Journal of Energy Chemistry ›› 2023, Vol. 80 ›› Issue (5): 744-757.DOI: 10.1016/j.jechem.2023.02.004
Previous Articles Next Articles
Siwen Wang, Honghong Lin, Yui Wakabayashi, Li Qin Zhou, Charles A. Roberts, Debasish Banerjee, Hongfei Jia, Chen Ling*
Received:
2023-01-03
Revised:
2023-01-18
Accepted:
2023-02-02
Online:
2023-05-15
Published:
2023-05-29
Contact:
* E-mail address: chen.ling@toyota.com (C. Ling).
Siwen Wang, Honghong Lin, Yui Wakabayashi, Li Qin Zhou, Charles A. Roberts, Debasish Banerjee, Hongfei Jia, Chen Ling. Transfer learning aided high-throughput computational design of oxygen evolution reaction catalysts in acid conditions[J]. Journal of Energy Chemistry, 2023, 80(5): 744-757.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2023.02.004
[1] M.S. Dresselhaus, I.L. Thomas, Nature 414 (2001) 332-337. [2] S. Chu, A. Majumdar, Nature 488 (2012) 294-303. [3] A.S. Aricò, P. Bruce, B. Scrosati, J.-M.Tarascon, W. van Schalkwijk, Nat. Mater. 4(2005) 366-377. [4] A.J. Shih, M.C.O. Monteiro, F. Dattila, D. Pavesi, M. Philips, A.H.M. da Silva, R.E. Vos, K. Ojha, S. Park, O. van der Heijden, G. Marcandalli, A. Goyal, M. Villalba, X. Chen, G.T.K.K. Gunasooriya, I. McCrum, R. Mom, N. López, M.T.M. Koper, Nature Reviews Methods Primers 2 (2022) 1-19. [5] V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Nat. Mater. 16(2016) 57-69. [6] J. Kibsgaard, I. Chorkendorff, Nature Energy 4 (2019) 430-433. [7] W. Chen, X. Zhu, R. Wang, W. Wei, M. Liu, S. Dong, K.K. Ostrikov, S.-Q.Zang, J. Energy Chem. 75(2022) 16-25. [8] Q. Lei, B. Wang, P. Wang, S. Liu, J. Energy Chem. 38(2019) 162-169. [9] R. Li, Y. Li, P. Yang, D. Wang, H. Xu, B. Wang, F. Meng, J. Zhang, M. An, J. Energy Chem. 57(2021) 547-566. [10] Hydrogen Shot.Energy.gov https://www.energy.gov/eere/fuelcells/ hydrogen-shot. [11] M. Bullock, K. More, Basic Energy Sciences Roundtable: Foundational Science for Carbon-Neutral Hydrogen Technologies, USDOE Office of Science (SC), Basic Energy Sciences (BES), https://www.osti.gov/biblio/1834317. [12] M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energy 38 (2013) 4901-4934. [13] M.F. Lagadec, A. Grimaud, Nat. Mater. 19(2020) 1140-1150. [14] H.N. Nong, L.J. Falling, A. Bergmann, M. Klingenhof, H.P. Tran, C. Spöri, R. Mom, J. Timoshenko, G. Zichittella, A. Knop-Gericke, S. Piccinin, J. Pérez-Ramírez, B.R. Cuenya, R. Schlögl, P. Strasser, D. Teschner, T.E. Jones, Nature 587 (2020) 408-413. [15] M. Chatti, J.L. Gardiner, M. Fournier, B. Johannessen, T. Williams, T.R. Gengenbach, N. Pai, C. Nguyen, D.R. MacFarlane, R.K. Hocking, A.N. Simonov, Nature Catalysis 2 (2019) 457-465. [16] M. Blasco-Ahicart, J. Soriano-López, J.J. Carbó, J.M. Poblet, J.R.Galan-Mascaros, Nat. Chem. 10(2018) 24-30. [17] L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H.Y. Hwang, J.K. Norskov, T.F. Jaramillo, Science 353 (2016) 1011-1014. [18] Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Science 355 (2017) 6321. [19] M. