Journal of Energy Chemistry ›› 2023, Vol. 85 ›› Issue (10): 108-115.DOI: 10.1016/j.jechem.2023.06.004
Previous Articles Next Articles
Junyi Penga, Qiang Zhanga,*, Yang Zhoub, Xiaohui Yangc,*, Fang Guoa, Junqiang Xua,*
Received:
2023-03-24
Revised:
2023-05-30
Accepted:
2023-06-06
Online:
2023-10-15
Published:
2023-11-06
Contact:
*E-mail addresses: Junyi Peng, Qiang Zhang, Yang Zhou, Xiaohui Yang, Fang Guo, Junqiang Xu. Cold plasma-activated Cu-Co catalysts with CN vacancies for enhancing CO2 electroreduction to low-carbon alcohol[J]. Journal of Energy Chemistry, 2023, 85(10): 108-115.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2023.06.004
[1] A. Ozden, F.P.G.Arquer, J.N.E.Huang, J. Wicks, J. Sisler, R.K. Miao, C.P. O’Brien, G.H. Lee, X. Wang, A.H. Ip, E.H. Sargent, D. Sinton, Nat. Sustain. 5(2022) 563-573. [2] B.P. Yang, K. Liu, H. Jing, W. Li, C.X. Liu, J.W. Fu, H.M. Li, J.N.E.Huang, P.F. Ou, T. Alkayyali, C.Cai, Y.X. Duan, H. Liu, P.D. An, N. Zhang, W.Z. Li, X.Q. Qiu, C.K. Jia, J. H. Hu, L.Y. Chai, Z. Lin, Y.L. Gao, M. Miyauchi, E. Cortés, S.A. Maier, M. Liu, J. Am. Chem. Soc. 144(2022) 3039-3049. [3] Y. Xie, P.F. Ou, X. Wang, Z.Y. Xu, Y.G.C.Li, Z.Y. Wang, J.N.E.Huang, J. Wicks, C. Mccallum, N. Wang, Y.H. Wang, T.X. Chen, B.T.W. Lo, D. Sinton, J.C. Yu, Y. Wang, E.H. Nat. Catal. 5(2022) 564-570. [4] Q. Zhang, J.L. Wang, F. Guo, G. He, X.H. Yang, W. Li, J.Q. Xu, Z.Y. Yin, J. Energy Chem.(2023), https://doi.org/10.1016/j.jechem.2023.05.008. [5] A.B. He, Y. Yang, Q. Zhang, M. Yang, Q. Zou, J. Du, C.Y. Tao, Z.H. Liu,Chem. Eng. J. 450(2022). [6] B. Cao, F.Z. Li, J. Gu, ACS Catal. 12(2022) 9735-9752. [7] Z.L. Zhao, G. Lu, Adv. Energy Mater. 3(2022) 2203138. [8] Y. Yang, A.B. He, H. Li, Q. Zou, Z.H. Liu, C.Y. Tao, J. Du, ACS Catal. 12(2022) 12942-12953. [9] R.O. Yang, J.Y. Duan, P.P. Dong, Q.L. Wen, M. Wu, Y.W. Liu, Y. Liu, H.Q. Li, T.Y. Zhai, Angew. Chem. Int. Edit. 61(2022) e202116706. [10] H.F. Li, T.F. Liu, P.F. Wei, L. Lin, D.F. Gao, G.X. Wang, X.H. Bao, Angew. Chem. Int. Edit. 60(2021) 14329. [11] R. Yang, Z.P. Zeng, Z. Peng, J.F. Xie, Y.Y. Huang, Y.B. Wang, J. Energy. Chem. 61(2021) 290-296. [12] Q.C. Yang, X.L. Liu, W. Peng, Y. Zhao, Z.X. Liu, M. Peng, Y.R. Lu, T.S. Chan, X.D. Xu, Y.W. Tan, J. Mater. Chem. 9(2021) 3044. [13] C.Y. Zhu, Z.B. Zhang, L.X. Zhong, S.W. Zhao, G.S. Sh, B.W. Wu, H.L. Gu, J. Wu, X.Y. Gao, K.H. Liu, L.M. Zhang, J. Energy Chem. 70(2022) 382-387. [14] J.H. Wang, H. Yang, Q.Q. Liu, Q. Liu, X.T. Li, X.Z. Lv, T. Cheng, H.B. Wu, ACS Energy. Lett. 6(2021) 437-444. [15] F. Hu, L. Yang, Y.W. Jiang, C.X. Duan, X.N. Wang, L.J. Zeng, X.F. Lv, D.L. Duan, Q. Liu, T.T. Kong, J.J.R.Long, Y.J. Xiong, Angew. Chem. Int. Edit. 60(2021) 26122-26127. [16] J.J. Wu, S.C. Ma, J. Sun, J.I. Gold, C.S. Tiwary, B. Kim, L.Y. Zhu, N. Chopra, I.N. Odeh, R. Vajtai, A.Z. Yu, R. Luo1, J.Lou, G.Q. Ding, P.J.A. Kenis, P.M. Ajayan, Nat. Commun. 