue (5): 614-624.DOI: 10.1016/j.jechem.2023.02.007
Previous Articles Next Articles
Joshua Iseoluwa Oregea,b, Na Liua,b, Cederick Cyril Amooa,b, Jian Weia,*, Qingjie Gea,*, Jian Suna
Received:
2022-12-06
Revised:
2023-01-19
Accepted:
2023-02-03
Online:
2023-05-15
Published:
2023-05-29
Contact:
* E-mail addresses: weijian@dicp.ac.cn (J. Wei), geqj@dicp.ac.cn (Q. Ge).
Joshua Iseoluwa Orege, Na Liu, Cederick Cyril Amoo, Jian Wei, Qingjie Ge, Jian Sun. Boosting CO2 hydrogenation to high-value olefins with highly stable performance over Ba and Na co-modified Fe catalyst[J]. Journal of Energy Chemistry, 2023, 80(5): 614-624.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2023.02.007
[1] I. Amghizar, L.A. Vandewalle, K.M. Van Geem, G.B. Marin, Engineering 3 (2017) 171-178. [2] I.M. Artyukhov, E.S. Bezmozgin, A.B. Gushchevskii, V.N. Petrov, N.D. Shevkunov, Chem. Technol. Fuels Oils 14 (1978) 763-768. [3] W. Zhou, K. Cheng, J. Kang, C. Zhou, V. Subramanian, Q. Zhang, Y. Wang, Chem. Soc. Rev. 48(2019) 3193-3228. [4] Y. Han, C. Fang, X. Ji, J. Wei, Q. Ge, J. Sun, ACS Catal. 10(2020) 12098-12108. [5] Q. Zhang, L. Pastor-Pérez, Q. Wang, T. Ramirez Reina, J. Energy Chem. 66(2022) 635-646. [6] Z. Si, C.C. Amoo, Y. Han, J. Wei, J. Yu, Q. Ge, J. Sun, J. Energy Chem. 70(2022) 162-173. [7] A. Mustafa, B.G. Lougou, Y. Shuai, Z. Wang, H. Tan, J. Energy Chem. 49(2020) 96-123. [8] H.M.Torres Galvis, K.P. de Jong, ACS Catal. 3(2013) 2130-2149. [9] S. Wang, T. Wu, J. Lin, Y. Ji, S. Yan, Y. Pei, S. Xie, B. Zong, M. Qiao, ACS Catal. 10(2020) 6389-6401. [10] J. Skupinska, Chem. Rev. 91(1991) 613-648. [11] J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang, T. Zhang, Chem. Soc. Rev. 49(2020) 1385-1413. [12] B. Yao, T. Xiao, O.A. Makgae, X. Jie, S. Gonzalez-Cortes, S. Guan, A.I. Kirkland, J.R. Dilworth, H.A.Al-Megren, S.M. Alshihri, P.J. Dobson, G.P. Owen, J.M. Thomas, P. P. Edwards, Nat. Commun. 11(2020) 6395. [13] L. Guo, J. Sun, Q. Ge, N. Tsubaki, J. Mater. Chem. A 6 (2018) 23244-23262. [14] J. Wang, Z. You, Q. Zhang, W. Deng, Y. Wang, Catal. Today 215 (2013) 186-193. [15] F. Yuan, G. Zhang, J. Zhu, F. Ding, A. Zhang, C. Song, X. Guo, Catal. Today 371 (2021) 142-149. [16] R. Satthawong, N. Koizumi, C. Song, P. Prasassarakich, Catal. Today 251 (2015) 34-40. [17] W.D. Shafer, G. Jacobs, U.M. Graham, H.H. Hamdeh, B.H. Davis, J. Catal. 369(2019) 239-248. [18] C. Wei, W. Tu, L. Jia, Y. Liu, H. Lian, P. Wang, Z. Zhang,App. Surf. Sci. 525(2020). [19] U. Rodemerck, M. Holeňa, E. Wagner, Q. Smejkal, A. Barkschat, M. Baerns, ChemCatChem 5 (2013) 1948-1955. [20] J. Wei, J. Sun, Z. Wen, C. Fang, Q. Ge, H. Xu, Catal. Sci. Technol. 