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai, S. Hayami, V.K.K. Praneeth, M. Yoshida, K. Yoneda, S. Kawata, S. Masaoka, Nature 530 (2016) 465-468. [20] B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. (david) Lou, X. Wang, Nature Energy 1 (2016) 1-8. [21] M.-R.Gao, Y.-F. Xu, J. Jiang, Y.-R. Zheng, S.-H. Yu, J. Am. Chem. Soc. 134(2012) 2930-2933. [22] C.C.L.McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 137(2015) 4347-4357. [23] R. Frydendal, E.A. Paoli, I. Chorkendorff, J. Rossmeisl, I.E.L.Stephens, Adv. Energy Mater. 5(2015) 1500991. [24] S.S. Siwal, W. Yang, Q. Zhang, J. Energy Chem. 51(2020) 113-133. [25] F. Zeng, C. Mebrahtu, L. Liao, A.K. Beine, R. Palkovits, J. Energy Chem. 69(2022) 301-329. [26] Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, J. Phys. Chem.Lett. 3(2012) 399-404. [27] H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, ChemCatChem 2 (2010) 724-761. [28] H.N. Nong, H.-S.Oh, T. Reier, E. Willinger, M.-G. Willinger, V. Petkov, D. Teschner, P. Strasser, Angew. Chem. Int. Ed Engl. 54(2015) 2975-2979. [29] Z. Wang, B. Xiao, Z. Lin, S. Shen, A. Xu, Z. Du, Y. Chen, W. Zhong, J. Energy Chem. 54(2021) 510-518. [30] R. Gao, Q. Zhang, H. Chen, X. Chu, G.-D.Li, X. Zou, J. Energy Chem. 47(2020) 291-298. [31] O. Diaz-Morales, S. Raaijman, R. Kortlever, P.J. Kooyman, T. Wezendonk, J. Gascon, W.T. Fu, M.T.M.Koper, Nat. Commun. 7(2016) 12363. [32] D. Lebedev, M. Povia, K. Waltar, P.M. Abdala, I.E. Castelli, E. Fabbri, M.V. Blanco, A. Fedorov, C. Copéret, N. Marzari, T.J. Schmidt, Chem. Mater. 29(2017) 5182-5191. [33] J. Kim, P.-C.Shih, K.-C. Tsao, Y.-T. Pan, X. Yin, C.-J. Sun, H. Yang, J. Am. Chem. Soc. 139(2017) 12076-12083. [34] M.A. Hubert, A.M. Patel, A. Gallo, Y. Liu, E. Valle, M. Ben-Naim, J. Sanchez, D. Sokaras, R. Sinclair, J.K. Nørskov, L.A. King, M. Bajdich, T.F. Jaramillo, ACS Catal. 10(2020) 12182-12196. [35] M. Kim, J. Park, M. Kang, J.Y. Kim, S.W. Lee, ACS Cent Sci 6 (2020) 880-891. [36] D.A. Kuznetsov, M.A. Naeem, P.V. Kumar, P.M. Abdala, A. Fedorov, C.R. Müller, J. Am. Chem.Soc. 142(2020) 7883-7888. [37] J. Park, M. Risch, G. Nam, M. Park, T.J. Shin, S. Park, M.G. Kim, Y. Shao-Horn, J. Cho, Energy Environ. Sci. 10(2017) 129-136. [38] Q. Feng, Q. Wang, Z. Zhang, Y. Xiong, H. Li, Y. Yao, X.