Journal of Energy Chemistry ›› 2023, Vol. 79 ›› Issue (4): 382-389.DOI: 10.1016/j.jechem.2022.12.016
Previous Articles Next Articles
Tao Chena,1, Xin Lib,1, Yong Wanga, Feng Lina, Ruliang Liua, Wenhua Zhanga,*, Jie Yanga, Rongfei Wanga, Xiaoming Wenc, Bin Mengb, Xuhui Xub,*, Chong Wanga,*
Received:
2022-10-12
Revised:
2022-12-13
Accepted:
2022-12-15
Online:
2023-04-15
Published:
2023-05-30
Contact:
* E-mail addresses: 20210101@ynu.edu.cn (W. Zhang), xuxuh07@126.com (X. Xu), cwang@ynu.edu.cn (C. Wang).
About author:
1These authors contributed equally to this work.
Tao Chen, Xin Li, Yong Wang, Feng Lin, Ruliang Liu, Wenhua Zhang, Jie Yang, Rongfei Wang, Xiaoming Wen, Bin Meng, Xuhui Xu, Chong Wang. Centimeter-sized Cs3Cu2I5 single crystals grown by oleic acid assisted inverse temperature crystallization strategy and their films for high- quality X-ray imaging[J]. Journal of Energy Chemistry, 2023, 79(4): 382-389.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2022.12.016
[1] M. Nikl, Meas. Sci. Technol. 7(2006) R37-R54. [2] M.R. Ay, M. Shahriari, S. Sarkar, M. Adib, H. Zaidi, Phys. Med. Biol. 49(2004) 4897-4917. [3] L. Borgese, F. Bilo, R. Dalipi, E. Bontempi, L.E. Depero, Spectrochim. Acta, Part B 113(2015) 1-15. [4] X. Ou, X. Qin, B. Huang, J. Zan, Q. Wu, Z. Hong, L. Xie, H. Bian, Z. Yi, X. Chen, Y. Wu, X. Song, J. Li, Q. Chen, H. Yang, X. Liu, Naure 590(2021) 410-415. [5] H. Zhang, Z. Yang, M. Zhou, L. Zhao, T. Jiang, H. Yang, X. Yu, J. Qiu, Y. Yang, X.H. Xu, Adv. Mater. 33(2021) 2102529. [6] S.O. Kasap, J.A. Rowlands, IEE Proc. Circ. Dev. Syst. 149(2002) 85-96. [7] X.J. Zheng, W. Zhao, P. Wang, H.R. Tan, M.I. Saidaminov, S.J. Tie, L.G. Chen, Y.F. Peng, J.D. Long, W.H. Zhang, J. Energy Chem. 49(2020) 299-306. [8] H.J. Li, X. Song, C. Ma, Z. Xu, N. Bu, T.H. Yang, Q.Y. Cui, L.L. Gao, Z. Yang, F. Gao, G.T. Zhao, Z.L. Chen, Z.C. Ding, K. Zhao, S.Z. Liu, J. Energy Chem. 64(2022) 209-213. [9] F.W. Zhuge, P. Luo, T.Y. Zhai, Sci. Bull. 62(2017) 1491-1493. [10] J.A. Rowlands, Nature 550(2017) 47-48. [11] P. Nillius, W. Klamra, P. Sibczynski, D. Sharma, M. Danielsson, A. Badano, Med. Phys. 42(2015) 600-605. [12] J.J. Ma, W.J. Wen, L. Lei, D.G. Deng, Y.J. Hua, Y.M. Yang, S.Q. Xu, P.N. Prasad, ACS Appl. Mater. Interfaces 13(2021) 44596-44603. [13] S. Deumel, A. van Breemen, G.Gelinck, B. Peeters, J. Maas, R. Verbeek, S. Shanmugam, H. Akkerman, E. Meulenkamp, J.E. Huerdler, M. Acharya, M. García-Batlle, O. Almora, A. Guerrero, G. Garcia-Belmonte, W. Heiss, O. Schmidt, S.F. Tedde, Nat. Electron. 