Journal of Energy Chemistry ›› 2023, Vol. 81 ›› Issue (6): 93-100.DOI: 10.1016/j.jechem.2023.02.018
Previous Articles Next Articles
Tianyun Liua, Xin Zhaoa, Xuefei Liua,*, Wenjun Xiaoa,*, Zijiang Luod, Wentao Wange,*, Yuefei Zhanga, Jin-Cheng Liub,c,*
Received:
2022-12-07
Revised:
2023-01-11
Accepted:
2023-02-09
Online:
2023-06-15
Published:
2023-06-13
Contact:
* E-mail addresses: 201307129@gznu.edu.cn (X. Liu), 460181694@gznu.edu.cn(W. Xiao), wuli8@163.com (W. Wang), liujincheng@nankai.edu.cn (J.-C. Liu).
Tianyun Liu, Xin Zhao, Xuefei Liu, Wenjun Xiao, Zijiang Luo, Wentao Wang, Yuefei Zhang, Jin-Cheng Liu. Understanding the hydrogen evolution reaction activity of doped single-atom catalysts on two-dimensional GaPS4 by DFT and machine learning[J]. Journal of Energy Chemistry, 2023, 81(6): 93-100.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2023.02.018
[1] Y.S.H. Najjar, Int. J. Hydrogen Energy 38 (2013) 10716-10728. [2] K. Mazloomi, C. Gomes, Renew. Sustain. Energy Rev. 16(2012) 3024-3033. [3] M. Ball, M. Weeda, in: Compendium of Hydrogen Energy, 2015, pp. 237-266. [4] D. Er, H. Ye, N.C. Frey, H. Kumar, J. Lou, V.B. Shenoy, Nano Lett. 18(2018) 3943-3949. [5] J. Wang, S. Qi, X. Song, Y. Qu, W. Li, M. Zhao, Appl. Surf. Sci. 495(2019) 143623-143628. [6] S. Martha, P. Chandra Sahoo, K.M. Parida, RSC Adv. 5(2015) 61535-61553. [7] P. Aggarwal, D. Sarkar, K. Awasthi, P.W. Menezes, Coord. Chem. Rev. 452(2022) 214289-214323. [8] X.-Y.Zhang, Y.u. Jing-Yi Xie, B.D. Ma, C.-G. Liu, Y.-M. Chai, Chem. Eng. J. 430(2022) 132312-132329. [9] F. Wang, T.A. Shifa, X. Zhan, Y. Huang, K. Liu, Z. Cheng, C. Jiang, J. He, Nanoscale 7 (2015) 19764-19788. [10] H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H. C. Manoharan, F. Abild-Pedersen, J.K. Norskov, X. Zheng, Nat. Mater. 15(2016) 348-364. [11] J. Lee, S. Kang, K. Yim, K.Y. Kim, H.W. Jang, Y. Kang, S. Han, J. Phys. Chem.Lett. 9(2018) 2049-2055. [12] B. Guo, K. Yu, H. Li, R. Qi, Y. Zhang, H. Song, Z. Tang, Z. Zhu, M. Chen, ACS Appl. Mater. Interfaces 9 (2017) 3653-3660. [13] G. Gao, A.P.O'Mullane, A. Du, ACS Catal. 7(2016) 494-500. [14] X. Wang, C. Wang, S. Ci, Y. Ma, T. Liu, L. Gao, P. Qian, C. Ji, Y. Su, J. Mater. Chem. A 8 (2020) 23488-23497. [15] Y. Cheng, L. Wang, Y. Song, Y. Zhang, J. Mater. Chem. A 7 (2019) 15862-15870. [16] X. Zou, Y. Zhang, Chem. Soc. Rev. 44(2015) 5148-5180. [17] X. Lv, W. Wei, H. Wang, B. Huang, Y. Dai, Appl. Catal. B 264 (2020) 118521-118552. [18] Y. Yan, J. Yang, J. Du, X. Zhang, Y.-Y.Liu, C. Xia, Z. Wei, Adv. Mater. 