6(2016) 4786-4793. [21] E.C. Ra, K.Y. Kim, E.H. Kim, H. Lee, K. An, J.S. Lee, ACS Catal. 10(2020) 11318-11345. [22] M.K. Gnanamani, G. Jacobs, H.H. Hamdeh, W.D. Shafer, F. Liu, S.D. Hopps, G.A. Thomas, B.H. Davis, ACS Catal. 6(2016) 913-927. [23] J. Jiang, C. Wen, Z. Tian, Y. Wang, Y. Zhai, L. Chen, Y. Li, Q. Liu, C. Wang, L. Ma, Ind. Eng. Chem. Res. 59(2020) 2155-2162. [24] B. Liang, T. Sun, J. Ma, H. Duan, L. Li, X. Yang, Y. Zhang, X. Su, Y. Huang, T. Zhang, Catal. Sci. Technol. 9(2019) 456-464. [25] Y. Xu, P. Zhai, Y. Deng, J. Xie, X. Liu, S. Wang, D. Ma, Angew. Chem. Int. Ed. 59(2020) 21736-21744. [26] A.S. Skrypnik, Q. Yang, A.A. Matvienko, V.Y. Bychkov, Y.P. Tulenin, H. Lund, S.A. Petrov, R. Kraehnert, A. Arinchtein, J. Weiss, A. Brueckner, E.V. Kondratenko, Appl. Catal. B: Environ. 291(2021). [27] B. Zhao, M. Sun, F. Chen, Y. Shi, Y. Yu, X. Li, B. Zhang, Angew. Chem. Int. Ed. 60(2021) 4496-4500. [28] C. Zhang, M. Xu, Z. Yang, M. Zhu, J. Gao, Y.-F. Han, Appl. Catal. B: Environ. 295(2021). [29] X. Wu, L. Zhao, J. Jin, S. Pan, W. Li, X. Jin, G. Wang, M. Zhou, G. Frenking, Science 361 (2018) 912-916. [30] X. Wu, L. Zhao, D. Jiang, I. Fernandez, R. Berger, M. Zhou, G. Frenking, Angew. Chem. Int. Ed. 57(2018) 3974-3980. [31] M. Luo, B.H. Davis, Appl. Catal. A 246 (2003) 171-181. [32] J. Li, C. Zhang, X. Cheng, M. Qing, J. Xu, B. Wu, Y. Yang, Y. Li, Appl. Catal.A 464-465(2013) 10-19. [33] S. Yang, M. Li, M.A. Nawaz, G. Song, W. Xiao, Z. Wang, D. Liu, ACS Omega 5 (2020) 11701-11709. [34] Y. Cheng, J. Tian, J. Lin, S. Wang, S. Xie, Y. Pei, S. Yan, M. Qiao, H. Xu, B. Zong, J. Catal. 374(2019) 24-35. [35] J.I. Orege, J. Wei, Y. Han, M. Yang, X. Sun, J. Zhang, C.C. Amoo, Q. Ge, J. Sun, Appl. Catal. B Environ. 316 (2022). [36] E. de Smit, B.M. Weckhuysen, Chem. Soc. Rev. 37(2008) 2758-2781. [37] Z. Baysal, S. Kureti, Appl. Catal. B: Environ. 262(2020). [38] W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Ignaczak, W. Maniukiewicz, Appl. Catal. A 326 (2007) 17-27. [39] J. Harris, S. Andersson, Phys. Rev. Lett. 55(1985) 1583-1586. [40] X. Cui, P. Gao, S. Li, C. Yang, Z. Liu, H. Wang, L. Zhong, Y. Sun, ACS Catal. 9(2019) 3866-3876. [41] B. Liang, H. Duan, T. Sun, J. Ma, X. Liu, J. Xu, X. Su, Y. Huang, T. Zhang, ACS Sustain. Chem. Eng. 7(2018) 925-932. [42] Q. Xu, X. Xu, G. Fan, L. Yang, F. Li, J. Catal. 400(2021) 355-366. [43] Y. Zhang, C. Cao, C. Zhang, Z. Zhang, X. Liu, Z. Yang, M. Zhu, B. Meng, J. Xu, Y.-F.Han, J. Catal. 378(2019) 51-62. [44] C. Zhang, C. Cao, Y. Zhang, X. Liu, J. Xu, M. Zhu, W. Tu, Y.