Journal of Energy Chemistry ›› 2023, Vol. 80 ›› Issue (5): 711-735.DOI: 10.1016/j.jechem.2023.01.033
Previous Articles Next Articles
Ermete Antolini
Received:
2022-11-28
Revised:
2023-01-09
Accepted:
2023-01-16
Online:
2023-05-15
Published:
2023-05-29
Contact:
* E-mail address: ermantol@libero.it (E. Antolini).
About author:
Ermete Antolini received his PhD in chemistry from the University of Genova, Italy. He worked at Ansaldo Ricerche, Genova, Italy, ENEA, Roma, Italy and Scuola Scienza Materiali, Genova, Italy. He was a visiting pro-fessor at Ecole National de Chimie, Paris, France, 1999, and at Institute of Chemistry of USP, Sao Carlos, Brazil, 2001-2010. He has over 150 scientific publications with more than 16000 total citations and an H-index of 63. He was recognized a Highly Cited Researcher 2014 by Thomson Reuters (ISI Web of Knowledge), and was in the World's Top 2% Scientists list, 2020, the first of Italians in the Enabling & Strategic Technologies field and in the Energy subfield. He is a member of the Editorial Boards of Applied Catalysis B: Environmental and Catalysts. His research interests focus on the devel-opment of materials for heterogeneous catalysis with emphasis on catalysts for low temperature fuel cells.
Ermete Antolini. Low molecular weight alkane-fed solid oxide fuel cells for power and chemicals cogeneration[J]. Journal of Energy Chemistry, 2023, 80(5): 711-735.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2023.01.033
[1] F. Alcaide, P.L. Cabot, E. Brillas, J. Power Sources 153 (2006) 47-60. [2] W. Wyiaratn, Eng. J. 14(2010) 1-14. [3] E. Antolini, Catalysts 9 (2019) 980. [4] Y. Gambo, S. Adamu, G. Tanimu, I.M. Abdullahi, R.A. Lucky, M.S.Ba-Shammakh, M.M. Hossain, Appl. Catal. A: Gen. 623(2021). [5] T.M. Gur, Progress Energy Comb. Sci. 54(2016) 1-64. [6] E. Antolini, Fuel 315(2022). [7] K. Tseronis, I.S. Fragkopoulos, I. Bonis, C. Theodoropoulos, Fuel Cells 16 (2016) 294-312. [8] P. Aguiar, C.S. Adjiman, N.P. Brandon, J. Power Sources 138 (2004) 120-136. [9] J. Hanna, W.Y. Lee, Y. Shi, A.F. Ghoniem, Progress Energy Comb. Sci. 40(2014) 4-111. [10] H. Su, Y.H. Hu,Chem. Eng. J. 402(2020). [11] N. Shi, Y. Xie, Y. Yang, S. Xue, X. Li, K. Zhu, D. Huan, R. Peng, C. Xia, Y. Lu, Mater. Renew. Sust. Energy 9 (2020) 6. [12] S. McIntosh, R.J. Gorte, Chem. Rev. 104(2004) 4845-4866. [13] W. Wang, C. Su, Y. Wu, R. Ran, Z. Shao, Chem. Rev. 113(2013) 8104-8151. [14] F.J.R.Varela, O. Savadogo, J.New Mater. Electrochem. Syst. 9(2006) 