33(2021) 2008761-20087612. [19] Z. Ma, Z. Cui, C. Xiao, W. Dai, Y. Lv, Q. Li, R. Sa, Nanoscale 12 (2020) 1541-1550. [20] Y. Zhou, G. Gao, J. Kang, W. Chu, L.-W. Wang, J. Mater. Chem. A 7 (2019) 12050-12059. [21] Z. Cui, W. Du, C. Xiao, Q. Li, R. Sa, C. Sun, Z. Ma, Front. Phys. 15(2020) 63502-63513. [22] L. Zhang, Y. Jia, G. Gao, X. Yan, N. Chen, J. Chen, M.T. Soo, B. Wood, D. Yang, A. Du, X. Yao, Chem. 4(2018) 285-297. [23] B. Qiao, A. Wang, X. Yang, Lawrence F. Allard, Z. Jiang, Y.Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 3(2011) 634-641. [24] J. Liu, S. Duan, J. Xu, B. Qiao, Y. Lou, Microsc. Microanal. 22(2016) 860-861. [25] C. Choi, S. Back, N.-Y.Kim, J. Lim, Y.-H. Kim, Y. Jung, ACS Catal. 8(2018) 7517-7525. [26] J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren, X. Bao, Energ. Environ. Sci. 8(2015) 1594-1601. [27] J. Qian, T. Wang, B. Xia, P. Xi, D. Gao, Electrochim. Acta 296 (2019) 701-708. [28] D. Chen, Z. Chen, X. Zhang, Z. Lu, S. Xiao, B. Xiao, C.V. Singh, J. Energy Chem. 52(2021) 155-162. [29] A. Jain, M.B. Sadan, A. Ramasubramaniam, J. Phys. Chem. C 124 (2020) 12324-12336. [30] Y. Guan, D. Chaffart, G. Liu, Z. Tan, D. Zhang, Y. Wang, J. Li, L. Ricardez-Sandoval, Chem. Eng. Sci. 248(2022) 117224-117243. [31] X. Wan, Z. Zhang, W. Yu, Y. Guo, Mater. Rep.: Energy 1 (2021) 100046-100055. [32] L. Wu, T. Guo, T. Li, iScience 24 (2021) 102398-102415. [33] Z.W. Chen, Z. Lu, L.X. Chen, M. Jiang, D. Chen, C.V. Singh, Chem. Catal. 1(2021) 183-195. [34] Y. Ying, K. Fan, X. Luo, J. Qiao, H. Huang, J. Mater. Chem. A 9 (2021) 16860-16867. [35] X. Liu, T. Liu, W. Xiao, W. Wang, Y. Zhang, G. Wang, Z. Luo, J.-C.Liu, Inorg. Chem. Front. 9(2022) 4272-4280. [36] S. Wu, Z. Wang, H. Zhang, J. Cai, J. Li, Energy Environ. Mater. (2021) 1-7. [37] A. Chen, Z. Wang, X. Zhang, L. Chen, X. Hu, Y. Han, J. Cai, Z. Zhou, J. Li, Chem. Mater. 34(2022) 5571-5583. [38] Z. Wang, Y. Han, J. Cai, A. Chen, J. Li, J. Energy Chem. 71(2022) 56-62. [39] L. Wu, T. Guo, T. Li, Adv. Funct. Mater. 32(2022) 2203439-2203448. [40] J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 152(2005) J23-J26. [41] R. Sundararaman, W.A.Goddard 3rd, T.A.Arias, J. Chem. Phys. 146(2017) 114104-114117. [42] Y. Zhou, E. Song, J. Zhou, J. Lin, R. Ma, Y. Wang, W. Qiu, R. Shen, K. Suenaga, Q. Liu, J. Wang, Z. Liu, J. Liu, ACS Nano 12 (2018) 4486-4493. [43] Q. Yu, Y. Luo, S. Qiu, Q. Li, Z. Cai, Z. Zhang, J. Liu, C. Sun, B. Liu, ACS Nano 13 (2019) (1881) 11874-11881. [44] X. Wang, Y. Zhu, A. Vasileff, Y. Jiao, S. Chen, L. Song, B. Zheng, Y. Zheng, S.-Z.Qiao, ACS Energy Lett. 3(2018) 1198-1204. [45] K. Jiang, M. Luo, Z. Liu, M. Peng, D. Chen, Y.R. Lu, T.S. Chan, F.M.F. de Groot, Y.Tan, Nat. Commun. 