Journal of Energy Chemistry ›› 2023, Vol. 79 ›› Issue (4): 398-409.DOI: 10.1016/j.jechem.2023.01.020
Previous Articles Next Articles
Fan Hea, Sirui Tongb, Zhouyang Luoa, Haoran Dinga, Ziye Chenga, Chenxi Lia, Zhifu Qia,*
Received:
2022-12-21
Revised:
2023-01-02
Accepted:
2023-01-13
Online:
2023-04-15
Published:
2023-05-30
Contact:
* E-mail address: qzf@zju.edu.cn (Z. Qi).
About author:
Fan He received his Ph.D degree in 2021 from Univer-sity of Science and Technology of China under the guidance of Professor Yanxia Chen. He is now a post-doctoral scholar in Zhejiang Baima Lake Laboratory. His current research is focused on electrocatalysis, elec-trolyzer development and energy transformation.Fan He, Sirui Tong, Zhouyang Luo, Haoran Ding, Ziye Cheng, Chenxi Li, Zhifu Qi. Accelerating net-zero carbon emissions by electrochemical reduction of carbon dioxide[J]. Journal of Energy Chemistry, 2023, 79(4): 398-409.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2023.01.020
[1] J. Rogelj, M. Schaeffer, M. Meinshausen, R. Knutti, J. Alcamo, K. Riahi, W. Hare,Environ. Res. Lett. 10(2015). [2] IEA.(2022) https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2. [3] S.J. Davis, N.S. Lewis, M. Shaner, S. Aggarwal, D. Arent, I.L. Azevedo, S.M. Benson, T. Bradley, J. Brouwer, Y.M. Chiang, C.T.M. Clack, A. Cohen, S. Doig, J. Edmonds, P. Fennell, C.B. Field, B. Hannegan, B.M. Hodge, M.I. Hoffert, E. Ingersoll, P. Jaramillo, K.S. Lackner, K.J. Mach, M. Mastrandrea, J. Ogden, P.F. Peterson, D.L. Sanchez, D. Sperling, J. Stagner, J.E. Trancik, C.J. Yang, K. Caldeira, Science. 360(2018) eaas9793. [4] A. Saravanan, P. Senthil kumar, D.-V.N. Vo, S. Jeevanantham, V. Bhuvaneswari, V. Anantha Narayanan, P.R. Yaashikaa, S. Swetha, B. Reshma, Chem. Eng. Sci. 236(2021) 116515 [5] A.D.N.Kamkeng, M. Wang, J. Hu, W. Du, F. Qian, Chem. Eng. J. 409(2021). [6] S. Overa, B.H. Ko, Y. Zhao, F. Jiao, Accounts Chem. Res.(2021) 638-648. [7] W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye, F. Sun, Z. Jiang, Q. Zhang, J. Cheng, Y. Wang, Nat. Catal. 3(2020) 478-487. [8] IEA.(2020) https://www.iea.org/countries/china. [9] China Energy Portal.(2021) https://chinaenergyportal.org/2019-detailed-electricity-statistics-update-of-jan-2021/. [10] S. Paraschiv, L.S. Paraschiv, Energy Rep. 6(2020) 237-242. [11] L.S. Paraschiv, A. Serban, S. Paraschiv, Energy Rep. 6(2020) 36-45. [12] World Energy Resources E-storage: Shifting from cost to value_Full report,(2016) https://www.worldenergy.org/publications/entry/e-storage-shifting-from-cost-to-value-2016. [13] A.Z.Al Shaqsi, K.Sopian, A. Al-Hinai, Energy Rep. 6(2020) 