-Z. Yuan, M.C. Williams, M. Gu, H. Chen, H. Li, H. Wang, Appl. Catal. B 244 (2019) 494-501. [39] N. Zhang, C. Wang, J. Chen, C. Hu, J. Ma, X. Deng, B. Qiu, L. Cai, Y. Xiong, Y. Chai, ACS Nano 15 (2021) 8537-8548. [40] Q. Feng, Z. Zhang, Y. Yao, H. Li, H. Wang, Meet. Abstr.MA2018-02(2018) 1627. [41] Y. Zhang, T.C. Peck, G.K. Reddy, D. Banerjee, H. Jia, C.A. Roberts, C. Ling, ACS Catal. 12(2022) 10562-10571. [42] L. Huang, C. Ling, J. Appl. Phys. 128(2020). [43] Y. Zhang, X. He, Z. Chen, Q. Bai, A.M. Nolan, C.A. Roberts, D. Banerjee, T. Matsunaga, Y. Mo, C. Ling, Nat. Commun. 10(2019) 5260. [44] Z. Li, S. Wang, W.S. Chin, L.E. Achenie, H. Xin, J. Mater. Chem.A. 5(2017) 24131-24138. [45] Q. Gao, H.S. Pillai, Y. Huang, S. Liu, Q. Mu, X. Han, Z. Yan, H. Zhou, Q. He, H. Xin, H. Zhu, Nat. Commun. 13(2022) 2338. [46] T. Mou, X. Han, H. Zhu, H. Xin,Curr. Opin. Chem. Eng. 36(2022). [47] S.-H.Wang, H.S. Pillai, S. Wang, L.E.K. Achenie, H. Xin, Nat. Commun. 12(2021) 5288. [48] S. Wang, H.S. Pillai, H. Xin, Nat. Commun. 11(2020) 6132. [49] P.-C.Shih, J. Kim, C.-J. Sun, H. Yang, A.C.S. Appl, Energy Mater. 1(2018) 3992-3998. [50] D.F. Abbott, R.K. Pittkowski, K. Macounová, R. Nebel, E. Marelli, E. Fabbri, I.E. Castelli, P. Krtil, T.J. Schmidt, A.C.S. Appl, Mater. Interfaces 11 (2019) 37748-37760. [51] C. Shang, C. Cao, D. Yu, Y. Yan, Y. Lin, H. Li, T. Zheng, X. Yan, W. Yu, S. Zhou, J. Zeng, Adv. Mater. 31(2019) e1805104. [52] Q. Feng, J. Zou, Y. Wang, Z. Zhao, M.C. Williams, H. Li, H. Wang, A.C.S. Appl, Mater. Interfaces 12 (2020) 4520-4530. [53] G. Berti, S. Sanna, C. Castellano, J. Van Duijn, R. Ruiz-Bustos, L. Bordonali, G. Bussetti, A. Calloni, F. Demartin, L. Duò, A. Brambilla, J. Phys. Chem. C 120 (2016) 11763-11768. [54] L. Tian, W. Yu,Comput. Mater. Sci. 186(2021). [55] B. Ouyang, T. Chakraborty, N. Kim, N.H. Perry, T. Mueller, N.R. Aluru, E. Ertekin, Chem. Mater. 31(2019) 3144-3153. [56] R. Salloom, D. Reith, R. Banerjee, S.G. Srinivasan, J. Mater. Sci. 53(2018) 11473-11487. [57] G.L.W.Hart, L.J. Nelson, R.R. Vanfleet, B.J. Campbell, M.H.F.Sluiter, J.H. Neethling, E.J. Olivier, S. Allies, C.I. Lang, B. Meredig, C. Wolverton, Acta Mater. 124(2017) 325-332. [58] R.C. Longo, C. Liang, F. Kong, K. Cho, A.C.S. Appl, Mater. Interfaces 10 (2018) 19226-19234. [59] Y. Chen, C. Xu, S. Hu, X. Zhao, L. Xiao, Z. Cai, J. Phys. Condens. Matter 33(2021). [60] G. Pilania, B. Puchala, B.P. Uberuaga, Npj Computational Materials 5 (2019) 1-9. [61] J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Nat. Chem. 1(2009) 37-46. [62] B. Hammer, J.K. Nørskov, Surf. Sci. 359(1996) 306. [63] B. Hammer, J.K. Norskov, Nature 376 (1995) 238. [64] B. Hammer, J.K. Nørskov, Advances in Catalysis, Academic Press, 2000, pp. 71-129. [65] A. Grimaud, K.J. May, C.E. Carlton, Y.