12(2021) 1-10. [46] F. Podjaski, D. Weber, S. Zhang, L. Diehl, R. Eger, V. Duppel, E. Alarcón-Lladó, G. Richter, F. Haase, A. Fontcuberta i Morral, C.Scheu, B.V. Lotsch, Nat. Catal. 3(2019) 55-63. [47] C. Wang, Y. Liu, J. Yuan, P. Wu, W. Zhou, J. Energy Chem. 41(2020) 107-114. [48] J. Yao, W. Huang, W. Fang, M. Kuang, N. Jia, H. Ren, D. Liu, C. Lv, C. Liu, J. Xu, Q. Yan, Small Methods 4 (2020) 2000494-2000517. [49] B. You, M.T. Tang, C. Tsai, F. Abild-Pedersen, X. Zheng, H. Li, Adv. Mater. 31(2019) 1807001-18070028. [50] G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169-11186. [51] S. Grimme, J. Comput. Chem. 27(2006) 1787-1799. [52] M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110(1999) 5029-5036. [53] P.E. Blochl, Phys. Rev. B 50 (1994) 17953-17979. [54] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192. [55] J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118(2003) 8207-8215. [56] G. Henkelman, A. Arnaldsson, H. Jo´ nsson, Comput.Mater. Sci. 36(2006) 354-360. [57] V. Wang, N. Xu, J.-C.Liu, G. Tang, W.-T. Geng, Comput. Phys. Commun. 267(2021) 108033-108051. [58] S. Nosé, J. Chem. Phys. 81(1984) 511-519. [59] W.G. Hoover, Phys. Rev. A 31 (1985) 1695-1697. [60] Computational Chemistry Comparison and Benchmark Database. http://cccbdb.nist.gov/. [61] T. He, G. Gao, L. Kou, G. Will, A. Du, J. Catal. 354(2017) 231-235. [62] X. Liu, Z. Gao, V. Wang, Z. Luo, B. Lv, Z. Ding, Z. Zhang, ACS Appl. Mater. Interfaces 12 (2020) 17055-17061. [63] V.O. Özçelik, H.H. Gurel, S. Ciraci, Phys. Rev. B 88 (2013) 045440-045450. [64] M.M. Ugeda, D. Fernandez-Torre, I. Brihuega, P. Pou, A.J.Martinez-Galera, R.Perez, J.M. Gomez-Rodriguez, Phys. Rev. Lett. 107(2011) 116803-116807. [65] P.W. Ayers, R.G. Parr, J. Am. Chem.Soc. 122(2000) 2010-2018. [66] L.M. Molina, J.A. Alonso, J. Phys. Chem. C 111 (2007) 6668-6677. [67] S. Zheng, T. Yu, J. Lin, H. Lou, H. Xu, G. Yang, J. Mater. Chem. A 7 (2019) 25665-25671. [68] Z. Zheng, L. Yu, M. Gao, X. Chen, W. Zhou, C. Ma, L. Wu, J. Zhu, X. Meng, J. Hu, Y. Tu, S. Wu, J. Mao, Z. Tian, D. Deng, Nat. Commun. 11(2020) 3315-3324. [69] Y. Li, Q. Gu, B. Johannessen, Z. Zheng, C. Li, Y. Luo, Z. Zhang, Q. Zhang, H. Fan, W. Luo, B.L. d, S. Dou, H. Liu, Nano Energy 84 (2021) 105898-105905. [70] H. Niu, X. Wang, C. Shao, Y. Liu, Z. Zhang, Y. Guo, J. Mater. Chem. A 8 (2020) 6555-6563. [71] P. Li, J. Zhu, A.D. Handoko, R. Zhang, H. Wang, D. Legut, X. Wen, Z. Fu, Z.W. Seh, Q. Zhang, J. Mater. Chem. A 6 (2018) 4271-4278. [72] H. Wang, C. Tsai, D. Kong, K. Chan, F. Abild-Pedersen, J.K. Nørskov, Y. Cui, Nano Res. 8(2015) 566-575. [73] P.E. Blochl, R. Dronskowski, J. Phys. Chem. 97(1993) 8617-8624. [74] A. Chen, X. Zhang, L. Chen, S. Yao, Z. Zhou, J. Phys. Chem. C 124 (2020) 22471-22478. [75] S.