288-306. [14] N. Khan, S. Dilshad, R. Khalid, A.R. Kalair, N. Abas, Energy Storage 1(2019) e49. [15] IEA,(2021) https://www.iea.org/reports/global-energy-review-2021. [16] Installed capacity by technology in China in the New Policies Scenario,2000-2040, 2022. [17] NEUTRIUM,(2014) https://neutrium.net/properties/specific-energy-and-energy-density-of-fuels/. [18] M. Rivarolo, G. Riveros-Godoy, L. Magistri, A.F. Massardo, ChemEngineering 3(2019) 87. [19] D.J. Durbin, C. Malardier-Jugroot, Int. J. Hydrogen Energ. 38(2013) 14595-14617. [20] P. Joghee, J.N. Malik, S. Pylypenko, R. O’Hayre, M.R.S.Energy, Sustain. 2(2015) E3. [21] D.W. Keith, G. Holmes, D. St. Angelo, K. Heidel, Joule. 2(2018) 1573-1594 [22] R.I. Masel, Z. Liu, H. Yang, J.J. Kaczur, D. Carrillo, S. Ren, D. Salvatore, C.P. Berlinguette, Nat. Nanotechnol. 16(2021) 118-128. [23] O.G. Sanchez, Y.Y. Birdja, M. Bulut, J. Vaes, T. Breugelmans, D. Pant, Curr. Opin. Green. Sust. 16(2019) 47-56. [24] P. De Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo, E.H. Sargent, Science. 364(2019) eaav3506. [25] M. Jouny, W. Luc, F. Jiao, Ind. Eng. Chem. Res. 57(2018) 2165-2177. [26] H. Shin, K.U. Hansen, F. Jiao, Nat. Sustain. 4(2021) 911-919. [27] J.A. Herron, C.T. Maravelias, Energy Technol. 4(2016) 1369-1391. [28] M.G. Kibria, J.P. Edwards, C.M. Gabardo, C.T. Dinh, A. Seifitokaldani, D. Sinton, E.H. Sargent, Adv. Mater. 31(2019) e1807166. [29] A. Somoza-Tornos, O.J. Guerra, A.M. Crow, W.A. Smith, B.M.Hodge, iScience. 24(2021) 102813. [30] J. Sisler, S. Khan, A.H. Ip, M.W. Schreiber, S.A. Jaffer, E.R. Bobicki, D. Cao-Thang, E.H. Sargent, Acs Energy Lett. 6(2021) 997-1002. [31] IEA,(2021) https://www.iea.org/commentaries/is-carbon-capture-too-expensive. [32] IEA,(2022) https://www.iea.org/reports/direct-air-capture-2022/executive-summary. [33] ReportLinker,(2022) https://www.reportlinker.com/p06195681/Formic-Acid-Market-Growth-Trends-COVID-19-Impact-and-Forecasts.html. [34] Y. Pang, J. Li, Z. Wang, C.-S.Tan, P.-L. Hsieh, T.-T. Zhuang, Z.-Q. Liang, C. Zou, X. Wang, P. De Luna, J.P. Edwards, Y. Xu, F. Li, C.-T. Dinh, M. Zhong, Y. Lou, D. Wu, L.-J. Chen, E.H. Sargent, D. Sinton, Nat. Catal. 2(2019) 251-258. [35] S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld, S. Horch, B. Seger, I.E. L.Stephens, K. Chan, C.Hahn, J.K. Norskov, T.F. Jaramillo, I. Chorkendorff, Chem. Rev. 119(2019) 7610-7672. [36] J. Huang, T. Yang, K. Zhao, S. Chen, Q. Huang, Y. Han, J. Energy Chem. 62(2021) 71-102. [37] A.M.a.R.T. Yoshio Hori, J. Chem. Soc., Faraday Trans. 