Journal of Energy Chemistry ›› 2023, Vol. 79 ›› Issue (4): 495-504.DOI: 10.1016/j.jechem.2023.01.025
Previous Articles Next Articles
Shuo Yanga,1, Kui Xuea,b,1, Haiyang Liaoa,c, Yuning Guob, Liujiang Zhoub,d,*, Yongqi Zhanga,d,e,*
Received:
2022-10-28
Revised:
2023-01-02
Accepted:
2023-01-14
Online:
2023-04-15
Published:
2023-05-30
Contact:
* E-mail addresses: ljzhou86@uestc.edu.cn (L. Zhou), yqzhang@uestc.edu.cn (Y. Zhang).
About author:
1These authors contributed equally to this work.
Shuo Yang, Kui Xue, Haiyang Liao, Yuning Guo, Liujiang Zhou, Yongqi Zhang. Bifunctional electrolyte regulation towards low-temperature and high-stability Zn-ion hybrid capacitor[J]. Journal of Energy Chemistry, 2023, 79(4): 495-504.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2023.01.025
[1] B. Dunn, H. Kamath, J.M. Tarascon, Science 334(2011) 928. [2] D. Larcher, J.M. Tarascon, Nat. Chem. 7(2015) 19-29. [3] O. Schmidt, A. Hawkes, A. Gambhir, I. Staffell, Nat. Energy 2(2017) 17110. [4] J. Xiao, N.A. Chernova, M.S. Whittingham, Chem. Mater. 20(2008) 7454. [5] W.D. Li, A. Dolocan, P. Oh, H.G. Celio, S. Park, J. Cho, A. Manthiram, Nat. Commun. 8(2017) 14589. [6] Y.Q. Fu, Q.L. Wei, G.X. Zhang, S.S. Sun, Adv. Energy Mater. 8(2018) 1703058. [7] T. Zhang, C. Li, F. Wang, A. Noori, M.F. Mousavi, X. Xia, Y. Zhang, Chem. Rec. 22(2022) e202200083. [8] G.Z. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 3(2018) 2480. [9] D.L. Chao, C.G. Zhu, M. Song, P. Liang, X. Zhang, N.H. Tiep, H.F. Zhao, J. Wang, R. M. Wang, H. Zhang, H.J. Fan, Adv. Mater. 30(2018) 1803181. [10] M. Zhou, S. Guo, G.Z. Fang, H.M. Sun, X.X. Cao, J. Zhou, A.Q. Pan, S.Q. Liang, J. Energy Chem. 55(2021) 549-556. [11] Y. Wang, L.J. Zhang, F. Zhang, X. Ding, K. Shin, Y.B. Tang, J. Energy Chem. 58(2021) 602-609. [12] H.Y. Wang, W.Q. Ye, Y. Yang, Y.J. Zhong, Y. Hu, Nano Energy. 85(2021). [13] H. Tang, J.J. Yao, Y.R. Zhu, Adv. Energy. Mater. 11(2021) 2003994. [14] H. Xu, W.J. He, Z.W. Li, J.X. Chi, J.M. Jiang, K.S. Huang, S.L. Li, G.Z. Sun, H. Dou, X. G. Zhang, Adv. Funct. Mater. 32(2022) 2111131. [15] Y. Yang, C.Y. Liu, Z.H. Lv, H. Yang, Y.F. Zhang, M.H. Ye, L.B. Chen, J.B. Zhao, C.C. Li, Adv. Mater. 33(2021) 2007388. [16] X. Li, Y. Li, X. Zhao, F.Y. Kang, L.B. Dong, Energy Stor. Mater. 53(2022) 505-513. [17] S.M. Chang, H. Zhang, Z.Y. Zhang, J. Energy Chem. 56(2021) 64-71. [18] D. Chen, M.J. Lu, D. Cai, H. Yang, W. Han, J. Energy Chem. 54(2021) 712-726. [19] Y. Li, W. Yang, W. Yang, Z.Q. Wang, J.H. Rong, G.X. Wang, C.J. Xu, F.Y. Kang, L.B. Dong, Nano-micro. Lett. 13(2021) 95. [20] P. Zhang, B.Y. Guan, L. Yu, X. Lou, Angew. Chem. Int. Ed. Engl. 56(2017) 7141-7145. [21] L.B. Dong, X.P. Ma, Y. Li, L. Zhao, W.B. Liu, J.Y. Cheng, C.J. Xu, B.H. Li, Q.H. Yang, F.Y. Kang, Energy Stor. Mater. 13(2018) 96-102. [22] T. Xue, H.J. Fan, J. Energy Chem. 54(2021) 194-201. [23] J.Q. Huang, X.Y. Lin, H. Tan, X.Q. Du, B. Zhang, J. Energy Chem. 12(2020) 1-7. [24] Q. Liu, Y. Wang, X.D. Hong, R. Zhou, Z. Hou, B. Zhang, Adv. Energy Mater 12(2022) 2200318. [25] Q. Yang, Q. Li, Z.X. Liu, D.H. Wang, Y. Guo, X.L. Li, Y.C. Tang, H.F. Li, B.B. Dong, C. Y. Zhi, Adv. Mater. 