127-137. [15] Y. Wang, P. Hu, J. Yang, Y.A. Zhu, D. Chen, Chem. Soc. Rev. 50(2021) 4299. [16] S.J. Blanksby, G.B. Ellison, Acc. Chem. Res. 36(2003) 255-263. [17] E.S. Putna, J. Stubenrauch, J.M. Vohs, R.J. Gorte, Langmuir 11 (1995) 4832-4837. [18] M.E. Perry, T. Tsai, S.A. Barnett, Nature 400 (1999) 649-651. [19] J. Lu, C. Zhu, C. Pan, W. Lin, J.P. Lemmon, F. Chen, C. Li, K. Xie, Sci. Adv. 4(2018) 5100. [20] X. Zhang, L. Ye, H. Li, F. Chen, K. Xie, ACS Catal. 10(2020) 3505-3513. [21] Ma M., Yang X., Ren R., Xu C., Qiao J., Sun W., Sun K., Wang Z., J. Mater. Chem. A 9 (2021) 17327-17335. [22] S. Xie, S. Lin, Q. Zhang, Z. Tian, Y. Wang, J. Energy Chem. 27(2018) 1629-1636. [23] A. Holmes, Catal. Today 142 (2009) 2-8. [24] L. Mleczko, M. Baerns, Fuel Process. Technol. 42(1995) 217-248. [25] Li S., Dixon D.A., in: Annual Reports in Computational Chemistry, Chapter 8, 15(2019) 287-333. [26] J.H. Lunsford, Catal. Today 63 (2000) 165-174. [27] Y.S. Su, J.Y. Ying, W.H.Green Jr, J.Catal. 218(2003) 321-333. [28] K.K. Moe, T. Tagawa, S. Goto, J. Ceram. Soc. Japan 106 (1998) 242-247. [29] T. Tagawa, K. Kuroyanagi, S. Goto, Chem. Eng. J. 93(2003) 3-9. [30] N. Lapeña-Rey, P.H. Middleton, Appl. Catal. A: Gen. 240(2003) 207-222. [31] K. Liu, J. Zhao, D. Zhu, F. Meng, F. Kong, Y. Tang, Catal. Comm. 96(2017) 23-27. [32] A. Yahyazadeh, A.K. Dalai, W. Ma, L. Zhang, Reactions 2 (2021) 227-257. [33] G. Zhang, J. Liu, Y. Xu, Y. Sun, Int. J. Hydrogen Energy 43 (2018) 15030-15054. [34] H. Alqahtany, D. Eng, M. Stoukides, J. Electrochem. Soc. 140(1993) 1677-1682. [35] V.A. Sobyanin, V.D. Belyaev, V.V. Gal’vita, Catal. Today 42 (1998) 337-340. [36] M.C. Zhan, W.D. Wang, T.F. Tian, C.S. Chen, Energy Fuels 24 (2010) 764-771. [37] D.J. Kuchynka, R.L. Cook, A.F. Sammells, J. Electrochem. Soc. 138(1991) 1284-1299. [38] J.H. White, E.A. Needham, R.L. Cook, A.F. Sammells, Solid State Ionics 53-56(1992) 149-161. [39] S.A. Venancio, P.E.V. de Miranda, Int. J. Hydrogen Energy 42 (2017) 13927-13938. [40] K. Otsuka, K. Suga, I. Yamanaka, Catal. Today 6 (1990) 587-592. [41] T.J. Mazanec, T.L. Cable, J.G.Frye Jr.,Solid State Ionics 53-56(1992) 111-118. [42] T. Tagawa, K.K. Moe, M. Ito, S. Goto, Chem. Eng. Sci. 54(1999) 1553-1557. [43] T. Tagawa, K.K. Moe, T. Hiramatsu, S. Goto, Solid State Ionics 106 (1998) 227-235. [44] W. Wiyaratn, W. Appamana, S. Charojrochkul, S. Kaewkuekool, S. Assabumrungrat, J. Ind. Eng.Chem. 18(2012) 1819-11182. [45] W. Appamana, S. Charojrochkul, S. Assabumrungrat, W. Wiyaratn, Eng. J. 19(2015) 