1F. 85(1989) 2309-2326 [38] K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, Energ. Environ. Sci. 5(2012) 7050-7059. [39] B. Strohm, in: Encyclopedia of Toxicology, Academic Press, Bethesda, 2014, pp. 488-491. [40] M. Eyidogan, A.N. Ozsezen, M. Canakci, A. Turkcan, Fuel 89(2010) 2713-2720. [41] T. Zhang, J.C. Bui, Z. Li, A.T. Bell, A.Z. Weber, J. Wu, Nat. Catal. 5(2022) 202-211. [42] P. Wei, H. Li, L. Lin, D. Gao, X. Zhang, H. Gong, G. Qing, R. Cai, G. Wang, X. Bao, Sci. China-Chem. 63(2020) 1711-1715. [43] C.M. Gabardo, C.P. O’Brien, J.P. Edwards, C. McCallum, Y. Xu, C.-T. Dinh, J. Li, E. H. Sargent, D. Sinton, Joule 3(2019) 2777-2791. [44] X. Wang, P. Ou, A. Ozden, S.-F. Hung, J. Tam, C.M. Gabardo, J.Y. Howe, J. Sisler, K. Bertens, F.P. García de Arquer, R.K. Miao, C.P. O’Brien, Z. Wang, J. Abed, A.S. Rasouli, M. Sun, A.H. Ip, D. Sinton, E.H. Sargent, Nat. Energy 7(2022) 170-176. [45] A. Ozden, Y. Wang, F. Li, M. Luo, J. Sisler, A. Thevenon, A. Rosas-Hernández, T. Burdyny, Y. Lum, H. Yadegari, T. Agapie, J.C. Peters, E.H. Sargent, D. Sinton, Joule 5(2021) 706-719. [46] Y. Wang, Z. Wang, C.-T.Dinh, J. Li, A. Ozden, M. Golam Kibria, A. Seifitokaldani, C.-S. Tan, C.M. Gabardo, M. Luo, H. Zhou, F. Li, Y. Lum, C. McCallum, Y. Xu, M. Liu, A. Proppe, A. Johnston, P. Todorovic, T.-T. Zhuang, D. Sinton, S.O. Kelley, E. H. Sargent, Nat. Catal. 3(2020) 98-106. [47] W. Li, Z. Yin, Z. Gao, G. Wang, Z. Li, F. Wei, X. Wei, H. Peng, X. Hu, L. Xiao, J. Lu, L. Zhuang, Nat. Energy 7(2022) 835-843. [48] T.B.Cao-Thang Dinh, Md Golam Kibria, Ali Seifitokaldani, Christine M. Gabardo, F. Pelayo García de Arquer, Amirreza Kiani, Jonathan P.Edwards, Phil De Luna, Oleksandr S. Bushuyev, Chengqin Zou, Rafael Quintero-Bermudez, Yuanjie Pang, David Sinton, Edward H. Sargent, Science. 360(2018) 783-787 [49] X. Wang, Z. Wang, F.P. García de Arquer, C.-T. Dinh, A. Ozden, Y.C. Li, D.-H. Nam, J. Li, Y.-S. Liu, J. Wicks, Z. Chen, M. Chi, B. Chen, Y. Wang, J. Tam, J.Y. Howe, A. Proppe, P. Todorović, F. Li, T.-T. Zhuang, C.M. Gabardo, A.R. Kirmani, C. McCallum, S.-F. Hung, Y. Lum, M. Luo, Y. Min, A. Xu, C.P. O’Brien, B. Stephen, B. Sun, A.H. Ip, L.J. Richter, S.O. Kelley, D. Sinton, E.H. Sargent, Nat. Energy 5(2020) 478-486. [50] Biofuel.(2010) https://biofuel.org.uk/index.php?p=bioalcohols. [51] T. Zheng, M. Zhang, L. Wu, S. Guo, X. Liu, J. Zhao, W. Xue, J. Li, C. Liu, X. Li, Q. Jiang, J. Bao, J. Zeng, T. Yu, C. Xia, Nat. Catal. 5(2022) 388-396. [52] Y. Yang, F. Li, Curr. Opin. Green Sust. 27(2021). [53] E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, 1997. [54] Y.C. Tan, K.B. Lee, H. Song, J. Oh, Joule 4(2020) 1104-1120. [55] E.C.F.Devin, T. Whipple, P.J.A. Kenis, Electrochem. Solid-St. 13(2010) B109-B111. [56] S. Verma, Y. Hamasaki, C. Kim, W. Huang, S. Lu, H.