-F.Han, ACS Catal. 11(2021) 2121-2133. [45] Y. Liu, J.-F.Chen, J. Bao, Y. Zhang, ACS Catal. 5(2015) 3905-3909. [46] Y. Zhang, D. Fu, X. Liu, Z. Zhang, C. Zhang, B. Shi, J. Xu, Y.-F. Han, ChemCatChem 10 (2018) 1272-1276. [47] D. Devaiah, P.G. Smirniotis, Ind. Eng. Chem. Res. 56(2017) 1772-1781. [48] J. Baltrusaitis, D.M. Cwiertny, V.H. Grassian, PCCP 9 (2007) 5542-5554. [49] Y.H. Lee, K.-Y.Lee, Korean J. Chem. Eng. 34(2016) 320-327. [50] J. Wei, R. Yao, Q. Ge, Z. Wen, X. Ji, C. Fang, J. Zhang, H. Xu, J. Sun, ACS Catal. 8(2018) 9958-9967. [51] J. Xu, C.H. Bartholomew, J. Phys. Chem. B 109 (2005) 2392-2403. [52] D. Peña, A. Cognigni, T. Neumayer, W. van Beek, D.S. Jones, M. Quijada, M. Rønning, Appl. Catal. A 554 (2018) 10-23. [53] K. Feng, Y. Wang, M. Guo, J. Zhang, Z. Li, T. Deng, Z. Zhang, B. Yan, J. Energy Chem. 62(2021) 153-171. [54] W. Wang, Z. Qu, L. Song, Q. Fu, J. Energy Chem. 47(2020) 18-28. [55] A. Hakim, T.S. Marliza, N.M.Abu Tahari, R.W.N. Wan Isahak, R.M. Yusop, W.M. Mohamed Hisham, A.M. Yarmo, Ind. Eng. Chem. Res. 55(2016) 7888-7897. [56] M.K. Khan, P. Butolia, H. Jo, M. Irshad, D. Han, K.-W.Nam, J. Kim, ACS Catal. 10(2020) 10325-10338. [57] D. Xu, M. Ding, X. Hong, G. Liu, ACS Catal. 10(2020) 14516-14526. [58] S. Navarro-Jaén, J.C. Navarro, L.F. Bobadilla, M.A. Centeno, O.H. Laguna, J.A. Odriozola, Appl. Surf. Sci. 483(2019) 750-761. |
[1] | Jingpeng Zhang, Xiaohang Sun, Congyi Wu, Wenquan Hang, Xu Hu, Dawei Qiao, Binhang Yan. Engineering Cu+/CeZrOx interfaces to promote CO2 hydrogenation to methanol [J]. Journal of Energy Chemistry, 2023, 77(2): 45-53. |
[2] | Bart Wanten, Rani Vertongen, Robin De Meyer, Annemie Bogaerts. Plasma-based CO2 conversion: How to correctly analyze the performance? [J]. Journal of Energy Chemistry, 2023, 86(11): 180-196. |
[3] | Na Li, Weiwei Wang, Lixin Song, Hui Wang, Qiang Fu, Zhenping Qu. CO2 hydrogenation to methanol promoted by Cu and metastable tetragonal CexZryOz interface [J]. Journal of Energy Chemistry, 2022, 68(5): 771-779. |
[4] | Xue Ye, Junguo Ma, Wenguang Yu, Xiaoli Pan, Chongya Yang, Chang Wang, Qinggang Liu, Yanqiang Huang. Construction of bifunctional single-atom catalysts on the optimized β-Mo2C surface for highly selective hydrogenation of CO2 into ethanol [J]. Journal of Energy Chemistry, 2022, 67(4): 184-192. |
[5] | Waqar Ahmad, Fan Liang Chan, Abhijit Shrotri, Yayati Naresh Palai, Huanting Wang, Akshat Tanksale. Dimethoxymethane production via CO2 hydrogenation in methanol over novel Ru based hierarchical BEA [J]. Journal of Energy Chemistry, 2022, 66(3): 181-189. |