4(2021) 681-688. [14] J.Z. Jiang, M. Xiong, K. Fan, C.X. Bao, D.Y. Xin, Z.W. Pan, L.F. Fei, H.T. Huang, L. Zhou, K. Yao, X.J. Zheng, L. Shen, F. Gao, Nat. Photonics 16(2022) 575-581. [15] Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A.A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D.B.L. Teh, A.H. All, O.F. Mohammed, O.M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, X. Liu, Nature 561(2018) 88-93. [16] W. Chen, M. Zhou, Y. Liu, X. Yu, C. Pi, Z. Yang, H. Zhang, Z. Liu, T. Wang, J. Qiu, S. F. Yu, Y. Yang, X. Xu, Adv. Funct. Mater. 32(2022) 2107424. [17] B.Q. Wang, J.L. Peng, X. Yang, W.S. Cai, H.B. Xiao, S.Y. Zhao, Q.Q. Lin, Z.G. Zang, Laser Photonics Rev. 16(2022) 2100736. [18] S. Cho, S. Kim, J. Kim, Y. Jo, I. Ryu, S. Hong, J.J. Lee, S. Cha, E.B. Nam, S.U. Lee, S.K. Noh, H. Kim, J. Kwak, H. Im, Light: Sci. Appl. 9(2020) 156. [19] J.H. Heo, D.H. Shin, J.K. Park, D.H. Kim, S.J. Lee, S.H. Im, Adv. Mater. 30(2018) 1801743. [20] Q.H. Sun, B. Xiao, L.L. Ji, D. Zhao, J.J. Liu, W. Zhang, M.H. Zhu, W.Q. Jie, B.B. Zhang, Y.D. Xu, J. Energy Chem. 66(2022) 459-465. [21] T. Jun, K. Sim, S. Iimura, M. Sasase, H. Kamioka, J. Kim, H. Hosono, Adv. Mater. 30(2018) 1804547. [22] P.F. Cheng, L. Sun, L. Feng, S.Q. Yang, Y. Yang, D.Y. Zheng, Y. Zhao, Y.B. Sang, R.L. Zhang, D.H. Wei, W.Q. Deng, K.L. Han, Angew. Chem., Int. Ed. 58(2019) 16087-16091. [23] R.R. Fan, S.F. Fang, C.C. Liang, Z.X. Liang, H.Z. Zhong, Photonics Res. 9(2021) 694-700. [24] R.L. Zhang, X. Mao, D.Y. Zheng, Y. Yang, S.Q. Yang, K.L. Han, Laser Photonics Rev. 14(2020) 2000027. [25] Y. Li, Z.F. Shi, W.Q. Liang, L.T. Wang, S. Li, F. Zhang, Z.Z. Ma, Y. Wang, Y.Z. Tian, D. Wu, Mater. Horiz. 7(2020) 530-540. [26] W.Q. Liang, Z.F. Shi, Y. Li, J.L. Ma, S.T. Yin, X. Chen, D. Wu, Y.Z. Tian, Y.T. Tian, Y. Zhang, X.J. Li, C.X. Shan, ACS Appl. Mater. Interfaces 12(2020) 37363-37374. [27] P. Vashishtha, G.V. Nutan, B.E. Griffith, Y. Fang, D. Giovanni, M. Jagadeeswararao, T.C. Sum, N. Mathews, S.G. Mhaisalkar, J.V. Hanna, T. White, Chem. Mater. 31(2019) 9003-9011. [28] Z.Z. Ma, Z.F. Shi, D.W. Yang, Y.W. Li, F. Zhang, L.T. Wang, X. Chen, D. Wu, Y. T. Tian, Y. Zhang, L.J. Zhang, X.J. Li, C.X. Shan, Adv. Mater. 33(2021) 2001367. [29] S.L. Cheng, A. Beitlerova, R. Kucerkova, M. Nikl, G.H. Ren, Y.T. Wu, Phys. Status Solidi RRL 14(2020) 2000374. [30] D.S. Yuan, ACS Appl. Mater. Interfaces 12(2020) 38333-38340. [31] S.L. Cheng, M. Nikl, A. Beitlerova, R. Kucerkova, X.Y. Du, G.D. Niu, Y.C. Jia, J. Tang, G.H. Ren, Y.T. Wu, Adv. Opt. Mater. 9(2021) 2100460. [32] Q. Wang, Q. Zhou, M. Nikl, J.W. Xiao, R. Kucerkova, A. Beitlerova, V. Babin, P. Prusa, V. Linhart, J.K. Wang, X.M. Wen, G.D. Niu, J. Tang, G.H. Ren, Y.T. Wu, Adv. Opt. Mater. 10(2022) 2200304. [33] Q. Yao, J.M. Li, X.S. Li, X.X. Zheng, Z.G. Wang, X.T. Tao, Adv. Opt. Mater. 