-R.-M. Jhong, A.A. Gewirth, T. Fujigaya, N. Nakashima, P.J.A. Kenis, ACS Energy Lett. 3(2017) 193-198. [57] Y. Hori, H. Konishi, T. Futamura, A. Murata, O. Koga, H. Sakurai, K. Oguma, Electrochim. Acta 50(2005) 5354-5369. [58] Y. Song, X. Zhang, K. Xie, G. Wang, X. Bao, Adv. Mater. 31(2019) e1902033. [59] J. Chen, Z. Wang, H. Lee, J. Mao, C.A. Grimes, C. Liu, M. Zhang, Z. Lu, Y. Chen, S. P. Feng, Mater. Today Phys. 12(2020). [60] H. Yang, Q. Lin, C. Zhang, X. Yu, Z. Cheng, G. Li, Q. Hu, X. Ren, Q. Zhang, J. Liu, C. He, Nat. Commun. 11(2020) 593. [61] G.O. Larrazabal, M. Ma, B. Seger, Accounts Mater. Res. 2(2021) 220-229. [62] A. Hauch, R. Kungas, P. Blennow, A.B. Hansen, J.B. Hansen, B.V. Mathiesen, M. B. Mogensen, Science 370(2020) eaba6118. [63] E.O. Eren, S. Özkar, J. Power Sources 506(2021). [64] J. Yu, J. Wang, Y. Ma, J. Zhou, Y. Wang, P. Lu, J. Yin, R. Ye, Z. Zhu, Z. Fan, Adv. Funct. Mater. 31(2021) 2102151. [65] W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang, Z. Jin, Adv. Sci. 5(2018) 1700275. [66] B. Endrodi, E. Kecsenovity, A. Samu, T. Halmagyi, S. Rojas-Carbonell, L. Wang, Y. Yan, C. Janaky, Energ. Environ. Sci. 13(2020) 4098-4105. [67] B. Endrodi, A. Samu, E. Kecsenovity, T. Halmagyi, D. Sebok, C. Janaky, Nat. Energy 6(2021) 439-448. [68] R.B. Kutz, Q. Chen, H. Yang, S.D. Sajjad, Z. Liu, I.R. Masel, Energy Technol. 5(2017) 929-936. [69] Z. Liu, H. Yang, R. Kutz, R.I. Masel, J. Electrochem. Soc. 165(2018) J3371-J3377. [70] F. Bienen, A. Loewe, J. Hildebrand, S. Hertle, D. Schonvogel, D. Kopljar, N. Wagner, E. Klemm, K.A. Friedrich, J. Energy Chem. 62(2021) 367-376. [71] J.P. Edwards, Y. Xu, C.M. Gabardo, C.-T. Dinh, J. Li, Z. Qi, A. Ozden, E.H. Sargent, D. Sinton, Appl. Energ. 261(2020). [72] W. Lee, Y.E. Kim, M.H. Youn, S.K. Jeong, K.T. Park, Angew. Chem. Int. Ed. Engl. 57(2018) 6883-6887. [73] C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang, E. Stavitski, H.N. Alshareef, H. Wang, Nat. Energy 4(2019) 776-785. [74] H. Yang, J.J. Kaczur, S.D. Sajjad, R.I. Masel, J. CO2.Util. 20(2017) 208-217. [75] E. Perez-Gallent, G. Marcandalli, M.C. Figueiredo, F. Calle-Vallejo, M.T.M.Koper, J. Am. Chem. Soc. 139(2017) 16412-16419. [76] Y. Xu, J.P. Edwards, S. Liu, R.K. Miao, J.E. Huang, C.M. Gabardo, C.P.O’Brien, J. Li, E.H. Sargent, D. Sinton, ACS Energy Lett. 6(2021) 809-815. [77] H. Haspel, J. Gascon, Acs Appl. Energ. Mater. 4(2021) 8506-8516. [78] C. McCallum, C.M. Gabardo, C.P.O’Brien, J.P. Edwards, J. Wicks, Y. Xu, E.H. Sargent, D. Sinton, Cell Rep. Phys. Sci. 2(2021). [79] J.Y.T.Kim, P. Zhu, F.