32(2021) 2001854. [26] C.P. Li, X.S. Xie, S.Q. Liang, J. Zhou, Energy Environ. Mater. 3(2020) 146-159. [27] W.C. Du, E. Ang, Y. Yang, Y.F. Zhang, M.H. Ye, C.C. Li, Energy Environ. Sci. 13(2020) 3330-3360. [28] B.Y. Tang, L.T. Shan, S.Q. Liang, J. Zhou, Energy Environ. Sci. 12(2019) 3288-3304. [29] C. Zhang, J. Holoubek, X.Y. Wu, A. Daniyar, L.D. Zhu, C. Chen, D. Leonard, I. Rodríguez-Pérez, J.X. Jiang, C. Fang, X.L. Ji, Chem. Comm. 54(2018) 14097-14099. [30] N.N. Chang, T.Y. Li, R. Li, S.N. Wang, Y.B. Yin, H.M. Zhang, X.F. Li, Energy Environ. Sci. 13(2020) 3527-3535. [31] L.S. Geng, X.P. Wang, C.H. Han, K. Han, Z.T. Xiao, M. Huang, P. Xu, L. Zhang, L. Zhou, L.Q. Mai, Angew. Chem. Int. Ed. Engl. 61(2022) e202206717. [32] L.S. Cao, D. Li, E.Y. Hu, J.J. Xu, T. Deng, L. Ma, Y. Wang, X.Q. Yang, C.S. Wang, J. Am. Chem.Soc. 142(2020) 21404-21409. [33] T. Otowa, Y. Nojima, T. Miyazaki, Carbon 35(1997) 1315-1319. [34] Y. Du, T. Ma, J. Yang, L. Liu, H.M. Shan, H.S. Cai, C.F. Liu, L.Z. Chen, Int. J. Mass. Spectrom. 338(2013) 50-56. [35] S. Plimpton, J. Comput. Phys. 117(1995) 1-19. [36] W. Jorgensen, D. Maxwell, J. Tirado-Rives, J. Am. Chem.Soc. 118(1996) 11225-11236. [37] J.P. Ryckaert, G. Ciccotti, H. Berendsen, J. Comput. Phys. 23(1977) 327-341. [38] R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, Routledge, London, England, 1989. [39] S. Nosé, J. Chem. Phys. 81(1984) 511. [40] W.G. Hoover, Phys. Rev. A 31(1985) 1695-1697. [41] H.J.C.Berendsen, J.P.M.Postma, W.F.V. Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81(1984) 3684. [42] R. Stadler, W. Wolf, R. Podloucky, G. Kresse, J. Furthmṻller, J.Hafner, Phys. Rev. B. 54(1996) 1729. [43] Z. Liu, Y.S. Li, Y.Z. Ji, Q.L. Zhang, X.C. Xiao, Y. Yao, L.Q. Chen, Y. Qi,Cell Rep. Phys. Sci. 2(2021). [44] R. Kobayashi, Phys. 63(1993) 410-423. [45] R. Acharya, J.A. Sharon, A. Staroselsky, Acta Mater. 124(2017) 360-371. [46] L. Chen, H.W. Zhang, L.Y. Liang, Z. Liu, Y. Qi, P. Lu, J. Chen, L.Q. Chen, J. Power Sources 300(2015) 376-385. [47] Q. Zhang, Y.L. Ma, Y. Lu, X.Z. Zhou, L. Lin, L. Li, Z.H. Yan, Q. Zhao, K. Zhang, J. Chen, Angew. Chem. Int. Ed. Engl. 60(2021) 23357-23364. [48] J.D. Kim, S.I. Pyun, Corros. Sci. 38(1996) 1093-1102. [49] A. Nishikata, M. Itagaki, T. Tsuru, S. Haruyama, Corros. Sci. 31(1990) 287-292. [50] H. Wu, K. Pan, Y. Dai, H. Jin, F. Li, Int. J. Electrochem. Sci. 14(2019) 4995-5007. [51] L. Li, C. Wang, S.H. Chen, X.G. Yang, B.Y. Yuan, H.L. Jia, Electrochim. Acta 53(2008) 3109-3119. [52] S.M.A.El-HaleemS, S.A.El-Wanees, Mater. Chem. Phys. 128(2011) 418-426. [53] H.S. Ryu, J.K. Singh, H.M. Yang, H.S. Lee, M.A. Ismail, Construct. Building Mater. 114(2016) 223-231. [54] K. Aramaki, Corros. Sci.2001, 43, 591-604; f) T. Muster, I. Cole, Corros. Sci. 46(2004) 2319-2335. [55] K.S. Exner, ChemElectroChem 6(2019) 3401-3409. [56] F. Lahmani, M. Broquier, A. Zehnacker-Rentien, Chem. Phys. Lett. 354(2002) 337-348. [57] J.S. Lin, L. Chen, Y. Liu, Y.Z. Wang, J. Appl. Polym.Sci. 125(2012) 3517-3523. [58] Y.D. Shen, X.R. Wang, X.J. Lai, C.Z. Xu, Z.W. Li, Polym. Plast. Technol. Eng. 51(2012) 1077-1082. [59] T.C. Li, Y.V. Lim, X.L. Li, S.Z. Luo, C.J. Lin, D.L. Fang, S.W. Xia, Y. Wang, H.Y. Yang, Adv. Energy Mater. 