14-20. [46] K. Khammona, W. Wiyaratn, W. Appamana, S. Assabumrungrat, Eng. J. 19(2015) 1-11. [47] S.A. Venancio, B.J. Moreira Sarruf, G.G. Gomes, P.E.V. de Miranda, Int. J. Hydrogen Energy 45 (2020) 5501-5511. [48] X.M. Guo, K. Hidajat, C.B. Ching, Korean J. Chem. Eng. 15(1998) 469-473. [49] O.O. Agbede, G.H. Kelsall, K. Hellgardt, J. Power Sources 474 (2020). [50] T. Tagawa, H. Imai, J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Cond. Phases 84 (1988) 923-929. [51] H. Imai, T. Tagawa, N. Kamide, J. Catal. 106(1987) 394-400. [52] I. Sreedhar, B. Agarwal, P. Goyal, S.A. Singh, J. Electroanal. Chem. 848(2019). [53] X.M. Guo, K. Hidajat, C.B. Ching, Catal. Today 50 (1999) 109-116. [54] W. Kiatkittipong, S. Goto, T. Tagawa, S. Assabumrungrat, P. Praserthdam, J. Chem. Eng. Japan 38 (2005) 841-848. [55] Z. Zhan, Y. Lin, M. Pillai, I. Kim, S.A. Barnett, J. Power Sources 161 (2006) 460-465. [56] T.-J. Huang, M.-C. Huang, J. Power Sources 175 (2008) 473-481. [57] X. Zhang, S. Ohara, H. Chen, T. Fukui, Fuel 81 (2002) 989-996. [58] T. Yamada, Y. Hiei, T. Akbay, T. Ishihara, Y. Takita, Solid State Ionics 113-115(1998) 253-258. [59] T. Ishihara, T. Yamada, T. Akbay, Y. Takita, Chem. Eng. Sci. 54(1999) 1535-1540. [60] G.L. Semin, V.D. Belyaev, A.K. Demin, V.A. Sobyanin, Appl. Catal. A: Gen. 181(1999) 131-137. [61] D. Fan, F. Liu, J. Li, T. Wei, Z. Ye, Z. Wang, X. Hu, D. Dong, H. Wang, Z. Shao, Appl. Catal. B: Environ. 297(2021). [62] T. Ishihara, Y. Hiei, Y. Takita, Solid State Ionics 79 (1995) 371-375. [63] Y. Hiei, T. Ishihara, Y. Takita, Solid State Ionics 86-88(1996) 1267-1272. [64] G.S. Kim, B.Y. Lee, G. Accardo, H.C. Ham, J. Moon, S.P. Yoon, J. Power Sources 423 (2019) 305-315. [65] T. Hibino, H. Iwahara, Chem. Lett. 22(1993) 1131-1134. [66] K. Asano, T. Hibino, H. Iwahara, J. Electrochem. Soc. 142(1995) 3241-3246. [67] Z. Shao, C. Zhang, W. Wang, C. Su, W. Zhou, Z. Zhu, H.J. Park, C. Kwak, Angew. Chem. Int. Ed. 50(2011) 1792-1797. [68] D.J. Moon, J.W. Ryu, Catal. Today 87 (2003) 255-264. [69] D.J. Moon, J.M. Park, J.S. Kang, K.S. Yoo, S.I. Hong, J. Ind. Eng.Chem. 12(2006) 149-155. [70] D. Fan, Y. Gao, F. Liu, T. Wei, Z. Ye, Y. Ling, B. Chen, Y. Zhang, M. Ni, D. Dong, J. Power Sources 513 (2021). [71] B. Hua, N. Yan, M. Li, Y. Zhang, Y. Sun, J. Li, T. Etsell, P. Sarkar, K. Chuang, J.L. Luo, Energy Environ. Sci. 9(2016) 207-215. [72] T. Wan, A. Zhu, Y. Guo, C. Wang, S. Huang, H. Chen, G. Yang, W. Wang, Z. Shao, J. Power Sources 348 (2017) 