-Y. Chen, Z.-Y. Wu, D.A. Cullen, H. Wang, Nat. Catal. 5(2022) 288-299. [80] G.O. Larrazabal, P. Strom-Hansen, J.P. Heli, K. Zeiter, K.T. Therldldsen, I. Chorkendorff, B. Seger, Acs Appl. Mater. Inter. 11(2019) 41281-41288. [81] E.W. Lees, B.A.W.Mowbray, F.G.L.Parlane, C.P. Berlinguette, Nat. Rev. Mater. 7(2021) 55-64. [82] K. Yang, M. Li, S. Subramanian, M.A. Blommaert, W.A. Smith, T. Burdyny, ACS Energy Lett. 6(2021) 4291-4298. [83] M.C.O.Monteiro, F. Dattila, B.Hagedoorn, R. García-Muelas, N. López, M.T.M. Koper, Nat. Catal. 4(2021) 654-662. [84] R.K. Miao, Y. Xu, A. Ozden, A. Robb, C.P. O’Brien, C.M. Gabardo, G. Lee, J.P. Edwards, J.E. Huang, M. Fan, X. Wang, S. Liu, Y. Yan, E.H. Sargent, D. Sinton, Joule 5(2021) 2742-2753. [85] C.P.O’Brien, R.K.Miao, S. Liu, Y. Xu, G. Lee, A. Robb, J.E. Huang, K. Xie, K. Bertens, C.M. Gabardo, J.P. Edwards, C.-T. Dinh, E.H. Sargent, D. Sinton, Acs Energy Lett. 6(2021) 2952-2959. [86] A.G. Olabi, T. Wilberforce, M.A. Abdelkareem, Energy 214(2021). [87] A.A. Fernandes, Product Concept and System Architecture Generation, in: Product and Service Design Innovation, Springer International Publishing, Cham, 2023, pp. 95-138. [88] W. Li, H. Tian, L. Ma, Y. Wang, X. Liu, X. Gao, Mater. Adv. 3(2022) 5598-5644. [89] Science. 11(2021) 11363. [90] S.A. Grigoriev, V.N. Fateev, D.G. Bessarabov, P. Millet, Int. J. Hydrogen Energ. 45(2020) 26036-26058. [91] H.A. Miller, K. Bouzek, J. Hnat, S. Loos, C.I. Bernäcker, T. Weißgärber, L. Röntzsch, J. Meier-Haack, Sustain. Energ. Fuels 4(2020) 2114-2133. [92] H.W. Shafaque, C. Lee, K.F. Fahy, J.K. Lee, J.M. LaManna, E. Baltic, D.S. Hussey, D.L. Jacobson, A. Bazylak, ACS Appl. Mater. Interfaces 12(2020) 54585-54595. [93] Z. Xing, K. Shi, X. Hu, X. Feng, J. Energy Chem. 66(2022) 45-51. [94] A.D. Handoko, F. Wei, B.S. Jenndy, Z.W.S.Yeo, Nat. Catal. 1(2018) 922-934. [95] J. Chen, L. Wang, Adv. Mater. 34(2021) e2103900. [96] L. Zhou, R. Lv, J. Energy Chem. 70(2022) 310-331. [97] B. Mei, C. Liu, J. Li, S. Gu, X. Du, S. Lu, F. Song, W. Xu, Z. Jiang, J. Energy Chem. 64(2022) 1-7. [98] Z. Chen, Y. Song, Z. Zhang, Y. Cai, H. Liu, W. Xie, D. Deng, J. Energy Chem. 74(2022) 198-202. [99] Y. Guo, C. Qian, Y. Wu, J. Liu, X. Zhang, D. Wang, Y. Zhao, J. Energy Chem. 63(2021) 74-86. [100] M. Chen, C. Zhao, F. Sun, J. Fan, H. Li, H. Wang, eTransportation. 