Journal of Energy Chemistry ›› 2023, Vol. 79 ›› Issue (4): 22-30.DOI: 10.1016/j.jechem.2022.12.017
Previous Articles Next Articles
Xinghua Zhang*, Miaojia Song, Jianguo Liu, Qi Zhang, Lungang Chen, Longlong Ma*
Received:
2022-05-09
Revised:
2022-12-24
Accepted:
2022-12-26
Online:
2023-04-15
Published:
2023-05-30
Contact:
* E-mail addresses: zhangxh@seu.edu.cn (X. Zhang), mall@seu.edu.cn (L. Ma).
Xinghua Zhang, Miaojia Song, Jianguo Liu, Qi Zhang, Lungang Chen, Longlong Ma. Synthesis of high density and low freezing point jet fuels range cycloalkanes with cyclopentanone and lignin-derived vanillins[J]. Journal of Energy Chemistry, 2023, 79(4): 22-30.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2022.12.017
[1] K.T. Malladi, T. Sowlati,Appl. Energy 267(2020). [2] E.O. Jåstad, T.F. Bolkesjø, E. Trømborg, P.K. Rørstad,Appl. Energy 274(2020). [3] S. Ebrahimi, S.A.H.Esmaeili, A. Sobhani, J. Szmerekovsky, Appl. Energy 310(2020). [4] S. Shylesh, A.A. Gokhale, C.R. Ho, A.T. Bell, Acc. Chem. Res. 50(2017) 2589-2597. [5] J.Q. Bond, A.A. Upadhye, H. Olcay, G.A. Tompsett, J. Jae, R. Xing, D.M. Alonso, D. Wang, T.Y. Zhang, R. Kumar, A. Foster, S.M. Sen, C.T. Maravelias, R. Malina, S.R.H.Barrett, R. Lobo, C.E. Wyman, J.A. Dumesic, G.W. Huber, Energy Environ. Sci. 7(2014) 1500-1523. [6] E.R. Sacia, M. Balakrishnan, M.H. Deaner, K.A. Goulas, F.D. Toste, A.T. Bell, ChemSusChem 8(2015) 1726-1736. [7] R. Xing, A.V. Subrahmanyam, H. Olcay, W. Qi, G.P.van Walsum, H. Pendse, G.W. Huber, Green Chem. 12(2010) 1933-1946. [8] X. Luo, R. Lu, X. Si, H. Jiang, Q. Shi, H. Ma, C. Zhang, J. Xu, F. Lu, J. Energy Chem. 69(2022) 231-236. [9] X. Zhang, L. Pan, L. Wang, J. Zou, Chem. Eng. Sci. 180(2018) 95-125. [10] Q. Deng, J. Xu, P. Han, L. Pan, L. Wang, X. Zhang, J. Zou, Fuel Process. Technol. 148(2016) 361-366. [11] T.V. Bui, T. Sooknoi, D.E. Resasco, ChemSusChem 10(2017) 1631-1639. [12] Y. Jing, Q. Xia, J. Xie, X. Liu, Y. Guo, J. Zou, Y. Wang, ACS Catal. 8(2018) 3280-3285. [13] Q. Liu, X. Zhang, Q. Zhang, Q. Liu, C. Wang, L. Ma, Energy Fuels 34(2020) 7149-7159. [14] F. Chen, N. Li, S. Li, J. Yang, F. Liu, W. Wang, A. Wang, Y. Cong, X. Wang, T. Zhang, Catal. Commun. 59(2015) 229-232. [15] T. Shen, C. Zhu, C. Tang, Z. Cao, L. Wang, K. Guo, H. Ying, RSC Adv. 6(2016) 62974-62980. [16] C. Zhu, T. Shen, D. Liu, J. Wu, Y. Chen, L. Wang, K. Guo, H. Ying, P. Ouyang, Green Chem. 18(2016) 2165-2174. [17] G. Li, N. Li, X. Wang, X. Sheng, S. Li, A. Wang, Y. Cong, X. Wang, T. Zhang, Energy Fuels 28(2014) 5112-5118. [18] G. Nie, X. Zhang, L. Pan, M. Wang, J. Zou, Chem. Eng. Sci. 180(2018) 