-L.Lee, M. Risch, W.T. Hong, J. Zhou, Y. Shao-Horn, Nat. Commun. 4(2013) 2439. [66] B. Han, M. Risch, Y.-L.Lee, C. Ling, H. Jia, Y. Shao-Horn, Phys. Chem. Chem. Phys. 17(2015) 22576-22580. [67] C. Ling, R. Zhang, H. Jia, A.C.S. Appl, Mater. Interfaces 7 (2015) 14518-14527. [68] L. Huang, C. Ling, J. Chem. Inf.Model. 61(2021) 4200-4209. [69] D. Jha, L. Ward, A. Paul, W.-K.Liao, A. Choudhary, C. Wolverton, A. Agrawal, Sci. Rep. 8(2018) 17593. [70] APL Materials 1 (2013) 011002. [71] G. Kresse, J. Furthmüller, Phys. Rev. B Condens. Matter 54 (1996) 11169-11186. [72] G. Kresse, J. Hafner, J. Phys. Condens. Matter 6 (1994) 8245. [73] P.E. Blöchl, Phys. Rev. B Condens. Matter 50 (1994) 17953-17979. [74] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B Condens. Matter 46 (1992) 6671-6687. [75] H.J. Monkhorst, J.D. Pack, Phys. Rev. B Condens. Matter 13 (1976) 5188-5192. [76] S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B Condens. Matter 57 (1998) 1505-1509. [77] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, A. Müller, J. Nothman, G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, É. Duchesnay, JMLR 12 (2012) 2825-2830. [78] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, arXiv [cs.DC] (2016). https://doi.org/10.48550/arXiv.1603.04467. [79] H. Robbins, S. Monro, Aoms 22 (1951) 400-407. [80] S.F. Miller, D.G. Billing, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 47(2017) 1424-1428. [81] A.F. Wells, Structural Inorganic Chemistry, OUP Oxford, 2012. [82] C.N.R.Rao, K. Biswas, Essentials of Inorganic Materials Synthesis, John Wiley & Sons, 2015. [83] S. Chen, B. Pan, L. Zeng, S. Luo, X. Wang, W. Su, RSC Adv. 7(2017) 14186-14191. [84] R. Sibille, E. Lhotel, V. Pomjakushin, C. Baines, T. Fennell, M. Kenzelmann,Phys. Rev. Lett 115(2015). [85] F.V.E. Hensling, D. Dahliah, P. Dulal, P. Singleton, J. Sun, J. Schubert, H. Paik, I. Subedi, B. Subedi, G.-M. Rignanese, N.J. Podraza, G. Hautier, D.G. Schlom, APL Materials 9 (2021). [86] A. Bertin, P.D. de Reotier, B. Fak, C. Marin, A. Yaouanc, A. Forget, D. Sheptyakov, B. Frick, C. Ritter, A. Amato, C. Baines, P.J.C. King, Phys. Rev. B 92(2015). [87] G. Bergerhoff, I.D. Brown, F. Allen, Crystallographic databases. International Union of Crystallography, Chester. [88] J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, JOM 65 (2013) 1501-1509. [89] S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, C. Wolverton, Npj Computational Materials 1 (2015) 1-15. [90] A. Matsumoto, Z.-X. Cai, T. Fujita, Materials 15 (2022) 6107. [91] K. Vlášková, M. Diviš, M. Klicpera, J. Magn. Magn. Mater. 538(2021). [92] M. Rams, A. Zarzycki, A. Pikul, K. Tomala, J. Magn. Magn.Mater. 