7(2016) 13869. [17] H.H. Zhang, C. Xu, X.W. Zhan, Y. Yu, K.F. Zhang, Q.Q. Luo, S. Guo, J.L. Yang, Y. Xie, Nat. Commun. 13(2022) 6029. [18] B. Mohanty, S. Basu, B.K. Jena, J. Energy Chem. 70(2022) 444-471. [19] N. Sakamoto, Y.F. Nishimura, T. Nonaka, M. Ohashi, N. Ishida, K. Kitazumi, Y. Kato, K. Sekizawa, T. Morikawa, T. Arai, ACS Catal. 10(2020) 10412-10419. [20] Y.C. Tan, K.B. Lee, H. Song, J.H. Oh, Joule. 4(2020) 1104-1120. [21] D.F. Gao, R.M.Aran-Ais, H.S. Jeon, B.R. Cuenya, Nat. Catal. 2(2019) 198-210. [22] H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H. C. Manoharan, F. Nat, Mater. 15(2016) 48-53. [23] D. Le, T.B. Rawal, T.S. Rahman, J. Phys. Chem.C. 118(2014) 5346-5351. [24] Q. Zhang, J.L. Wang, F. Guo, Y. Zhou, G. He, J.Q. Xu, Chem. Commun. 59(2023) 203-206. [25] G.Y. Duan, X.Q. Li, G.R. Ding, L.J. Han, B.H. Xu, S.J. Zhang, Angew. Chem. Int. Edit. 61(2022) e202110657. [26] Z.Z. Niu, F.Y. Gao, X.L. Zhang, P.P. Yang, R. Liu, L.P. Chi, Z.Z. Wu, S. Qin, X.X. Yu, M. R. Gao, J. Am. Chem.Soc. 143(2021) 8011-8021. [27] C.L. Xiao, J. Zhang, ACS Nano. 15(2021) 7975-8000. [28] H. Xie, R.K. Xie, Z.Y. Zhang, Y.Y. Pang, Y.T. Luo, J. Li, B.L. Liu, M.M. Titirici, G.L. Chai, J. Energy Chem. 79(2023) 312-320. [29] L.X. Zhou, R.T. Lv, J. Energy Chem. 70(2022) 310-331. [30] Q.X. Xie, G.O. Larrazábal, M. Ma, I. Chorkendorff, B. Seger, J.S. Luo, J. Energy Chem. 63(2021) 278-284. [31] J.F. Huang, T.Y. Yang, K. Zhao, S.Q. Chen, Q. Huang, Y. Han, J. Energy Chem. 62(2021) 71-102. [32] A. Herzog, A. Bergmann, H.S. Jeon, J. Timoshenko, S. Kuehl, C. Rettenmaier, M.L. Luna, F.T. Haase, B.R. Cuenya, Angew. Chem. Int. Edit. 60(2021) 7426-7435. [33] M. Zheng, P.T. Wang, X. Zhi, K. Yang, Y. Jiao, J.J. Duan, Y. Zheng, S.Z. Qiao, J. Am. Chem.Soc. 144(2022) 14936-14944. [34] J. Yin, Z.Y. Yin, J. Jin, M.Z. Sun, B.L. Huang, H.H. Lin, Z.H. Ma, M. Muzzio, M.Q. Shen, C. Yu, H. Zhang, Y. Peng, P.X. Xi, C.H. Yan, S.H. Sun, J. Am. Chem.Soc. 143(2021) 15335-15343. [35] Q. Zhang, S.H. Tao, J. Du*, A.B. He, Y. Yang, C.Y. Tao, J. Mater. Chem. A. 8(2020) 8410-8420. [36] Q. Zhang, A.B. He, Y. Yang, J. Du, Z.H. Liu, C.Y. Tao, J. Mater. Chem.A. 7(2019) 24337-24346. [37] J.Y. Kim, W. Park, C. Choi, G. Kim, K.M. Cho, J. Lim, S.J. Kim, A. Al-Saggaf, I. Gereige, H. Lee, W.B. Jung, Y. Jung, H.T. Jung, ACS Catal. 11(2021) 5658-5665. [38] Q. Zhang, J. Du, A.B. He, Z.H. Liu, C.Y. Tao, J. CO2.UTIL. 34(2019) 635-645. [39] B.H. Ren, J.D. Li, G.B. Wen, L. Ricardez-Sandoval, E. Croiset, J. Phys.Chem C. 122(2018) 21151-21161. [40] A. Seifitokaldani, C.M. Gabardo, T. Burdyny, C.T. Dinh, J.P. Edwards, M.G. Kibria, O.S. Bushuyev, S.O. Kelley, D. Sinton, E.H. Sargent, J. Am. Chem.Soc. 140(2018) 3833-3837. [41] D.F. Gao, Y. Zhang, Z.W. Zhou, F. Cai, X.F. Zhao, W.G. Huang, Y.S. Li, J.F. Zhu, P. Liu, F. Yang, G.X. Wang, X.H. Bao, J. Am. Chem.Soc. 139(2017) 2652-2655. [42] Z.L. Zhao, G. Lu, ACS Catal. 