12(2022) 2103231. [60] X.L. Ji, eScience 1(2021) 99-107. [61] V. Yufit, F. Tariq, D.S. Eastwood, M. Biton, B. Wu, P.D. Lee, N.P. Brandon, Joule 3(2019) 485-502. [62] F. Liu, R. Xu, Y.C. Wu, D.T. Boyle, A.K. Yang, J.W. Xu, Y.Y. Zhu, Y.S. Ye, Z. Yu, Z.W. Zhang, X. Xiao, W.X. Huang, H.S. Wang, H. Chen, Y. Cui, Nature 600(2021) 659-663. [63] Z. Hou, Y. Gao, R. Zhou, B. Zhang, Adv. Funct. Mater. 32(2022) 2107584. [64] C.P. Lia, X.D. Shia, S.Q. Liang, X.M. Ma, M.M. Han, X.W. Wu, J. Zhou,Chem. Eng. J. 379(2020). [65] J.N. Hao, L.B. Yuan, C. Ye, D.L. Chao, K. Davey, Z.P. Guo, S.Z. Qiao, Angew. Chem. Int. Ed. Engl. 60(2021) 7366-7375. [66] K. Wang, T. Qiu, L. Lin, X.X. Liu, X.Q. Sun, Energy Stor. Mater. 54(2023) 366-373. [67] P. Simon, Y. Gogotsi, Nat. Mater. 7(2008) 845-854. [68] T. Deng, W. Zhang, H.B. Zhang, W.T. Zheng, Energy Technol. 6(2018) 605-612. [69] S.W. Xu, M.C. Zhang, G.Q. Zhang, J.H. Liu, X.Z. Liu, X. Zhang, D.D. Zhao, C.L. Xu, Y.Q. Zhao, J. Power Sources 441(2019). [70] Y.Y. Wang, B.H. Hou, J.Z. Guo, Q.L. Ning, W.L. Pang, J.W. Wang, C.L. Lu, X.L. Wu, Adv. Energy Mater. 8(2018) 1703252. [71] R. Vellacheri, A. Al-Haddad, H.P. Zhao, W.X. Wang, C.L. Wang, Y. Lei, Nano Energy 8(2014) 231-237. [72] Z.D. Huang, A. Chen, F.N. Mo, G.J. Liang, X.L. Li, Q. Yang, Y. Guo, Z. Chen, Q. Li, B. B. Dong, C.Y. Zhi, Adv. Energy Mater. 8(2020) 2001024. [73] A.J. Roberts, A.F.Danil de Namor, R.C.T. Slade, Phys. Chem. Chem. Phys. 15(2013) 3518-3526. [74] J.C. Wang, F.T. Liu, F. Tao, Q.M. Pan, ACS Appl. Mater. Interfaces 9(2017) 27745-27753. [75] F. Tao, L.M. Qin, Z.K. Wang, Q.M. Pan, ACS Appl. Mater. Interfaces 9(2017) 15541-15548. |
[1] | Yang Dong, Ning Zhang, Zhaodong Wang, Jinhan Li, Youxuan Ni, Honglu Hu, Fangyi Cheng. Cell-nucleus structured electrolyte for low-temperature aqueous zinc batteries [J]. Journal of Energy Chemistry, 2023, 83(8): 324-332. |
[2] | Qiaoyan Ma, Jufeng Qiu, Yuzhao Yang, Fei Tang, Yilin Zeng, Nanxi Ma, Bohao Yu, Feiping Lu, Chong Liu, Andreas Lambertz, Weiyuan Duan, Kaining Ding, Yaohua Mai. Solvents incubated π-π stacking in hole transport layer for perovskite-silicon 2-terminal tandem solar cells with 27.21% efficiency [J]. Journal of Energy Chemistry, 2023, 82(7): 25-30. |
[3] | Xinqi Zhao, Xiaohong Sun, Ruisong Guo, Song Wang, Fuyun Li, Tingting Li, Wen Zhang, Chunming Zheng, Lingyun An, Leichao Meng, Xudong Hu. Simultaneous realization of high sulfur utilization and lithium dendrite-free via dual-effect kinetic regulation strategy toward lithium-sulfur batteries [J]. Journal of Energy Chemistry, 2023, 81(6): 260-271. |
[4] | Yan Sun, Qinping Jian, Tianshuai Wang, Bin Liu, Yuhan Wan, Jing Sun, Tianshou Zhao. A Janus separator towards dendrite-free and stable zinc anodes for long-duration aqueous zinc ion batteries [J]. Journal of Energy Chemistry, 2023, 81(6): 583-592. |