323(2011) 1490-1494. [93] K. Vlášková, R.H. Colman, M. Klicpera,Mater. Chem. Phys. 258(2021). [94] J.S. Gardner, G. Ehlers, J. Phys. Condens. Matter 21(2009). [95] M. Klicpera, K. Vlášková, M. Diviš, J. Phys. Chem. C 124 (2020) 20367-20376. [96] A. Banerjee, Solid State Ionics 332 (2019) 63-69. [97] R. Asih, N. Adam, S.S.Mohd-Tajudin, D.P. Sari, K. Matsuhira, H. Guo, M. Wakeshima, Y. Hinatsu, T. Nakano, Y. Nozue, S. Sulaiman, M.I. Mohamed-Ibrahim, P.K. Biswas, I. Watanabe, J. Phys. Soc. Jpn. 86(2017). [98] R.A. Pawar, A.K. Nikumbh, D.S. Bhange, N.J. Karale, D.V. Nighot, M.B. Khanvilkar, Bull. Mater. Sci. 40(2017) 1335-1345. [99] M. Klicpera, K. Vlášková, M. Diviš, J. Magn. Magn. Mater. 506(2020). [100] N. Taira, M. Wakeshima, Y. Hinatsu, J. Solid State Chem. 144(1999) 216-219. [101] C.J. Bartel, A. Trewartha, Q. Wang, A. Dunn, A. Jain, G. Ceder, Npj Computational Materials 6 (2020) 1-11. [102] J. Schmidt, J. Shi, P. Borlido, L. Chen, S. Botti, M.A.L.Marques, Chem. Mater. 29(2017) 5090-5103. [103] G.G.C.Peterson, J. Brgoch, J. Phys. Energy 3(2021). [104] T. Xie, V. Bapst, A.L. Gaunt, A. Obika, T. Back, D. Hassabis, P. Kohli,J. Kirkpatrick, arXiv [cond-Mat.mtrl-Sci](2021). https://doi.org/10.48550/arXiv.2103.13795. [105] G. Cheng, X.-G.Gong, W.-J. Yin, Nat. Commun. 13(2022) 1492. [106] H. Liu, Z. Zhang, M. Li, Z. Wang, X. Zhang, T. Li, Y. Li, S. Tian, Y. Kuang, X. Sun, Small 18 (2022) e2202513. [107] H. Kumar, R.S. Dhaka, A.K. Pramanik, Phys. Rev. B Condens. Matter 95(2017). [108] Y. Wu, M. Li, X. Li, J. Xie, J. Low Temp.Phys. 202(2021) 48-58. [109] M. Das, A. Banerjee, N. Banerjee, S. Majumdar, A.I.P. Conf, Proc. 2115(2019). [110] C. Zhang, F. Wang, B. Xiong, H. Yang, Nano Converg 9 (2022) 22. [111] V.K. Dwivedi, S. Mukhopadhyay, J. Appl. Phys. 125(2019). [112] H. Kumar, A.K. Pramanik, A.I.P. Conf, Proc. 1832(2017). [113] H. Liu, J. Bian, S. Chen, Y. Wang, Y. Feng, W. Tong, Y. Xie, B. Fang, Physica B Condens. Matter 568 (2019) 60-65. [114] M. Retuerto, M.J.Martínez-Lope, C. de la Calle, R. Martínez-Coronado, M. García-Hernández, J.A. Alonso, M.T. Fernández-Díaz, J. Appl. Phys. 107(2010). [115] I. Takigawa, K.-I.Shimizu, K. Tsuda, S. Takakusagi, RSC Adv. 6(2016) 52587-52595. [116] Y. Che, J. Zhao, H. Wang, ChemRxiv (2021), https://doi.org/10.26434/ chemrxiv-2021-wl3p6. [117] L.Q. Zhou, C. Ling, H. Zhou, X. Wang, J. Liao, G.K. Reddy, L. Deng, T.C. Peck, R. Zhang, M.S. Whittingham, C. Wang, C.-W.Chu, Y. Yao, H. Jia, Nat. Commun. 10(2019) 4081. [118] W. Sun, S.T. Dacek, S.P. Ong, G. Hautier, A. Jain, W.D. Richards, A.C. Gamst, K.A. Persson, G. Ceder, Sci Adv 2 (2016) e1600225. [119] M. Aykol, S. Kim, V.I. Hegde, D. Snydacker, Z. Lu, S. Hao, S. Kirklin, D. Morgan, C. Wolverton, Nat. Commun. 