9-15. [73] B. Chen, H. Xu, Y. Zhang, F. Dong, P. Tan, T. Zhao, M. Ni, Int. J. Hydrogen Energy 44 (2019) 15313-15321. [74] T. Wei, P. Qiu, L. Jia, Y. Tan, X. Yang, S. Sun, F. Chen, J. Li, J. Mater. Chem. A 8 (2020) 9806-9812. [75] M.R. Pillai, D.M. Bierschenk, S.A. Barnett, Catal. Lett. 121(2008) 19-23. [76] B. Chen, H. Xu, Q. Sun, H. Zhang, P. Tan, W. Cai, W. He, M. Ni, Energy Conv. Management 167 (2018) 37-44. [77] T. Brousas, P.H. Chiang, D. Eng, M. Stoukides, Ionics 1 (1995) 328-337. [78] F. Paloukis, S.G. Neophytides, Chem. Eng. Sci. 62(2007) 3868-3881. [79] H. Zhu, R.J. Kee, M.R. Pillai, S.A. Barnett, J. Power Sources 183 (2008) 143-150. [80] Y. Tian, Z. Lü, X. Guo, P. Wu, Int. J. Electrochem. Sci. 14(2019) 1093-1106. [81] J. Niu, F. Guo, J. Ran, W. Qi, Z. Yang, Int. J. Hydrogen Energy 45 (2020) 30267-30287. [82] Z. Li, Q. Lin, M. Li, J. Cao, F. Liu, H. Pan, Z. Wang, S. Kawi, Renew. Sust. Energy Rev. 134 (2020). [83] A. Demin, P. Tsiakaras, Int. J. Hydrogen Energy 26 (2001) 1103-1108. [84] M. Ni, D.Y.C. Leung, M.K.H. Leung, J. Power Sources 183 (2008) 133-142. [85] Q. Sun, K. Zheng, M. Ni, Chinese J. Chem. Eng. 22(2014) 1033-1037. [86] P. Qiu, X. Yang, S. Sun, L. Jia, J. Li, F. Chen, Int. J. Hydrogen Energy 46 (2021) 22974-22982. [87] I.T. Bello, S. Zhai, S. Zhao, Z. Li, N. Yu, M. Ni, Int. J. Hydrogen Energy 46 (2021) 37406-37428. [88] B. Hua, M. Li, B. Chi, J. Li, J. Mater. Chem. A 2 (2014) 1150-1158. [89] M.J. Scholten, J. Schoonman, J.C. van Miltenburg, H.A.J. Oonk, Solid State Ionics 61 (1993) 83-91. [90] K. Hbaieb, Appl. Nanosci. 6(2016) 847-854. [91] K. Huang, J.H. Wan, J.B. Goodenough, J. Electrochem. Soc. 148(2001) A788-A794. [92] K. Kawahara, S. Suda, M. Suzuki, M. Kawano, H. Yoshida, T. Inagaki, Solid State Ionics 180 (2009) 236-240. [93] N. Kiratzis, M. Stoukides, J. Electrochem. Soc. 134(1987) 1925-1929. [94] K. Yamaji, H. Kishimoto, Y. Xiong, T. Horita, N. Sakai, M.E. Brito, H. Yokokawa, J. Power Sources 159 (2006) 885-890. [95] T.H. Shin, S. Ida, T. Ishihara, J. Am. Chem.Soc. 133(2011) 19399-19407. [96] D. Hirabayashi, A. Tomita, M.E. Brito, T. Hibino, U. Harada, M. Nagao, M. Sano, Solid State Ionics 168 (2004) 23-29. [97] X. Yang, T. Wei, B. Chi, J. Pu, J. Li, J. Catal. 377(2019) 629-637. [98] S. Wang, J.-L. Luo, A.R. Sanger, K.T. Chuang, J. Phys. Chem. C 111 (2007) 5069-5074. [99] H. Iwahara, H. Uchida, S. Tanaka, J. Appl. Electrochem. 16(1985) 663-668. [100] Z. Shi, J.-L. Luo, S. Wang, A.R. Sanger, K.T. Chuang, J. Power Sources 176 (2008) 122-127. [101] J.-Y. Lin, X.-Z. Fu, G.-H. Zhou, J.