Journal of Energy Chemistry ›› 2023, Vol. 79 ›› Issue (4): 330-339.DOI: 10.1016/j.jechem.2023.01.013
Previous Articles Next Articles
Xin Zhanga, Chaochao Fub,*, Dong Luoc, Xiaoqing Liua, Qiao Wanga, Baoyun Lia, Guangshe Lia,*, Liping Lia,*
Received:
2022-08-29
Revised:
2022-12-16
Accepted:
2023-01-11
Online:
2023-04-15
Published:
2023-05-30
Contact:
* E-mail addresses: ccfu@hbu.edu.cn (C. Fu), guangshe@jlu.edu.cn (G. Li), lipin-gli@jlu.edu.cn (L. Li).
Xin Zhang, Chaochao Fu, Dong Luo, Xiaoqing Liu, Qiao Wang, Baoyun Li, Guangshe Li, Liping Li. Chemical bonding of perovskite LaFeO3 with Li1.2Mn0.6Ni0.2O2 to moderate anion redox for achieving high cycling stability[J]. Journal of Energy Chemistry, 2023, 79(4): 330-339.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2023.01.013
[1] Z. Liu, J. Wang, H. Ding, S. Chen, X. Yu, B. Lu, ACS Nano 12(2018) 8456-8466. [2] D. Eum, B. Kim, S.J. Kim, H. Park, J. Wu, S.P. Cho, G. Yoon, M.H. Lee, S.K. Jung, W. Yang, W.M. Seong, K. Ku, O. Tamwattana, S.K. Park, I. Hwang, K. Kang, Nat. Mater. 19(2020) 419-427. [3] W. Hua, S. Wang, M. Knapp, S.J. Leake, A. Senyshyn, C. Richter, M. Yavuz, J.R. Binder, C.P. Grey, H. Ehrenberg, S. Indris, B. Schwarz, Nat. Commun. 10(2019) 5365. [4] D. Luo, X. Ding, X. Hao, H. Xie, J. Cui, P. Liu, X. Yang, Z. Zhang, J. Guo, S. Sun, Z. Lin, ACS Energy Lett. 6(2021) 2755-2764. [5] C. Fu, L. Meng, J. Wang, Q. Wang, K. Yang, W. Zhang, L. Li, ACS Appl. Mater. Interfaces 13(2021) 17565-17576. [6] Q. Shao, P. Gao, C. Yan, M. Gao, W. Du, J. Chen, Y. Yang, J. Gan, Z. Wu, C. Zhang, G. Chen, X. Zheng, Y. Lin, Y. Jiang, W. Sun, Y. Liu, M. Gao, H. Pan, Adv. Mater. 34(2022) e2108543. [7] Z. Zhou, Z. Luo, Z. He, J. Zheng, Y. Li, C. Yan, J. Mao, J. Energy Chem. 60(2021) 591-598. [8] S. Zhao, B. Sun, K. Yan, J. Zhang, C. Wang, G. Wang, ACS Appl. Mater. Interfaces 10(2018) 33260-33268. [9] Y. Liu, X. Fan, X. Huang, D. Liu, A. Dou, M. Su, D. Chu, J. Power Sources 403(2018) 27-37. [10] X. Liu, Z. Wang, W. Zhuang, Z. Li, W. Li, L. Ban, M. Gao, S. Lu, Inorg. Chem. Front. 7(2020) 3154-3164. [11] W. Liu, P. Oh, X. Liu, S. Myeong, W. Cho, J. Cho, Adv. Energy Mater. 5(2015). [12] J. Liu, Z. Wu, M. Yu, H. Hu, Y. Zhang, K. Zhang, Z. Du, F. Cheng, J. Chen, Small 18(2022) e2106337. [13] L. Ku, Y. Cai, Y. Ma, H. Zheng, P. Liu, Z. Qiao, Q. Xie, L. Wang, D.-L.Peng, Chem. Eng. J. 370(2019) 499-507. [14] J.Y. Piao, L. Gu, Z. Wei, J. Ma, J. Wu, W. Yang, Y. Gong, Y.G. Sun, S.Y. Duan, X.S. Tao, D.S. Bin, A.M. Cao, L.J. Wan, J. Am. Chem.Soc. 141(2019) 4900-4907. [15] D.H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, G. Ceder, Nat. Chem. 8(2016) 692-697. [16] A.R. Armstrong, M. Holzapfel, P. Novak, C.S. Johnson, S.H. Kang, M.M. Thackeray, P.G. Bruce, J. Am. Chem.Soc. 128(2006) 8694-8698. [17] R.A. House, J.J. Marie, J. Park, G.J. Rees, S. Agrestini, A. Nag, M. Garcia-Fernandez, K.J. Zhou, P.G. Bruce, Nat. Commun. 