10(2022) 2201161. [34] L.Y. Lian, M.Y. Zheng, P. Zhang, Z. Zheng, K. Du, W. Lei, J.B. Gao, G.D. Niu, D.L. Zhang, T.Y. Zhai, S.Y. Jin, J. Tang, X.W. Zhang, J.B. Zhang, Chem. Mater. 32(2020) 3462-3468. [35] P. Zhang, Y.Q. Hua, Y.D. Xu, Q.H. Sun, X. Li, F.C. Cui, L. Liu, Y.X. Bi, G.D. Zhang, X. T. Tao, Adv. Mater. 34(2022) 2106562. [36] X.S. Geng, H.N. Zhang, J. Ren, P.Y. He, P.G. Zhang, Q.X. Feng, K. Pan, G.H. Dun, F. W. Wang, X.R. Zheng, H. Tian, D. Xie, Y. Yang, T.L. Ren,Appl. Phys. Lett. 118(2021). [37] T. Okamoto, M. Shahjahan, V. Biju, Adv. Opt. Mater. 9(2021) 2100355. [38] T.K.O.Vu, D.U. Lee, K.S. Lee, D.Y. Park, M.S. Jeong, E.K. Kim, Appl. Phys. Lett. 115(2019). [39] D.J. Keeble, J. Wiktor, S.K. Pathak, L.J. Phillips, M. Dickmann, K. Durose, H.J. Snaith, W. Egger, Nat. Commun. 12(2021) 5566. [40] F.L. Yuan, X.P. Zheng, A. Johnston, Y.K. Wang, C. Zhou, Y.T. Dong, B. Chen, H.J. Chen, J.Z. Fan, G. Sharma, P.C. Li, Y.G.O. Voznyy, H.T. Kung, Z.H. Lu, O.M. Bakr, E. H. Sargent, Sci. Adv. 6(2020) eabb0253. [41] J. Chen, Y. Zhang, S.Y. Miao, M.Y. Wang, B.C. Yang, New J. Chem. 44(2020) 12579-12585. [42] J. Liu, R. Xiao, Y.L. Wong, X.P. Zhou, M. Zeller, A.D. Hunter, Q.R. Fang, L. Liao, Z.T. Xu, Inorg. Chem. 57(2018) 4807-4811. [43] X.P. Zhou, Z.T. Xu, J. He, M. Zeller, A.D. Hunter, R. Clérac, C. Mathonière, S.S.Y.Chui, C.M. Che, Inorg. Chem. 49(2010) 10191-10198. [44] X.M. Mo, T. Li, F.C. Huang, Z.X. Li, Y.L. Zhou, T. Lin, Y.F. Ouyang, X.M. Tao, C.F. Pan, Nano Energy 81(2021). [45] K.L. Deutsch, B.H. Shanks, J. Catal. 285(2012) 235-241. [46] Y. Peng, L. Shang, Y.T. Cao, G.I.N.Waterhouse, C. Zhou, T.Bian, L.Z. Wu, C.H. Tung, T.R. Zhang, Chem. Commun. 51(2015) 12556-12559. [47] L.Y. Lian, M.Y. Zheng, W.Z. Zhang, L.X. Yin, X.Y. Du, P. Zhang, X.W. Zhang, J.B. Gao, D.L. Zhang, L. Gao, G.D. Niu, H.S. Song, R. Chen, X.Z. Lan, J. Tang, J.B. Zhang, Adv. Sci. 7(2020) 2000195. [48] X.M. Li, J.X. Chen, D.D. Yang, X. Chen, D.L. Geng, L.F. Jiang, Y. Wu, C.F. Meng, H.B. Zeng, Nat. Commun. 12(2021) 3879. [49] Y. Zhou, X.J. Wang, T.Y. He, H.Z. Yang, C. Yang, B.Y. Shao, L. Gutiérrez-Arzaluz, O.M. Bakr, Y.H. Zhang, O.F. Mohammed, ACS Energy Lett. 7(2022) 844-846. [50] N. Li, Z.W. Xu, Y.R. Xiao, Y.C. Liu, Z. Yang, S.Z. Liu, Adv. Opt. Mater. 10(2022) 2102232. [51] Z.J. Qin, S.Y. Dai, V.G. Hadjiev, C. Wang, L.X. Xie, Y.Z. Ni, C.Z. Wu, G. Yang, S. Chen, L.Z. Deng, Q.K. Yu, G.Y. Feng, Z.M. Wang, J.M. Bao, Chem. Mater. 31(2019) 9098-9104. [52] C. Wang, Y.N. Wang, X.H. Su, V.G. Hadjiev, S.Y. Dai, Z.J. Qin, H.A.Calderon Benavides, Y.Z. Ni, Q. Li, J. Jian, M.K. Alam, H.Y. Wang, F.C.R. Hernandez, Y. Yao, S. Chen, Q.K. Yu, G.Y. Feng, Z.M. Wang, J.M. Bao, Adv. Mater. 