-L. Luo, K.T. Chuang, A.R. Sanger, R.-A. Chi, Sci. Res. Power Energy Eng. Conf. (2010) 428-430. [102] X.-Z. Fu, J.-L. Luo, A.R. Sanger, Z.-R. Xu, K.T. Chuang, Electrochim. Acta 55 (2010) 1145-1149. [103] X.-Z. Fu, J.-L. Luo, A.R. Sanger, N. Luo, K.T. Chuang, J. Power Sources 195 (2010) 2659-2663. [104] X.-Z. Fu, X.-X. Luo, J.-L. Luo, K.T. Chuang, A.R. Sanger, A. Krzywicki, J. Power Sources 196 (2011) 1036-1041. [105] J.-H. Li, X.-Z. Fu, G.-H. Zhou, J.-L. Luo, K.T. Chuang, A.R. Sanger, Adv. Phys. Chem. 2011(2011). [106] X.-Z.Fu, J.Y. Lin, S. Xu, J.-L. Luo, K.T. Chuang, A.R. Sanger, A. Krzywicki, Phys. Chem. Chem. Phys. 13(2011) 19615-19623. [107] S.-H.Cui, J.-H. Li, J.-L. Luo, K.T. Chuang, L.-J. Qiao, Ceram. Int. 40(2014) 11781-11786. [108] J. Li, J. Hou, X. Xi, Y. Lu, M. Li, Y. Fan, L. Wang, L. Wang, X.-Z. Fu, J.-L. Luo, J. Mater. Chem. A 8 (2020) 25978-25985. [109] L. Wang, Y. Fan, J. Li, L. Shao, X. Xi, X.-Z.Fu, J.-L. Luo, Ceram. Int. 47(2021) 24106-24114. [110] Y. Fan, X. Xi, J. Li, Q. Wang, K. Xiang, D. Medvedev, J.-L.Luo, X.-Z. Fu, J. Am. Ceram. Soc. 105(2022) 3613-3624. [111] S. Liu, K.T. Chuang, J.-L.Luo, ACS Catal. 6(2016) 760-768. [112] S. Liu, Q. Liu, X.-Z.Fu, J.-L. Luo, Appl. Catal. B: Environ. 220(2018) 283-289. [113] Y. Fan, X. Xi, J. Li, Q. Wang, M.-M. Li, L.-J. Wang, D. Medvedev, J.-L. Luo, X.-Z. Fu, Electrochim. Acta 393(2021). [114] Y. Fan, X. Xi, D. Medvedev, Q. Wang, J. Li, J.-L. Luo, X.-Z. Fu, J. Power Sources 515 (2021). [115] J.-Y. Lin, L. Shao, F.-Z. Si, X.-Z. Fu, J.-L. Luo, Int. J. Hydrogen Energy 43 (2018) 19704-19710. [116] J.-H.Li, X.-Z. Fu, J.-L. Luo, K.T. Chuang, A.R. Sanger, Electrochem. Comm. 15(2012) 81-84. [117] S. Liu, Y. Behnamian, K.T. Chuang, Q. Liu, J.-L. Luo, J. Power Sources 298 (2015) 23-29. [118] J.-Y. Lin, L. Shao, F.-Z. Si, S.-B. Liu, X.-Z. Fu, J.-L. Luo, J. Phys. Chem. C 122 (2018) 4165-4171. [119] L. Shao, F. Si, X.-Z. Fu, J.-L. Luo, Int. J. Hydrogen Energy 43 (2018) 7511-7514. [120] Y. Fan, G. Chen, X. Xi, J. Li, Q. Wang, J. Luo, X. Fu, Acta Phys.-Chim.Sin. 37(2021) 2009107. [121] S. Wang, T. Kobayashi, M. Dokiya, T. Hashimoto, J. Electrochem. Soc. 147 (2000) (2000) 3606-3614. [122] T.M. Besmann, R.D. Carneim, T.R.Armstrong, in: A.C. Bose (Ed.), Inorganic Membranes for Energy and Environmental Applications, Springer, New York, NY, 2009. [123] S.P. Jiang, Solid State Ionics 146 (2002) 1-22. [124] N. Osman, I. Ismail, A.A. Samat, A.M. Md Jani, Mater. Sci. Forum 846 (2016) 58-62. [125] W. Sun, S. Fang, L. Yan, W. Liu, J. Electrochem. Soc. 158(2011) B1432-B1438. [126] J.H.B.Sattler, J. Ruiz-Martinez, E.Santillan-Jimenez, B.M. Weckhuysen, Chem. Rev. 114(2014) 10613-10653. [127] G. Karagiannakis, C. Kokkofitis, S. Zisekas, M. Stoukides, Catal. Today 104 (2005) 219-224. [128] N. Shi, S. Xue, Y. Xie, Y. Yang, D. Huan, Y. Pan, R. Peng, C. Xia, Z. Zhan, Y. Lu, Appl. Catal. B: Environ. 