5(2020) 100075. [101] D.R. Lide, CRC Handbook of Chemistry and Physics, 85th Edition, Taylor & Francis, 2004 [102] D.A. Salvatore, C.M. Gabardo, A. Reyes, C.P. O’Brien, S. Holdcroft, P. Pintauro, B. Bahar, M. Hickner, C. Bae, D. Sinton, E.H. Sargent, C.P. Berlinguette, Nat. Energy 6(2021) 339-348. [103] B. Endrodi, E. Kecsenovity, A. Samu, F. Darvas, R.V. Jones, V. Torok, A. Danyi, C. Janaky, ACS Energy Lett. 4(2019) 1770-1777. [104] D. Chen, P. Pei, Y. Li, P. Ren, Y. Meng, X. Song, Z. Wu,Energ. Convers. Manage. 261(2022). [105] Z. Ma, L. Witteman, J.A. Wrubel, G. Bender, Int. J. Hydrogen Energ. 46(2021) 17627-17643. [106] A. Awasthi, K. Scott, S. Basu, Int. J. Hydrogen Energ. 36(2011) 14779-14786. [107] D. Wu, C. Peng, C. Yin, H. Tang, Electrochem. Energy R 3(2020) 466-505. [108] C.-Y. Lee, C.-H. Chen, G.-B. Jung, S.-C. Li, Y.-Z. Zeng, Micromachines 11(2020) 1078. [109] J. Timoshenko, B. Roldan Cuenya, Chem. Rev. 121(2021) 882-961. [110] M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang, C.T. Dinh, P. De Luna, Z. Yu, A.S. Rasouli, P. Brodersen, S. Sun, O. Voznyy, C.S. Tan, M. Askerka, F. Che, M. Liu, A. Seifitokaldani, Y. Pang, S.C. Lo, A. Ip, Z. Ulissi, E.H. Sargent, Nature 581(2020) 178-183. [111] S. Sultan, J.H. Kim, S. Kim, Y. Kwon, J.S. Lee, J. Energy Chem. 60(2021) 410-416. |
[1] | Panpan Liu, Yang Li, Zhaodi Tang, Junjun Lv, Piao Cheng, Xuemei Diao, Yu Jiang, Xiao Chen, Ge Wang. Integrating thermal energy storage and microwave absorption in phase change material-encapsulated core-sheath MoS2@CNTs [J]. Journal of Energy Chemistry, 2023, 84(9): 41-49. |
[2] | Huaibin Wang, Qinzheng Wang, Zhenyang Zhao, Changyong Jin, Chengshan Xu, Wensheng Huang, Zhuchen Yuan, Shuyu Wang, Yang Li, Yanhong Zhao, Junli Sun, Xuning Feng. Thermal runaway propagation behavior of the Cell-to-Pack battery system [J]. Journal of Energy Chemistry, 2023, 84(9): 162-172. |
[3] | Xin Lai, Zheng Meng, Fangnan Zhang, Yong Peng, Weifeng Zhang, Lei Sun, Li Wang, Fei Gao, Jie Sheng, Shufa Su, Yuejiu Zheng, Xuning Feng. Mitigating thermal runaway hazard of high-energy lithium-ion batteries by poison agent [J]. Journal of Energy Chemistry, 2023, 83(8): 3-15. |
[4] | Yanjun Gao, Shaohua Zhang, Lingrui Xu, Xiangyang Li, Lijie Li, Lixia Bao, Jiong Peng, Xin Li. Fast charge transport motivated by tunable Mo2C/Mo2N high-quality heterointerface for superior pseudocapacitive storage [J]. Journal of Energy Chemistry, 2023, 83(8): 465-477. |
[5] | Dong-Gyu Lee, Hyeonggeun Choi, Yeonsu Park, Min-Cheol Kim, Jong Bae Park, Suok Lee, Younghyun Cho, Wook Ahn, A-Rang Jang, Jung Inn Sohn, John Hong, Young-Woo Lee. Utilizing hybrid faradaic mechanism via catalytic and surface interactions for high-performance flexible energy storage system [J]. Journal of Energy Chemistry, 2023, 83(8): 541-548. |