12(2021) 2975. [18] Z. Chen, J. Li, X.C. Zeng, J. Am. Chem.Soc. 141(2019) 10751-10759. [19] J. Xu, M. Sun, R. Qiao, S.E. Renfrew, L. Ma, T. Wu, S. Hwang, D. Nordlund, D. Su, K. Amine, J. Lu, B.D.McCloskey, W. Yang, W.Tong, Nat. Commun. 9(2018) 947. [20] Y. Lee, J. Shin, H. Kang, D. Lee, T.H. Kim, Y.K. Kwon, E. Cho, Adv. Sci. 8(2021) 2003013. [21] Y. Liu, Z. Yang, J. Zhong, J. Li, R. Li, Y. Yu, F. Kang, ACS Nano 13(2019)(1900) 11891-11901. [22] E. Hu, X. Yu, R. Lin, X. Bi, J. Lu, S. Bak, K.-W. Nam, H.L. Xin, C. Jaye, D.A. Fischer, K. Amine, X.-Q. Yang, Nat. Energy 3(2018) 690-698. [23] E. Castel, E.J. Berg, M. El Kazzi, P. Novák, C. Villevieille, Chem. Mat. 26(2014) 5051-5057. [24] T. Risthaus, D. Zhou, X. Cao, X. He, B. Qiu, J. Wang, L. Zhang, Z. Liu, E. Paillard, G. Schumacher, M. Winter, J. Li, J. Power Sources 395(2018) 16-24. [25] L. Bao, L. Wei, N. Fu, J. Dong, L. Chen, Y. Su, N. Li, Y. Lu, Y. Li, S. Chen, F. Wu, J. Energy Chem. 66(2022) 123-132. [26] C. Yin, X. Wen, L. Wan, Z. Shi, Z. Wei, X. Li, Q. Gu, B. Qiu, Z. Liu, J. Power Sources 503(2021). [27] C. Zhang, B. Wei, W. Jiang, M. Wang, W. Hu, C. Liang, T. Wang, L. Chen, R. Zhang, P. Wang, W. Wei, ACS Appl. Mater. Interfaces 13(2021) 45619-45629. [28] Z. Zhu, D. Yu, Y. Yang, C. Su, Y. Huang, Y. Dong, I. Waluyo, B. Wang, A. Hunt, X. Yao, J. Lee, W. Xue, J. Li, Nat. Energy 4(2019) 1049-1058. [29] J. Sun, C. Sheng, X. Cao, P. Wang, P. He, H. Yang, Z. Chang, X. Yue, H. Zhou, Adv. Funct. Mater. 32(2021) 2110295. [30] W. Zhang, Y. Sun, H. Deng, J. Ma, Y. Zeng, Z. Zhu, Z. Lv, H. Xia, X. Ge, S. Cao, Y. Xiao, S. Xi, Y. Du, A. Cao, X. Chen, Adv. Mater. 32(2020) e2000496. [31] J. Ahn, J. Kang, M.k.Cho, H. Park, W. Ko, Y. Lee, H.S. Kim, Y.H. Jung, T.Y. Jeon, H. Kim, W.H. Ryu, J. Hong, J. Kim, Adv. Energy Mater. 11(2021) 2102311. [32] S.Y. Kim, C.S. Park, S. Hosseini, J. Lampert, Y.J. Kim, L.F. Nazar, Adv. Energy Mater. 11(2021) 2100552. [33] M. Cai, H. Zhang, Y. Zhang, B. Xiao, L. Wang, M. Li, Y. Wu, B. Sa, H. Liao, L. Zhang, S. Chen, D.-L.Peng, M.-S. Wang, Q. Zhang, Sci. Bull. 67(2022) 933-945. [34] K. Hu, G. Lv, J. Zhang, X. Guo, Z. Wu, W. Xiang, X. Lan, K. Zhou, P. Xu, L. Zhang, ACS Appl. Mater. Interfaces 12(2020) 42660-42668. [35] P.V. Gosavi, R.B. Biniwale, Mater. Chem. Phys. 119(2010) 324-329. [36] J. Peng, Y. Li, Z. Chen, G. Liang, S. Hu, T. Zhou, F. Zheng, Q. Pan, H. Wang, Q. Li, J. Liu, Z. Guo, ACS Nano 15(2021) 11607-11618. [37] B.H.F.B. Gilbert, A. Belz, P.G. Conrad, K.H. Nealson, D. Haskel, J.C. Lang, G.D.S.G. Srajer, J. Phys. Chem. A 107(2002) 2839-2847. [38] Q. Li, G. Li, C. Fu, D. Luo, J. Fan, L. Li, ACS Appl. Mater. Interfaces 6(2014) 10330-10341. [39] Q. Luo, Y. Xie, Z. Wu, Q. Xie, D. Yan, H. Zou, W. Yang, S. Chen, ACS Appl. Energ. Mater. 4(2021) 4867-4878. [40] J. Wang, X. He, E. Paillard, N. Laszczynski, J. Li, S. Passerini, Adv. Energy Mater. 6(2016) 1600906. [41] S.Y. Luchkin, M.A. Kirsanova, D.A. Aksyonov, S.A. Lipovskikh, V.A. Nikitina, A.M. Abakumov, K.J. Stevenson, ACS Appl. Energy Mater. 5(2022) 7758-7769. [42] P.M. Csernica, S.S. Kalirai, W.E. Gent, K. Lim, Y.