272(2020). [129] Y. Feng, J. Luo, K.T. Chuang, Fuel 86 (2007) 123-128. [130] Y. Feng, J. Luo, K.T. Chuang, J. Phys. Chem. C 112 (2008) 9943-9949. [131] Y. Feng, J.-L. Luo, K.T. Chuang, J. Power Sources 167 (2007) 486-490. [132] M. Qin, Y. Xiao, H. Yang, T. Tan, Z. Wang, X. Fan, C. Yang, Appl. Catal. B: Environ. 299(2021). [133] B. Ji, J. Wang, W. Chu, W. Yang, L. Lin, Chem. Commun. (2009) 2038-2040. [134] L. Zhang, C. Yang, A.I. Frenkel, S. Wang, G. Xiao, K. Brinkman, F. Chen, J. Power Sources 262 (2014) 421-428. [135] Y. Yan X., Yang, Y. Zeng, B.S. Amirkhiz, J.-L. Luo, N. Yan, ACS Appl. Mater. Interfaces 12 (2020) 16209-16215. [136] J. Su, C. Liu, S. Liu, Y. Ye, Y. Du, H. Zhou, S. Liu, W. Jiao, L. Zhang, C. Wang, Y. Wang, Z. Xie,Cell Rep. Phys. Sci. 2(2021). |
[1] | Shengli Pang, Yifan Song, Meng Cui, Xin Tang, Chao Long, Lingfeng Ke, Gongmei Yang, Ting Fang, Yong Guan, Chonglin Chen. Rapid and durable oxygen reduction reaction enabled by a perovskite oxide with self-cleaning surface [J]. Journal of Energy Chemistry, 2023, 83(8): 333-340. |
[2] | Chenguang Wang, Chengyan Wen, Zheng Liang, Zhipeng Tian, Qian Jiang, Yuhe Liao, Xunzhu Jiang, Lungang Chen, Qiying Liu, Longlong Ma, Michiel Dusselier. Fabrication of a sinter-resistant Fe-MFI zeolite dragonfruit-like catalyst for syngas to aromatics conversion [J]. Journal of Energy Chemistry, 2023, 77(2): 70-79. |
[3] | Hong Pang, Fumihiko Ichihara, Xianguang Meng, Lijuan Li, Yuqi Xiao, Wei Zhou, Jinhua Ye. Selectivity control of photocatalytic CO2 reduction over ZnS-based nanocrystals: A comparison study on the role of ionic cocatalysts [J]. Journal of Energy Chemistry, 2023, 86(11): 391-398. |
[4] | YoumingNi, Zhaopeng Liu, Peng Tian, Zhiyang Chen, Yi Fu, Wenliang Zhu, Zhongmin Liu. A dual-bed catalyst for producing ethylene and propylene from syngas [J]. Journal of Energy Chemistry, 2022, 66(3): 190-194. |
[5] | Yi Fu, Youming Ni, Zhiyang Chen, Wenliang Zhu, Zhongmin Liu. Achieving high conversion of syngas to aromatics [J]. Journal of Energy Chemistry, 2022, 66(3): 597-602. |