-H.Wang, H.S. Pillai, S. Wang, E.K. Luke, H.X. Achenie, Nat. Commun. 12(2021) 1-9. [76] X. Liu, C. Cai, W. Zhao, H.-J.Peng, T. Wang, ACS Catal. 12(2022) 4252-4260. [77] S. Lu, Q. Zhou, Y. Ouyang, Y. Guo, Q. Li, J. Wang, Nat. Commun. 9(2018) 3405. [78] E.F. Holby, G. Wang, P. Zelenay, ACS Catal. 10(2020) 14527-14539. [79] X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen, S. Huang, ACS Catal. 9(2019) 11042-11054. [80] P. Li, Y. Jiang, Y. Hu, Y. Men, Y. Liu, W. Cai, S. Chen, Nat. Catal. 5(2022) 900-911. [81] H. Zhao, H. Cao, Z. Zhang, Y.-G.Wang, ACS Catal. 12(2022) 11380-11390. |
[1] | Jiwon Kim, Talshyn Begildayeva, Jayaraman Theerthagiri, Cheol Joo Moon, Ahreum Min, Seung Jun Lee, Gyeong-Ah Kim, Myong Yong Choi. Manifolding active sites and in situ/operando electrochemical-Raman spectroscopic studies of single-metal nanoparticle-decorated CuO nanorods in furfural biomass valorization to H2 and 2-furoic acid [J]. Journal of Energy Chemistry, 2023, 84(9): 50-61. |
[2] | Jinho Ahn, Hyunyoung Park, Wonseok Ko, Yongseok Lee, Jungmin Kang, Seokjin Lee, Sangyeop Lee, Eunji Sim, Kyuwook Ihm, Jihyun Hong, Jung-Keun Yoo, Kyojin Ku, Jongsoon Kim. Occurrence of anionic redox with absence of full oxidation to Ru5+ in high-energy P2-type layered oxide cathode [J]. Journal of Energy Chemistry, 2023, 84(9): 153-161. |
[3] | Zhengqin Zhao, Jinbo Hao, Baonan Jia, Xinhui Zhang, Ge Wu, Chunling Zhang, Long Li, Shuli Gao, Yirong Ma, Yuanzi Li, Pengfei Lu. Transition metal embedded in nonmetal-doped T-carbon [110]: A superior synergistic trifunctional electrocatalyst for HER, OER and ORR [J]. Journal of Energy Chemistry, 2023, 83(8): 79-89. |
[4] | Xin Xie, Yunxiao Fan, Wanyu Tian, Meng Zhang, Jialin Cai, Xingang Zhang, Jie Ding, Yushan Liu, Siyu Lu. Construction of Ru/WO3 with hetero-interface structure for efficient hydrogen evolution reaction [J]. Journal of Energy Chemistry, 2023, 83(8): 150-157. |
[5] | Yifei Li, Xilin Yuan, Ping Wang, Lulin Tang, Miao He, Pangen Li, Jiang Li, Zhenxing Li. Rare earth alloy nanomaterials in electrocatalysis [J]. Journal of Energy Chemistry, 2023, 83(8): 574-594. |
[6] | Xiaofei Cao, Siqian Xing, Duo Ma, Yuan Tan, Yucheng Zhu, Jun Hu, Yao Wang, Xi Chen, Zhong Chen. Design of high-performance ion-doped CoP systems for hydrogen evolution: From multi-level screening calculations to experiment [J]. Journal of Energy Chemistry, 2023, 82(7): 307-316. |