31(2019) 1902492. [53] T. Chen, C. Wang, X.X. Xing, Z.J. Qin, F. Qin, Y.A. Wang, M.K. Alam, V.G. Hadjiev, G. Yang, S.M. Ye, J. Yang, R.F. Wang, S. Yue, D. Zhang, Z.X. Shang, F.C. Robles-Hernandez, H.A. Calderon, H.Y. Wang, Z.M. Wang, J.M. Bao, Small 18(2022) 2105009. [54] F. Zhang, W.Q. Liang, L.T. Wang, Z.Z. Ma, X.Z. Ji, M. Wang, Y. Wang, X. Chen, D. Wu, X.J. Li, Y. Zhang, C.X. Shan, Z.F. Shi, Adv. Funct. Mater. 31(2021) 2105771. [55] X.X. Xing, T. Tong, M. Mohebinia, D.Z. Wang, Z.F. Ren, V.G. Hadjiev, Z.M. Wang, J.M. Bao, J. Phys. Chem.Lett. 13(2022) 6447-6454. [56] R.P. Li, R. Wang, Y. Yuan, J.X. Ding, Y.C. Cheng, Z.M. Zhang, W. Huang, J. Phys. Chem.Lett. 12(2021) 317-323. [57] Z.G. Wang, R.T. Williams, J.Q. Grim, F. Gao, S. Kerisit, Phys. Status Solidi B 250(2013) 1532-1540. [58] L. Lu, M.Z. Sun, T. Wu, Q.Y. Lu, B.A. Chen, B.L. Huang, Nanoscale Adv. 4(2022) 680-1496. [59] W.J. Zhu, W.B. Ma, Y.R. Su, Z. Chen, X.Y. Chen, Y.G. Ma, L.Z. Bai, W.G. Xiao, T.Y. Liu, H.M. Zhu, X.F. Liu, H.F. Liu, X. Liu, Y. Yang, Light: Sci. Appl. 9(2020) 112. [60] H.T. Wei, Y.J. Fang, P. Mulligan, W. Chuirazzi, H.H. Fang, C.C. Wang, B.R. Ecker, Y.L. Gao, M.A. Loi, L. Cao, Nat. Photonics 10(2016) 333-339. [61] Q. Zhou, J.W. Ren, J.W. Xiao, L. Lei, F.Y. Liao, H.P. Di, C. Wang, L.J. Yang, Q. Chen, X.F. Yang, Y.Y. Zhao, X.D. Han, Nanoscale 13(2021) 19894-19902. [62] X. Zhao, T. Jin, W.R. Gao, G.D. Niu, J.S. Zhu, B.X. Song, J.J. Luo, W.C. Pan, H.D. Wu, M.Y. Zhang, X. He, L.C. Fu, Z.G. Li, H.T. Zhao, J. Tang, Adv. Opt. Mater. 9(2021) 2101194. |
[1] | Zhenjiang Yu, Ruhong Li, Kedi Cai, Yudong Yao, Junjing Deng, Shuaifeng Lou, Mi Lu, Qinmin Pan, Geping Yin, Zaixing Jiang, Jiajun Wang. Unraveling the advances of trace doping engineering for potassium ion battery anodes via tomography [J]. Journal of Energy Chemistry, 2021, 58(7): 355-363. |
[2] | Haijun Liu, Markus Osenberg, Ling Ni, André Hilger, Libao Chen, Dong Zhou, Kang Dong, Tobias Arlt, Xiayin Yao, Xiaogang Wang, Ingo Manke, Fu Sun. Sodiophilic and conductive carbon cloth guides sodium dendrite-free Na metal electrodeposition [J]. Journal of Energy Chemistry, 2021, 61(10): 61-70. |
[3] | Jia-Le Shi, Cheng Tang, Jia-Qi Huang, Wancheng Zhu, Qiang Zhang. Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium-sulfur batteries [J]. Journal of Energy Chemistry, 2018, 27(1): 167-175. |
[4] | Kunpeng Xie, Wei Xia, Justus Masa, Fengkai Yang, Philipp Weide, Wolfgang Schuhmann, Martin Muhler. Promoting effect of nitrogen doping on carbon nanotub e-supporte d RuO2 applied in the electrocatalytic oxygen evolution reaction [J]. Journal of Energy Chemistry, 2016, 25(2): 282-288. |
[5] | Jiaquan Hu, Zhanglong Guo, Wei Chu, Le Li, Tao Lin. Carbon dioxide catalytic conversion to nano carbon material on the iron-nickel catalysts using CVD-IP method [J]. Journal of Energy Chemistry, 2015, 21(5): 620-625. |