[6] | Akshay Sharma, Renuka Sharma, Ramesh C. Thakur, Lakhveer Singh. An overview of deep eutectic solvents: Alternative for organic electrolytes, aqueous systems & ionic liquids for electrochemical energy storage [J]. Journal of Energy Chemistry, 2023, 82(7): 592-626. |
[7] | Lorrane C. C. B. Oliveira, Raissa Venâncio, Paulo V. F. de Azevedo, Chayene G. Anchieta, Thayane C. M. Nepel, Cristiane B. Rodella, Hudson Zanin, Gustavo Doubek. Reviewing perovskite oxide sites influence on electrocatalytic reactions for high energy density devices [J]. Journal of Energy Chemistry, 2023, 81(6): 1-19. |
[8] | Chunfeng Cheng, Tianfu Liu, Yi Wang, Pengfei Wei, Jiaqi Sang, Jiaqi Shao, Yanpeng Song, Yipeng Zang, Dunfeng Gao, Guoxiong Wang. Amorphous Sn(HPO4)2-derived phosphorus-modified Sn/SnOx core/shell catalyst for efficient CO2 electroreduction to formate [J]. Journal of Energy Chemistry, 2023, 81(6): 125-131. |
[9] | Suhail Mubarak, Duraisami Dhamodharan, Hun-Soo Byun. Recent advances in 3D printed electrode materials for electrochemical energy storage devices [J]. Journal of Energy Chemistry, 2023, 81(6): 272-312. |
[10] | Jieqiong Qin, Hongtao Zhang, Zhi Yang, Xiao Wang, Pratteek Das, Feng Zhou, Zhong-Shuai Wu. Recent advances and key opportunities on in-plane micro-supercapacitors: From functional microdevices to smart integrated microsystems [J]. Journal of Energy Chemistry, 2023, 81(6): 410-431. |
[11] | Kaixuan Ma, Gongzheng Yang, Chengxin Wang. Towards storable and durable Zn-MnO2 batteries with hydrous tetraglyme electrolyte [J]. Journal of Energy Chemistry, 2023, 80(5): 432-441. |
[12] | Houan Ren, Xiaoyu Wang, Xiaomei Zhou, Teng Wang, Yuping Liu, Cai Wang, Qingxin Guan, Wei Li. In-situ constructing Cu1Bi1 bimetallic catalyst to promote the electroreduction of CO2 to formate by synergistic electronic and geometric effects [J]. Journal of Energy Chemistry, 2023, 79(4): 263-271. |
[13] | Pragati A. Shinde, Qaisar Abbas, Nilesh R. Chodankar, Katsuhiko Ariga, Mohammad Ali Abdelkareem, Abdul Ghani Olabi. Strengths, weaknesses, opportunities, and threats (SWOT) analysis of supercapacitors: A review [J]. Journal of Energy Chemistry, 2023, 79(4): 611-638. |
[14] | Tianzhu Liu, Georgian Melinte, Oleksandr Dolotko, Michael Knapp, Beatriz Mendoza-Sánchez. Activation of 2D MoS2 electrodes induced by high-rate lithiation processes [J]. Journal of Energy Chemistry, 2023, 78(3): 56-70. |
[15] | Anubhav Kumar, Bijay P. Tripathi. A high-capacity viologen-based anolyte for high energy density neutral pH aqueous redox-flow batteries [J]. Journal of Energy Chemistry, 2023, 78(3): 222-231. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||