[7] | Xiang Peng, Song Xie, Shijian Xiong, Rong Li, Peng Wang, Xuming Zhang, Zhitian Liu, Liangsheng Hu, Biao Gao, Peter Kelly, Paul K. Chu. Ultralow-voltage hydrogen production and simultaneous Rhodamine B beneficiation in neutral wastewater [J]. Journal of Energy Chemistry, 2023, 81(6): 574-582. |
[8] | Jinli Chen, Tianqi Yu, Zhixiang Zhai, Guangfu Qian, Shibin Yin. Coupling interface engineering with electronic interaction toward high-efficiency H2 evolution in pH-universal electrolytes [J]. Journal of Energy Chemistry, 2023, 80(5): 535-541. |
[9] | Athira Krishnan, Muhsina Yoosuf, K. Archana, A.S. Arsha, Amritha Viswam. Metal derivative (MD)/g-C3N4 association in hydrogen production:A study on the fascinating chemistry behind, current trend and future direction [J]. Journal of Energy Chemistry, 2023, 80(5): 562-583. |
[10] | Seunghwan Jo, Wenxiang Liu, Yanan Yue, Ki Hoon Shin, Keon Beom Lee, Hyeonggeun Choi, Bo Hou, Jung Inn Sohn. Novel ternary metals-based telluride electrocatalyst with synergistic effects of high valence non-3d metal and oxophilic Te for pH-universal hydrogen evolution reaction [J]. Journal of Energy Chemistry, 2023, 80(5): 736-743. |
[11] | An Chen, Junfei Cai, Zhilong Wang, Yanqiang Han, Simin Ye, Jinjin Li. An ensemble learning classifier to discover arsenene catalysts with implanted heteroatoms for hydrogen evolution reaction [J]. Journal of Energy Chemistry, 2023, 78(3): 268-276. |
[12] | Zi-Xin Ge, Yu Ding, Tian-Jiao Wang, Feng Shi, Pu-Jun Jin, Pei Chen, Bin He, Shi-Bin Yin, Yu Chen. Interfacial engineering of holey platinum nanotubes for formic acid electrooxidation boosted water splitting [J]. Journal of Energy Chemistry, 2023, 77(2): 209-216. |
[13] | Jia Wu, Zhixiang Zhai, Tianqi Yu, Xizi Wu, Shuaiqin Huang, Wenqing Cao, Yixuan Jiang, Jinge Pei, Shibin Yin. Tailoring the selective adsorption sites of NiMoO by Ni particles for biomass upgrading assisted hydrogen production [J]. Journal of Energy Chemistry, 2023, 86(11): 480-489. |
[14] | Qiqi Mao, Wenxin Wang, Kai Deng, Hongjie Yu, Ziqiang Wang, You Xu, Xiaonian Li, Liang Wang, Hongjing Wang. Low-content Pt-triggered the optimized d-band center of Rh metallene for energy-saving hydrogen production coupled with hydrazine degradatio [J]. Journal of Energy Chemistry, 2023, 85(10): 58-66. |
[15] | Yubin Kuang, Wei Qiao, Fulin Yang, Ligang Feng. Electrochemical hydrogen evolution efficiently boosted by interfacial charge redistribution in Ru/MoSe2 embedded mesoporous hollow carbon spheres [J]. Journal of Energy Chemistry, 2023, 85(10): 447-454. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||