[6] | Kunpeng Xie, Fengkai Yang, Petra Ebbinghaus, Andreas Erbe, Martin Muhler, Wei Xia. A reevaluation of the correlation between the synthesis parameters and structure and properties of nitrogen-doped carbon nanotubes [J]. Journal of Energy Chemistry, 2015, 21(4): 407-415. |
[7] | Kunpeng Xie, Fengkai Yang, Petra Ebbinghaus, Andreas Erbe, Martin Muhler, Wei Xia. A reevaluation of the correlation between the synthesis parameters and structure and properties of nitrogen-doped carbon nanotubes [J]. Journal of Energy Chemistry, 2015, 24(4): 407-415. |
[8] | Yuanjin Du, Mengyan Hou, Dandan Zhou, Yonggang Wang, Congxiao Wang, Yongyao Xia. Interconnected sandwich structure carbon/Si-SiO2/carbon nanospheres composite as high performance anode material for lithium-ion batteries [J]. Journal of Energy Chemistry, 2014, 23(3): 315-323. |
[9] | Song Yun, Weizhong Qian, Chaojie Cui, Yuntao Yu, Chao Zheng, Yi Liu, Qiang Zhang, Fei Wei. Highly selective synthesis of single-walled carbon nanotubes from methane in a coupled Downer-turbulent fluidized-bed reactor [J]. Journal of Energy Chemistry, 2013, 22(4): 567-572. |
[10] | Hoang Hai Nguyen, Dong-Joo Kim, Dong-Wha Park, Kyo-Seon Kim. Effect of initial precursor concentration on TiO2 thin film nanostructures prepared by PCVD system [J]. Journal of Energy Chemistry, 2013, 22(3): 375-381. |
[11] | Wei Chu*, Maofei Ran, Xu Zhang, Ning Wang, Yufei Wang, Heping Xie, Xiusong Zhao* . Remarkable carbon dioxide catalytic capture (CDCC) leading to solid-form carbon material via a new CVD integrated process (CVD-IP): An alternative route for CO2 sequestration [J]. Journal of Energy Chemistry, 2013, 22(1): 136-144. |
[12] | Kim Yang Lee Wei Ming Yeoh Siang-Piao Chai Abdul Rahman Mohamed. Utilization of compressed natural gas for the production of carbon nanotubes [J]. Journal of Energy Chemistry, 2012, 21(6): 620-624. |
[13] | Chao Zheng, Weizhong Qian*, Chaojie Cui, Guanghui Xu, Mengqiang Zhao, Guili Tian, Fei Wei. Carbon nanotubes for supercapacitors: Consideration of cost and chemical vapor deposition techniques (Special Column-Review) [J]. Journal of Energy Chemistry, 2012, 21(3): 233-240. |
[14] | Alimorad Rashidi*, Roghayeh Lotfi, Ehsaneh Fakhrmosavi, Masoud Zare. Production of single-walled carbon nanotubes from methane over Co-Mo/MgO nanocatalyst: A comparative study of fixed and fluidized bed reactors [J]. Journal of Energy Chemistry, 2011, 20(4): 372-376. |
[15] | Siang-Piao Chai, Choon-Ming Seah, Abdul Rahman Mohamed. A parametric study of methane decomposition into carbon nanotubes over 8Co-2Mo/Al2O3 catalyst [J]. Journal of Energy Chemistry, 2011, 20(1): 84-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||