-S. Yu, Y. Liu, S.-J. Ahn, E. Kaeli, X. Xu, K.H. Stone, A.F. Marshall, R. Sinclair, D.A. Shapiro, M.F. Toney, W.C. Chueh, Nat. Energy 6(2021) 642-652. [43] Q. Li, G. Li, C. Fu, D. Luo, J. Fan, D. Xie, L. Li, J. Mater. Chem. A 3(2015) 10592-10602. [44] H. Koga, L. Croguennec, M. Ménétrier, P. Mannessiez, F. Weill, C. Delmas, S. Belin, J. Phys. Chem. C 118(2014) 5700-5709. [45] Y. Li, Y. Bai, C. Wu, J. Qian, G. Chen, L. Liu, H. Wang, X. Zhou, F. Wu, J. Mater. Chem. A 4(2016) 5942-5951. [46] G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvere, J.M. Tarascon, Nat. Commun. 8(2017) 2219. [47] L.A. Kaufman, B.D.McCloskey, Chem. Mat. 33(2021) 4170-4176. [48] F. Wu, W. Li, L. Chen, Y. Su, L. Bao, W. Bao, Z. Yang, J. Wang, Y. Lu, S. Chen, Energy Storage Mater. 28(2020) 383-392. [49] J.-G.Han, J.B. Lee, A. Cha, T.K. Lee, W. Cho, S. Chae, S.J. Kang, S.K. Kwak, J. Cho, S. Y. Hong, N.-S. Choi, Energy Environ. Sci. 11(2018) 1552-1562. [50] C. Zhang, Y. Feng, B. Wei, C. Liang, L. Zhou, D.G. Ivey, P. Wang, W. Wei, Nano Energy 75(2020). [51] G. Ou, Y. Xu, B. Wen, R. Lin, B. Ge, Y. Tang, Y. Liang, C. Yang, K. Huang, D. Zu, R. Yu, W. Chen, J. Li, H. Wu, L.M. Liu, Y. Li, Nat. Commun. 9(2018) 1302. [52] Q. Li, Y. Wang, X. Wang, X. Sun, J.N. Zhang, X. Yu, H. Li, ACS Appl. Mater. Interfaces 12(2020) 2319-2326. [53] Y. Wang, Y. Zhang, S. Wang, S. Dong, C. Dang, W. Hu, D.Y.W.Yu, Adv. Funct. Mater. 31(2021) 2102360. [54] X. Yang, C. Wang, P. Yan, T. Jiao, J. Hao, Y. Jiang, F. Ren, W. Zhang, J. Zheng, Y. Cheng, X. Wang, W. Yang, J. Zhu, S. Pan, M. Lin, L. Zeng, Z. Gong, J. Li, Y. Yang, Adv. Energy Mater. 12(2022) 2200197. [55] C. Fu, J. Wang, J. Wang, L. Meng, W. Zhang, X. Li, L. Li, J. Mater. Chem. A 7(2019) 23149-23161. [56] B.P. Löchel, H.H. Strehblow, J. Electrochem. Soc. 131(1884) 713-723. [57] M. Vijayakumar, S. Selvasekarapandian, T. Gnanasekaran, S. Fujihara, S. Koji, Appl. Surf. Sci. 222(2004) 125-130. [58] M. Kasrai, D.S. Urch, J. Chem. Soc. 77(1981) 1879-1889. |
[1] | Yu-Long Liao, Jiang-Kui Hu, Zhong-Heng Fu, Chen-Zi Zhao, Yang Lu, Shuai Li, Shi-Jie Yang, Shuo Sun, Xi-Long Wang, Jia Liu, Jia-Qi Huang, Hong Yuan. Integrated interface configuration by in-situ interface chemistry enabling uniform lithium deposition in all-solid-state lithium metal batteries [J]. Journal of Energy Chemistry, 2023, 80(5): 458-465. |
[2] | Shuaipeng Hao, Yunjiao Li, Jiachao Yang, Shan Wang, Zhouliang Tan, Xiaoming Xi, Zhenjiang He, Panpan Zhang. External-to-internal synergistic strategy to enable multi-scale stabilization of LiCoO2 at high-voltage [J]. Journal of Energy Chemistry, 2023, 76(1): 516-527. |
[3] | Xin Wu, Xingyu Xiong, Bin Yuan, Jun Liu, Renzong Hu. Understanding the phenomenon of capacity increasing along cycles: In the case of an ultralong-life and high-rate SnSe-Mo-C anode for lithium storage [J]. Journal of Energy Chemistry, 2022, 72(9): 133-142. |