[6] | Yi Ding, Feng Jiao, Xiulian Pan, Xinhe Bao. Modulated hydrocarbon distribution of gasoline deriving from butene conversion in the presence of syngas [J]. Journal of Energy Chemistry, 2022, 73(10): 416-421. |
[7] | Cristina Artini, Sabrina Presto, Massimo Viviani, Sara Massardo, Maria Maddalena Carnasciali, Lara Gigli, Marcella Pani. The role of defects association in structural and transport properties of the Ce1-x(Nd0.74Tm0.26)xO2-x/2 system [J]. Journal of Energy Chemistry, 2021, 60(9): 494-502. |
[8] | Liang Liu, Zenan Lin, Shanya Lin, Yeyun Chen, Lina Zhang, Shaopeng Chen, Xianhua Zhang, Jingdong Lin, Zhaoxia Zhang, Shaolong Wan, Yong Wang. Conversion of syngas to methanol and DME on highly selective Pd/ZnAl2O4 catalyst [J]. Journal of Energy Chemistry, 2021, 58(7): 564-572. |
[9] | Zhaopeng Liu, Youming Ni, Xudong Fang, Wenliang Zhu, Zhongmin Liu. Highly converting syngas to lower olefins over a dual-bed catalyst [J]. Journal of Energy Chemistry, 2021, 58(7): 573-576. |
[10] | Mengzheng Ouyang, Antonio Bertei, Samuel J. Cooper, Yufei Wu, Paul Boldrin, Xinhua Liu, Huizhi Wang, Max Naylor Marlow, Jingyi Chen, Xiaolong Chen, Yuhua Xia, Billy Wu, Nigel P. Brandon. Model-guided design of a high performance and durability Ni nanofiber/ceria matrix solid oxide fuel cell electrode [J]. Journal of Energy Chemistry, 2021, 56(5): 98-112. |
[11] | Minjian Ma, Xiaoxia Yang, Jinshuo Qiao, Wang Sun, Zhenhua Wang, Kening Sun. Progress and challenges of carbon-fueled solid oxide fuel cells anode [J]. Journal of Energy Chemistry, 2021, 56(5): 209-222. |
[12] | Xian Wang, Zelin Wang, Ya Bai, Ling Tan, Yanqi Xu, Xiaojie Hao, Jikang Wang, Abdul Hanif Mahadi, Yufei Zhao, Lirong Zheng, Yu-Fei Song. [J]. Journal of Energy Chemistry, 2020, 46(7): 1-7. |
[13] | Chengxiong Dang, Shijie Wu, Guangxing Yang, Yonghai Cao, Hongjuan Wang, Feng Peng, Hao Yu. Syngas production by dry reforming of the mixture of glycerol and ethanol with CaCO3 [J]. Journal of Energy Chemistry, 2020, 43(4): 90-97. |
[14] | Srirat Chuayboon, Stéphane Abanades, Sylvain Rodat. Solar chemical looping reforming of methane combined with isothermal H2O/CO2 splitting using ceria oxygen carrier for syngas production [J]. Journal of Energy Chemistry, 2020, 41(2): 60-72. |
[15] | Gen Li, Feng Jiao, Dengyun Miao, Yong Wang, Xiulian Pan, Toshiyuki Yokoi, Xiangju Meng, Feng-Shou Xiao, Andrei-Nicolae Parvulescu, Ulrich Müller, Xinhe Bao. Selective conversion of syngas to propane over ZnCrOx-SSZ-39 OX-ZEO catalysts [J]. Journal of Energy Chemistry, 2019, 36(9): 141-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||