[6] | Chenyang Shen, Qianqian Bao, Wenjuan Xue, Kaihang Sun, Zhitao Zhang, Xinyu Jia, Donghai Mei, Chang-jun Liu. Synergistic effect of the metal-support interaction and interfacial oxygen vacancy for CO2 hydrogenation to methanol over Ni/In2O3 catalyst: A theoretical study [J]. Journal of Energy Chemistry, 2022, 65(2): 623-629. |
[7] | Enrico Catizzone, Cesare Freda, Giacobbe Braccio, Francesco Frusteri, Giuseppe Bonura. Dimethyl ether as circular hydrogen carrier: Catalytic aspects of hydrogenation/dehydrogenation steps [J]. Journal of Energy Chemistry, 2021, 58(7): 55-77. |
[8] | Kang An, Siran Zhang, Jiaming Wang, Qiang Liu, Ziyang Zhang, Yuan Liu. A highly selective catalyst of Co/La4Ga2O9 for CO2hydrogenation to ethanol [J]. Journal of Energy Chemistry, 2021, 56(5): 486-495. |
[9] | Zhaopeng Liu, Youming Ni, Tantan Sun, Wenliang Zhu, Zhongmin Liu. Conversion of CO2 and H2 into propane over InZrOx and SSZ-13 composite catalyst [J]. Journal of Energy Chemistry, 2021, 54(3): 111-117. |
[10] | Kun Zhao, Marco Calizzi, Emanuele Moioli, Mo Li, Alexandre Borsay, Loris Lombardo, Robin Mutschler, Wen Luo, Andreas Züttel. Unraveling and optimizing the metal-metal oxide synergistic effect in a highly active Cox(CoO)1-x catalyst for CO2 hydrogenation [J]. Journal of Energy Chemistry, 2021, 53(2): 241-250. |
[11] | Xiao-Kuan Wu, Hui-Min Yan, Wei Zhang, Jie Zhang, Guang-Jie Xia, Yang-Gang Wang. Unraveling the catalytically active phase of carbon dioxide hydrogenation to methanol on Zn/Cu alloy: Single atom versus small cluster [J]. Journal of Energy Chemistry, 2021, 61(10): 582-593. |
[12] | Weiwei Wang, Zhenping Qu, Lixin Song, Qiang Fu. An investigation of Zr/Ce ratio influencing the catalytic performance of CuO/Ce1-xZrxO2 catalyst for CO2 hydrogenation to CH3OH [J]. Journal of Energy Chemistry, 2020, 47(8): 18-28. |
[13] | Xinyu Jia, Kaihang Sun, Jing Wang, Chenyang Shen, Chang-jun Liu. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst [J]. Journal of Energy Chemistry, 2020, 50(11): 409-415. |
[14] | Weiwei Wang, Zhenping Qu, Lixin Song, Qiang Fu. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Tuning methanol selectivity via metal-support interaction [J]. Journal of Energy Chemistry, 2020, 40(1): 22-30. |
[15] | Suthasinee Pengnarapat, Peipei Ai, Prasert Reubroycharoen, Tharapong Vitidsant, Yoshiharu Yoneyama, Noritatsu Tsubaki. Active Fischer-Tropsch synthesis Fe-Cu-K/SiO2 catalysts prepared by autocombustion method without a reduction step [J]. Journal of Energy Chemistry, 2018, 27(2): 432-438. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||