[4] | Zhenchuan Tian, Dukjoon Kim. A flexible, robust, and high ion-conducting solid electrolyte membranes enabled by interpenetrated network structure for all-solid-state lithium metal battery [J]. Journal of Energy Chemistry, 2022, 68(5): 603-611. |
[5] | Qinghui Zeng, Yu Lu, Pingping Chen, Zhenfeng Li, Xin Wen, Wen Wen, Yu Liu, Shuping Zhang, Hailei Zhao, Henghui Zhou, Zhi-xiang Wang, Liaoyun Zhang. Semi-interpenetrating-network all-solid-state polymer electrolyte with liquid crystal constructing efficient ion transport channels for flexible solid lithium-metal batteries [J]. Journal of Energy Chemistry, 2022, 67(4): 157-167. |
[6] | Xuehuan Luo, Lidan Xing, Jenel Vatamanu, Jiawei Chen, Jiakun Chen, Mingzhu Liu, Cun Wang, Kang Xu, Weishan Li. Inhibiting manganese (II) from catalyzing electrolyte decomposition in lithium-ion batteries [J]. Journal of Energy Chemistry, 2022, 65(2): 1-8. |
[7] | Zhuyi Wang, Yiming Wang, Pan Zhai, Preeyaporn Poldorn, Siriporn Jungsuttiwong, Shuai Yuan. A cation-dipole-reinforced elastic polymer electrolyte enabling long-cycling quasi-solid-state lithium metal batteries [J]. Journal of Energy Chemistry, 2022, 75(12): 340-348. |
[8] | Zhao Jiang, Hongling Peng, Jingru Li, Yu Liu, Yu Zhong, Changdong Gu, Xiuli Wang, Xinhui Xia, Jiangping Tu. A facile path from fast synthesis of Li-argyrodite conductor to dry forming ultrathin electrolyte membrane for high-energy-density all-solid-state lithium batteries [J]. Journal of Energy Chemistry, 2022, 74(11): 309-316. |
[9] | Su Wang, Qifang Sun, Wenxiu Peng, Yue Ma, Ying Zhou, Dawei Song, Hongzhou Zhang, Xixi Shi, Chunliang Li, Lianqi Zhang. Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte [J]. Journal of Energy Chemistry, 2021, 58(7): 85-93. |
[10] | Su-Yeon Jung, Rajesh Rajagopal, Kwang-Sun Ryu. Synthesis and electrochemical performance of (100-x)Li7P3S11-xLi2OHBr composite solid electrolyte for all-solid-state lithium batteries [J]. Journal of Energy Chemistry, 2020, 47(8): 307-316. |
[11] | Jiarui Liu, Yingli Wang, Fangming Liu, Fangyi Cheng, Jun Chen. Improving metallic lithium anode with NaPF6 additive in LiPF6-carbonate electrolyte [J]. Journal of Energy Chemistry, 2020, 42(3): 1-4. |
[12] | Xuelei Li, Liubing Jin, Dawei Song, Hongzhou Zhang, Xixi Shi, Zhenyu Wang, Lianqi Zhang, Lingyun Zhu. LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery [J]. Journal of Energy Chemistry, 2020, 40(1): 39-45. |
[13] | Bing Yuan, Guangmei Luo, Jing Liang, Fangyi Cheng, Wangqing Zhang, Jun Chen. Self-assembly synthesis of solid polymer electrolyte with carbonate terminated poly(ethylene glycol) matrix and its application for solid state lithium battery [J]. Journal of Energy Chemistry, 2019, 38(11): 55-59. |
[14] | Sergey V Gnedenkov, Denis P Opra, Ludmila A Zemnukhova, Sergey L Sinebryukhov, Iliya A Kedrinskii, Olga V Patrusheva, Valentin I Sergienko. Electrochemical performance of Klason lignin as a low-cost cathode-active material for primary lithium battery [J]. Journal of Energy Chemistry, 2015, 21(3): 346-352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||