8(2018) 3885-3894. [43] C.N. Cui, H. Wang, X.L. Zhu, J.Y. Han, Q.F. Ge, Sci. China. Chem. 58(2015) 607-613. [44] Z. Liang, L.P. Song, M.Z. Sun, B.L. Huang, Y.P. Du, Sci. Adv. 7 (2021) eabl4915. [45] K. Zhang, M.Q. Wang, T. Liu, Z.Y. Chu, W.Q. Jin, ACS. Appl. Mater. Interfaces. 14(2022) 40569-40578. [46] X.T. Yuan, S. Chen, D.F. Cheng, L.L. Li, W.J. Zhu, D.Z. Zhong, Z.J. Zhao, J.K. Li, T. Wang, J.L. Gong, Angew. Chem. Int. Edit. 60(2021) 15344-15347. [47] Z. Cheng, X.D. Wang, H.P. Yang, X.Y. Yu, Q. Lin, Q. Hu, C.X. He, J. Energy. Chem. 54(2021) 1-6. [48] X.D. Xuan, K.Y. Jiang, S.H. Huang, B.X. Feng, F. Qiu, S. Han, J.H. Zhu, X.D. Zhuang, J. Mater. Sci. 57(2022) 10129-10140. [49] Y. Liu, D.D. He, Y.J. Cheng, L. Li, Z.S. Lu, R. Liang, Y.Y. Fan, Y. Qiao, S.L. Chou, A Small. 16(2020) 1906946. [50] A. Rana, Y.M. Lee, X.L. Li, S. Fukuzumi, W. Nam, ACS Catal. 11(2021) 3073-3083. [51] Z.Y. Yu, Y. Duan, J.D. Liu, Y. Chen, X.K. Liu, W. Liu, T. Ma, Y. Li, X.S. Zheng, T. Yao, M. R. Gao, J.F. Zhu, B.J. Ye, S.H. Yu, Nat. Commun. 10(2019) 2799. [52] X. Yang, J. Cheng, X. Yang, Y. Xu, W.F. Sun, J.H. Zhou,Chem. Eng. J. 431(2022). [53] X.D. Li, Y.F. Sun, J.Q. Xu, Y.J. Shao, J. Wu, X.L. Xu, Y. Pan, H.X. Ju, J.F. Zhu, Y. Xie, Nat. Energy. 4(2019) 690-699. [54] D.F. Cheng, Z.J. Zhao, G. Zhang, P.P. Yang, L.L. Li, H. Gao, S.H. Liu, I. Chang, S. Chen, T. Wang, G.A. Ozin, Z. Liu, J. Gong, Nat. Commun. 12(2021) 395. |
[1] | Haipeng Chen, Chenwei Wang, Mengyang Zheng, Chenlei Liu, Wenqiang Li, Qingfeng Yang, Shixue Zhou, Xun Feng. Reactive ball-milling synthesis of Co-Fe bimetallic catalyst for efficient hydrogenation of carbon dioxide to value-added hydrocarbons [J]. Journal of Energy Chemistry, 2023, 84(9): 210-218. |
[2] | Qiang Zhang, Jianlin Wang, Fang Guo, Ge He, Xiaohui Yang, Wei Li, Junqiang Xu, Zongyou Yin. Nitrogen cold plasma treatment stabilizes Cu0/Cu+ electrocatalysts to enhance CO2 to C2 conversion [J]. Journal of Energy Chemistry, 2023, 84(9): 321-328. |
[3] | Dongmei He, Ru Li, Baibai Liu, Qian Zhou, Hua Yang, Xuemeng Yu, Shaokuan Gong, Xihan Chen, Baomin Xu, Shangfeng Yang, Jiangzhao Chen. Unraveling abnormal buried interface anion defect passivation mechanisms depending on cation-induced steric hindrance for efficient and stable perovskite solar cells [J]. Journal of Energy Chemistry, 2023, 80(5): 1-9. |
[4] | Houan Ren, Xiaoyu Wang, Xiaomei Zhou, Teng Wang, Yuping Liu, Cai Wang, Qingxin Guan, Wei Li. In-situ constructing Cu1Bi1 bimetallic catalyst to promote the electroreduction of CO2 to formate by synergistic electronic and geometric effects [J]. Journal of Energy Chemistry, 2023, 79(4): 263-271. |