64-69. [19] S. Liu, C. Shi, Z. Shen, L. Pan, Z. Huang, X. Zhang, J. Zou,J. Energy Chem. https://doi.org/10.1016/j.jechem.2022.10.050. [20] S. Xie, T.H. Huynh, P. Qin, T. Tan, H. Lin, J. Energy Chem. 49(2020) 42-50. [21] Q. Deng, G. Nie, L. Pan, J. Zou, X. Zhang, L. Wang, Green Chem. 17(2015) 4473-4481. [22] X. Sheng, G. Li, W. Wang, Y. Cong, X. Wang, G.W. Huber, N. Li, A. Wang, T. Zhang, AIChE J. 62(2016) 2754-2761. [23] W. Wang, N. Li, G. Li, S. Li, W. Wang, A. Wang, Y. Cong, X. Wang, T. Zhang, ACS Sustain. Chem. Eng. 5(2017) 1812-1817. [24] S. Chen, W. Wang, X. Li, P. Yan, W. Han, T. Shen, T. Deng, W. Zhu, H. Wang, J. Energy Chem. 66(2022) 576-586. [25] G. Nie, X. Zhang, P. Han, J. Xie, L. Pan, L. Wang, J. Zou, Chem. Eng. Sci. 158(2017) 64-69. [26] J. Bai, Y. Zhang, X. Zhang, C. Wang, L. Ma, ACS Sustain. Chem. Eng. 9(2021) 7112-7119. [27] J. Xie, L. Zhang, X. Zhang, P. Han, J. Xie, L. Pan, D.R. Zou, S.H. Liu, J. Zou, Sustain. Energy Fuels 2(2018) 1863-1869. [28] F. Chen, N. Li, S. Li, G. Li, A.Q. Wang, Y. Cong, X. Wang, T. Zhang, Green Chem. 18(2016) 5751-5755. [29] W. Wang, Y. Liu, N. Li, G. Li, W. Wang, A. Wang, X. Wang, T. Zhang, Sci. Rep. 7(2017) 6111. [30] G. Nie, X. Zhang, L. Pan, P. Han, J. Xie, Z. Li, J. Xie, J. Zou, Chem. Eng. Sci. 173(2017) 91-97. [31] G. Nie, Y. Dai, Y. Liu, J. Xie, S. Gong, N. Afzal, X. Zhang, L. Pan, J. Zou, Chem. Eng. Sci. 207(2019) 441-447. [32] R. Ramos, A. Grigoropoulos, N. Perret, M. Zanella, A.P. Katsoulidis, T.D. Manning, J.B. Claridge, M.J. Rosseinsky, Green Chem. 19(2017) 1701-1713. [33] Y. Zhang, G. Fan, L. Yang, F. Li, Appl. Catal. A-Gen. 561(2018) 117-126. [34] A.R.C.Morais, M.D.D.J. Matuchaki, J. Andreaus, R. Bogel-Lukasik, Green Chem. 18(2016) 2985-2994. [35] A. Mittal, S.K. Black, T.B. Vinzant, M. O’Brien, M.P. Tucker, D.K. Johnson, ACS Sustain. Chem. Eng. 5(2017) 5694-5701. [36] C. Liu, X. Yin, X. Pan, J. Hu, N. Li, J. Xu, J. Jiang, K. Wang,Chem. Eng. J. 425(2021). [37] S. Wang, Y. Zhao, H. Lin, J. Chen, L. Zhu, Z. Luo, Green Chem. 19(2017) 3869-3879. [38] W. Jeon, I.H. Choi, J.Y. Park, J.S. Lee, K.R. Hwang, Catal. Today. 352(2020) 95-103. [39] H. Guo, B. Zhang, Z. Qi, C. Li, J. Ji, T. Dai, A. Wang, T. Zhang, ChemSusChem 10(2017) 523-532. [40] L. Jiang, H. Guo, C. Li, P. Zhou, Z. Zhang, Chem. Sci. 10(2019) 4458-4468. [41] X. Li, Y. Ding, X. Pan, Y. Xing, B. Zhang, X. Liu, Y. Tan, H. Wang, C. Li, J. Energy Chem. 67(2022) 492-499. [42] X. Cui, X. Zhao, D. Liu, Green Chem. 20(2018) 2018-2026. [43] O. Kikhtyanin, D. Kadlec, R. Velvarska, D. Kubicka, ChemCatChem 10(2018) 1464-1475. [44] X. Zhang, H. An, H. Zhang, X. Zhao, Y. Wang, Ind. Eng. Chem. Res. 53(2014) 16707-16714. [45] L.Q. Kang, Y.Q. Cai, H. Wang, L.H. Li, Monatsh Chem. 145(2014) 337-340. [46] M. Iglesias, R. Gonzalez-Olmos, I. Cota, F. Medina, Chem. Eng. J. 162(2010) 802-808. [47] J. Xu, N. Li, G. Li, F. Han, A. Wang, Y. Cong, X. Wang, T. Zhang, Green Chem. 20(2018) 3753-3760. [48] A.