Journal of Energy Chemistry ›› 2023, Vol. 79 ›› Issue (4): 54-55.DOI: 10.1016/j.jechem.2022.12.003

Previous Articles     Next Articles

Interpretable hybrid machine learning demystifies the degradation of practical lithium-sulfur batteries

Zhi Wei Seh*   

  1. Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
  • Received:2022-12-02 Accepted:2022-12-03 Online:2023-04-15 Published:2023-05-30
  • Contact: * E-mail address: sehzw@imre.a-star.edu.sg (Z.W. Seh).

Key words: Machine learning, Lithium-sulfur batteries, Battery prognosis, Capacity degradation mechanism