7(2016) 13779. [120] M. Liu, Z. Rong, R. Malik, P. Canepa, A. Jain, G. Ceder, K.A. Persson, Energy Environ. Sci. 8(2015) 964-974. [121] Y. Liu, S. Wang, A.M. Nolan, C. Ling, Y. Mo, Adv. Energy Mater. 10(2020) 2002356. [122] X. He, Q. Bai, Y. Liu, A.M. Nolan, C. Ling, Y. Mo, Adv. Energy Mater. 9(2019) 1902078. [123] J. Kim, P.-C.Shih, Y. Qin, Z. Al-Bardan, C.-J. Sun, H. Yang, Angew. Chem. Int. Ed Engl. 57(2018) 13877-13881. [124] K. Matsuhira, M. Wakeshima, Y. Hinatsu, C. Sekine, C. Paulsen, T. Sakakibara, S. Takagi, J. Phys. Conf. Ser. 320(2011). [125] D.R. Yahne, D. Pereira, L.D.C.Jaubert, L.D. Sanjeewa, M. Powell, J.W. Kolis, G. Xu, M. Enjalran, M.J.P. Gingras, K.A. Ross, Phys. Rev. Lett. 127(2021). [126] F.X. Zhang, M. Lang, R.C. Ewing, Chem. Phys. Lett. 650(2016) 138-143. [127] A.S. Wills, M.E. Zhitomirsky, B. Canals, J.P. Sanchez, P. Bonville, P.D. de Reotier, A. Yaouanc, J. Phys.: Condens. Matter 18 (2006) L37-L42. [128] H. Kadowaki, Y. Ishii, K. Matsuhira, Y. Hinatsu, Phys. Rev. B Condens. Matter 65(2002). [129] H.D. Zhou, C.R. Wiebe, J.A. Janik, L. Balicas, Y.J. Yo, Y. Qiu, J.R.D.Copley, J.S. Gardner, Phys. Rev. Lett. 101(2008). [130] R. Trujillano, J.A. Martín, V. Rives, Ceram. Int. 42(2016) 15950-15954. [131] T. Ikeda, M. Sakata, M. Takata, B.J. Kennedy, D.J. Cookson, C.J. Howard, Jpn. J. Appl. Phys. 38(1999) 93. |
[1] | Jingyuan Zhao, Andrew F. Burke. Battery prognostics and health management for electric vehicles under industry 4.0 [J]. Journal of Energy Chemistry, 2023, 84(9): 30-33. |
[2] | Cheng He, Jianglong Ma, Yibo Wu, Wenxue Zhang. Design of novel transition-metal-doped C4N4 as highly effective electrocatalysts for nitrogen fixation with a new intrinsic descriptor [J]. Journal of Energy Chemistry, 2023, 84(9): 131-139. |
[3] | Zhongheng Fu, Dawei Zhang. Universal machine learning potential accelerates atomistic modeling of materials [J]. Journal of Energy Chemistry, 2023, 83(8): 1-2. |
[4] | Wu Liu, Ning Meng, Xiaomin Huo, Yao Lu, Yu Zhang, Xiaofeng Huang, Zhenqun Liang, Suling Zhao, Bo Qiao, Zhiqin Liang, Zheng Xu, Dandan Song. Machine learning enables intelligent screening of interface materials towards minimizing voltage losses for p-i-n type perovskite solar cells [J]. Journal of Energy Chemistry, 2023, 83(8): 128-137. |
[5] | Xingjun Li, Dan Yu, Vilsen Søren Byg, Store Daniel Ioan. The development of machine learning-based remaining useful life prediction for lithium-ion batteries [J]. Journal of Energy Chemistry, 2023, 82(7): 103-121. |