[5] | Changyuan Yan, Zixuan Chen, Hongzhong Deng, Hao Huang, Xianyu Deng. Cryoactivated proton-involved redox reactions enable stable-cycling fiber cooper metal batteries operating at —50 °C [J]. Journal of Energy Chemistry, 2023, 80(5): 758-767. |
[6] | Bin Luo, Yang Wang, Leilei Sun, Sinan Zheng, Guosheng Duan, Zhean Bao, Zhizhen Ye, Jingyun Huang. Boosting Zn2+ kinetics via the multifunctional pre-desolvation interface for dendrite-free Zn anodes [J]. Journal of Energy Chemistry, 2023, 77(2): 632-641. |
[7] | Zhe Gong, Kai Jiang, Pengfei Wang, Xunliang Liu, Dashuai Wang, Ke Ye, Kai Zhu, Jun Yan, Guiling Wang, Dianxue Cao. Stable and dendrite-free Zn anode with artificial desolvation interface layer toward high-performance Zn-ion capacitor [J]. Journal of Energy Chemistry, 2022, 72(9): 143-148. |
[8] | Manning Chen, Xiaoyu Shi, Xiaolei Wang, Hanqing Liu, Sen Wang, Caixia Meng, Yu Liu, Liangzhu Zhang, Yuanyuan Zhu, Zhong-Shuai Wu. Low-temperature and high-voltage planar micro-supercapacitors based on anti-freezing hybrid gel electrolyte [J]. Journal of Energy Chemistry, 2022, 72(9): 195-202. |
[9] | Yudi Qin, Pengyu Zuo, Xiaoru Chen, Wenjing Yuan, Rong Huang, Xiaokan Yang, Jiuyu Du, Languang Lu, Xuebing Han, Minggao Ouyang. An ultra-fast charging strategy for lithium-ion battery at low temperature without lithium plating [J]. Journal of Energy Chemistry, 2022, 72(9): 442-452. |
[10] | Junwei Wu, Zhuang Xue,Lixuan Yuan, Jilei Ye,Qinghong Huang, Lijun Fu, Yuping Wu. Advances on Na-K liquid alloy-based batteries [J]. Journal of Energy Chemistry, 2022, 71(8): 313-323. |
[11] | Guochuan Wang, Hongmei Wang, Guangqiang Ma, Xinhe Du, Liyu Du, Peng Jing, Yanqing Wang, Kaipeng Wu, Hao Wu, Qian Wang, Yun Zhang. Investigation on process mechanism of a novel energy-saving synthesis for high performance Li4Ti5O12 anode material [J]. Journal of Energy Chemistry, 2022, 70(7): 266-275. |
[12] | Mengqi Zhou, Guoqiang Sun, Shuang-Quan Zang. Uniform zinc deposition on O,N-dual functionalized carbon cloth current collector [J]. Journal of Energy Chemistry, 2022, 69(6): 76-83. |
[13] | Hong Gao, Kaikai Tang, Jun Xiao, Xin Guo, Weihua Chen, Hao Liu, Guoxiu Wang. Recent advances in ‘‘water in salt” electrolytes for aqueous rechargeable monovalent-ion (Li+, Na+, K+) batteries [J]. Journal of Energy Chemistry, 2022, 69(6): 84-99. |
[14] | Qi An, Qing Liu, Shimin Wang, Lixiang Liu, Han Wang, Yongjiang Sun, Lingyan Duan, Genfu Zhao, Hong Guo. Oxygen vacancies with localized electrons direct a functionalized separator toward dendrite-free and high loading LiFePO4 for lithium metal batteries [J]. Journal of Energy Chemistry, 2022, 75(12): 38-45. |
[15] | Shan Yi, Zhe Su, Wanyu Zhang, Hongli Chen, Yayun Zhang, Bo Niu, Donghui Long. An ion-released MgI2-doped separator inducing a LiI-containing solid electrolyte interphase for dendrite-free Li metal anodes [J]. Journal of Energy Chemistry, 2022, 75(12): 83-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||