[5] | Alessandro Vomeri, Marta Stucchi, Alberto Villa, Claudio Evangelisti, Andrea Beck, Laura Prati. New insights for the catalytic oxidation of cyclohexane to K-A oil [J]. Journal of Energy Chemistry, 2022, 70(7): 45-51. |
[6] | Jaylin Sasson Bitters, Tina He, Elizabeth Nestler, Sanjaya D. Senanayake, Jingguang G.Chen, Cheng Zhang. Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane [J]. Journal of Energy Chemistry, 2022, 68(5): 124-142. |
[7] | Yiming Leng, Bolong Yang, Yun Zhao, Zhonghua Xiang. Fluorinated bimetallic nanoparticles decorated carbon nanofibers as highly active and durable oxygen electrocatalyst for fuel cells [J]. Journal of Energy Chemistry, 2022, 73(10): 549-555. |
[8] | Le He, Xiaoxiao Gong, Linmin Ye, Xinping Duan, Youzhu Yuan. Synergistic effects of bimetallic Cu-Fe/SiO2 nanocatalysts in selective hydrogenation of diethyl malonate to 1,3-propanediol [J]. Journal of Energy Chemistry, 2016, 25(6): 1038-1044. |
[9] | Zhijian Xu, Bin Qi, Lanbo Di, Xiuling Zhang. Partially crystallized Pd nanoparticles decorated TiO2 prepared by atmospheric-pressure cold plasma andits enhanced photocatalytic performance [J]. Journal of Energy Chemistry, 2014, 23(6): 679-683. |
[10] | Huali Long, Yan Xu, Xiaoqing Zhang, Shijing Hu, Shuyong Shang, Yongxiang Yin, Xiaoyan Dai. Ni-Co/Mg-Al catalyst derived from hydrotalcite-like compound prepared by plasma for dry reforming of methane [J]. Journal of Energy Chemistry, 2013, 22(5): 733-739. |
[11] | Tingzhen Li, Hulin Wang, Yong Yang, Hongwei Xiang, Yongwang Li. Effect of manganese on the catalytic performance of an iron-manganese bimetallic catalyst for light olefin synthesis [J]. Journal of Energy Chemistry, 2013, 22(4): 624-632. |
[12] | Pan Qin, Huiyuan Xu, Huali Long, Yi Ran, Shuyong Shang, Yongxiang Yin*, Xiaoyan Dai. Ni/MgO catalysts prepared using atmospheric high-frequency discharge plasma for CO2 reforming of methane [J]. Journal of Energy Chemistry, 2011, 20(5): 487-492. |
[13] | Florica Papa, Catalin Negrila, Gianina Dobrescu, Akane Miyazaki, Ioan Balint*. Preparation, characterization and catalytic behavior of Pt-Cu nanoparticles in methane combustion [J]. Journal of Energy Chemistry, 2011, 20(5): 537-542. |
[14] | Liqiong Huang;Wei Chu*;Tao Zhang;Yongxiang Yin;Xumei Tao. Preparation of novel Ni-Ir/r-Al2O3 catalyst via high-frequency cold plasma direct reduction process [J]. Journal of Energy Chemistry, 2009, 18(1): 35-38. |
[15] | S. Tajammul Hussain*;Sheraz Gul;Muhammed Mazhar;Dalaver H. Anjum;Faical Larachi. Effect of surface structure on the catalytic behavior of Ni:Cu/Al and Ni:Cu:K/Al catalysts for methane decomposition [J]. Journal of Energy Chemistry, 2008, 17(4): 374-382. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||