-B.Watheq, J Solution Chem. 41(2012) 1495-1506. [49] N. Asprion, H. Hasse, G. Maurer, Fluid Phase Equilibr. 186(2001) 1-25. [50] E.A. Velcheva, B.A. Stamboliyska, P.J. Boyadjieva, J. Mol. Struct. 963(2010) 57-62. [51] D. Simijonović, Z.D. Petrović, V.P. Petrović, J. Mol Liq. 179(2013) 98-103. [52] J.L. Anderson, J. Ding, T. Welton, D.W. Armstrong, J. Am. Chem.Soc. 124(2014) 14247-14254. [53] Q. Liu, M.H.A.Janssen, F. van Rantwijk, R.A. Sheldon, Green Chem. 7(2005) 39-42. [54] A. Osatiashtiani, L.J. Durndell, J.C. Manayil, A.F. Lee, K. Wilson, Green Chem. 18(2016) 5529-5535. [55] J.L. Fiorio, A.H. Braga, C.L.B.Guedes, L.M. Rossi, ACS Sustain. Chem. Eng. 7(2019) 15874-15883. [56] Y. Shao, Q. Xia, L. Dong, X. Liu, X. Han, S.F. Parker, Y. Cheng, L.L. Daemen, A.J.Ramirez-Cuesta, S.Yang, Y. Wang, Nat. Commun. 8(2017) 16104. |
[1] | Chao Wang, Luxian Guo, Kui Wu, Xinxin Li, Yanping Huang, Zhigang Shen, Hongyun Yang, Yunquan Yang, Weiyan Wang, Changzhi Li. Rational design of Ni-MoO3-x catalyst towards efficient hydrodeoxygenation of lignin-derived bio-oil into naphthenes [J]. Journal of Energy Chemistry, 2023, 84(9): 122-130. |
[2] | Hui Yang, Hao Chen, Wenhua Zhou, Haoan Fan, Chao Chen, Yixuan Sun, Jiaji Zhang, Sifan Wang, Teng Guo, Jie Fu. Construction of N, O co-doped carbon anchored with Co nanoparticles as efficient catalyst for furfural hydrodeoxygenation in ethanol [J]. Journal of Energy Chemistry, 2023, 78(3): 195-202. |
[3] | Sichao Yang, Chengxiang Shi, Zhensheng Shen, Lun Pan, Zhenfeng Huang, Xiangwen Zhang, Ji-Jun Zou. Conversion of lignin oil and hemicellulose derivative into high-density jet fuel [J]. Journal of Energy Chemistry, 2023, 77(2): 452-460. |
[4] | Xinyong Diao, Na Ji. Rational design of MoS2-based catalysts toward lignin hydrodeoxygenation: Interplay of structure, catalysis, and stability [J]. Journal of Energy Chemistry, 2023, 77(2): 601-631. |
[5] | Shanshuai Chen, Weichen Wang, Xue Li, Puxiang Yan, Wanying Han, Tian Sheng, Tiansheng Deng, Wanbin Zhu, Hongliang Wang. Regulating the nanoscale intimacy of metal and acidic sites in Ru/γ-Al2O3 for the selective conversions of lignin-derived phenols to jet fuels [J]. Journal of Energy Chemistry, 2022, 66(3): 576-586. |