[6] | Qiming Zhao, Yuqing Shan, Chongchen Xiang, Jinglun Wang, Yingping Zou, Guangjun Zhang, Wanqiang Liu. Predicting power conversion efficiency of binary organic solar cells based on Y6 acceptor by machine learning [J]. Journal of Energy Chemistry, 2023, 82(7): 139-147. |
[7] | Xue-Ting Fan, Xiao-Jian Wen, Yong-Bin Zhuang, Jun Cheng. Molecular insight into the GaP(110)-water interface using machine learning accelerated molecular dynamics [J]. Journal of Energy Chemistry, 2023, 82(7): 239-247. |
[8] | Praveen Kumar Kanti, Prabhakar Sharma, K.V. Sharma, M.P. Maiya. The effect of pH on stability and thermal performance of graphene oxide and copper oxide hybrid nanofluids for heat transfer applications: Application of novel machine learning technique [J]. Journal of Energy Chemistry, 2023, 82(7): 359-374. |
[9] | Xinxin Niu, Yanfeng Dang, Yajing Sun, Wenping Hu. Judicious training pattern for superior molecular reorganization energy prediction model [J]. Journal of Energy Chemistry, 2023, 81(6): 143-148. |
[10] | Hao Sun, Yizhe Li, Liyao Gao, Mengyao Chang, Xiangrong Jin, Boyuan Li, Qingzhen Xu, Wen Liu, Mingyue Zhou, Xiaoming Sun. High throughput screening of single atomic catalysts with optimized local structures for the electrochemical oxygen reduction by machine [J]. Journal of Energy Chemistry, 2023, 81(6): 349-357. |
[11] | Aditya Velidandi, Pradeep Kumar Gandam, Madhavi Latha Chinta, Srilekha Konakanchi, Anji reddy Bhavanam, Rama Raju Baadhe, Minaxi Sharma, James Gaffey, Quang D. Nguyen, Vijai Kumar Gupta. State-of-the-art and future directions of machine learning for biomass characterization and for sustainable biorefinery [J]. Journal of Energy Chemistry, 2023, 81(6): 42-63. |
[12] | Zhi Wei Seh. Interpretable hybrid machine learning demystifies the degradation of practical lithium-sulfur batteries [J]. Journal of Energy Chemistry, 2023, 79(4): 54-55. |
[13] | Jia Guo, Yunhong Che, Kjeld Pedersen, Daniel-Ioan Stroe. Battery impedance spectrum prediction from partial charging voltage curve by machine learning [J]. Journal of Energy Chemistry, 2023, 79(4): 211-221. |
[14] | Genming Lai, Yunxing Zuo, Junyu Jiao, Chi Fang, Qinghua Liu, Fan Zhang, Yao Jiang, Liyuan Sheng, Bo Xu, Chuying Ouyang, Jiaxin Zheng. The mechanism of external pressure suppressing dendrites growth in Li metal batteries [J]. Journal of Energy Chemistry, 2023, 79(4): 489-494. |
[15] | Jingzi Zhang, Ke Zhang, Shaomeng Xu, Yi Li, Chengquan Zhong, Mengkun Zhao, Hua-Jun Qiu, Mingyang Qin, X.-D. Xiang, Kailong Hu, Xi Lin. An integrated machine learning model for accurate and robust prediction of superconducting critical temperature [J]. Journal of Energy Chemistry, 2023, 78(3): 232-239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||