[6] | Xiangze Du, Jinjia Liu, Dan Li, Hui Xin, Xiaomei Lei, Rui Zhang, Linyuan Zhou, Huiru Yang, Yan Zeng, Hualong Zhang, Wentao Zheng, Xiaodong Wen, Changwei Hu. Structural and electronic effects boosting Ni-doped Mo2C catalyst toward high-efficiency CAO/CAC bonds cleavage [J]. Journal of Energy Chemistry, 2022, 75(12): 109-116. |
[7] | Hao Xu, Hao Li. Alcohol-assisted hydrodeoxygenation as a sustainable and cost-effective pathway for biomass derivatives upgrading [J]. Journal of Energy Chemistry, 2022, 73(10): 133-159. |
[8] | Junmin Sun, Hai Cheng, Yao Zhang, Yinmin Zhang, Xunfeng Lan, Yongfeng Zhang, Qineng Xia, Daqian Ding. Catalytic hydrotreatment of humins into cyclic hydrocarbons over solid acid supported metal catalysts in cyclohexane [J]. Journal of Energy Chemistry, 2021, 53(2): 329-339. |
[9] | Ziyi Li, Haigang Hao, Jingjing Lu, Chengming Wu, Rui Gao, Jifan Li, Chun-Ling Liu, Wen-Sheng Dong. Role of the Cu-ZrO2 interface in the hydrogenation of levulinic acid to γ-valerolactone [J]. Journal of Energy Chemistry, 2021, 61(10): 446-458. |
[10] | Ning Zhao, Ying Zheng, Jixiang Chen. Remarkably reducing carbon loss and H2 consumption on Ni-Ga intermetallic compounds in deoxygenation of methyl esters to hydrocarbons [J]. Journal of Energy Chemistry, 2020, 41(2): 194-208. |
[11] | Joby Sebastian, Mingyuan Zheng, Xinsheng Li, Jifeng Pang, Chan Wang, Tao Zhang. Catalytic conversion of glucose to small polyols over a binary catalyst of vanadium modified beta zeolite and Ru/C [J]. Journal of Energy Chemistry, 2019, 28(7): 88-95. |
[12] | Hao Tang, Fang Chen, Guangyi Li, Xiaofeng Yang, Yancheng Hu, Aiqin Wang, Yu Cong, Xiaodong Wang, Tao Zhang, Ning Li. Synthesis of jet fuel additive with cyclopentanone [J]. Journal of Energy Chemistry, 2019, 28(2): 23-30. |
[13] | Houman Ojagh, Derek Creaser, Muhammad Abdus Salam, Eva Lind Grennfelt, Louise Olsson. The effect of rosin acid on hydrodeoxygenation of fatty acid [J]. Journal of Energy Chemistry, 2019, 33(1): 85-94. |
[14] | Xinyong Diao, Na Ji, Mingyuan Zheng, Qingling Liu, Chunfeng Song, Yibo Huang, Qing Zhang, Alazar Alemayehu, Luoyun Zhang, Changhai Liang. MgFe hydrotalcites-derived layered structure iron molybdenum sulfide catalysts for eugenol hydrodeoxygenation to produce phenolic chemicals [J]. Journal of Energy Chemistry, 2018, 27(2): 600-610. |
[15] | Qi Wang, Neeraj Gupta, Guodong Wen, Sharifah Bee Abd Hamid, Dang Sheng Su. Palladium and carbon synergistically catalyzed room-temperature hydrodeoxygenation (HDO) of vanillyl alcohol-A typical lignin model molecule [J]. Journal of Energy Chemistry, 2017, 26(1): 8-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||