Journal of Energy Chemistry ›› 2023, Vol. 86 ›› Issue (11): 146-157.DOI: 10.1016/j.jechem.2023.07.018
Previous Articles Next Articles
Quan Zhanga,b,c, Jianqi Wanga,b,c, Guohua Liua,b,c,d,*
Received:
2023-05-24
Revised:
2023-07-17
Accepted:
2023-07-23
Online:
2023-11-15
Published:
2023-11-07
Contact:
*E-mail address: liugh@nankai.edu.cn (G. Liu).
About author:
1These authors contributed equally to this work.
Quan Zhang, Jianqi Wang, Guohua Liu. Auxiliary guidance manufacture and revealing potential mechanism of perovskite solar cell using machine learning[J]. Journal of Energy Chemistry, 2023, 86(11): 146-157.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2023.07.018
[1] K. Sivula, R. van de Krol, Nat.Rev. Mater. 1(2016) 15010. [2] C. Gao, D.X. Du, D. Ding, F.Y. Qiao, W.Z. Shen, J. Mater. Chem. A 10 (2022) 10811-10828. [3] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat. Mater. 13(2014) 897-903. [4] A.K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 119(2019) 3036-3103. [5] S. Gu, R.X. Lin, Q.L. Han, Y. Gao, H.R. Tan, J. Zhu, Adv. Mater. 32(2020) 1907392. [6] Y.Y. Li, Y. Lu, X.M. Huo, D. Wei, J. Meng, J. Dong, B. Qiao, S.L. Zhao, Z. Xu, D.D. Song, RSC Adv. 11(2021) 15688-15694. [7] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem.Soc. 131(2009) 6050. [8] A. Mannodi-Kanakkithodi, G.M. Treich, T.D. Huan, R. Ma, M. Tefferi, Y. Cao, G.A. Sotzing, R. Ramprasad, Adv. Mater. 28(2016) 6277-6291. [9] V. Botu, J. Chapman, R. Ramprasad, Comp. Mater. Sci. 129(2016) 332-335. [10] C. Kim, G. Pilania, R. Ramprasad, Chem. Mater. 28(2016) 1304-1311. [11] C. Kim, T.D. Huan, S. Krishnan, R. Ramprasad,Sci. Data 4(2017). [12] M. Kim, G.H. Kim, T.K. Lee, I.W. Choi, Y. Jo, Y.J. Yoon, J.W. Kim, J. Lee, D. Huh, H. Lee, S.K. Kwak, J.Y. Kim, D.S. Kim, Joule 3 (2019) 2179-2192. [13] S. Gharibzadeh, B.A. Nejand, M. Jakoby, T. Abzieher, D. Hauschild, S. Moghadamzadeh, J.A. Schwenzer, P. Brenner, R. Schmager, A.A. Haghighirad, L. Weinhardt, U. Lemmer, B.S. Richards, I.A. Howard, U.W. Paetzold, Adv. Energy. Mater. 9(2019) 1803699. [14] L.N. Quan, M.J. Yuan, R. Comin, O. Voznyy, E.M. Beauregard, S. Hoogland, A. Buin, A.R. Kirmani, K. Zhao, A. Amassian, D.H. Kim, E.H. Sargent, J. Am. Chem.Soc. 138(2016) 2649-2655. [15] X. Yang, Y.F. Wang, R. Byrne, G. Schneider, S.Y. Yang, Chem. Rev. 119(2019) 10520-10594. [16] J.G. Greener, S.M. Kandathil, L. Moffat, D.T. Jones, Nat. Rev. Mol. Cell Bio. 23(2022) 40-55. [17] Q. Zhang, Q. Du, G.H. Liu, J. Neural Eng. 18 (2021). [18] T.Y. Liu, X. Zhao, X.F. Liu, W.J. Xiao, Z.J. Luo, W.T. Wang, Y.F. Zhang, J.C. Liu, J. Energy Chem. 81(2023) 90-100. [19] X.T. Fan, X.J. Wen, Y.B. Zhuang, J. Chen, J. Energy Chem. 82(2023) 239-247. [20] J.Q. Wang, Q. Zhang, G.H. Liu,Meas. Sci. Technol. 33(2022). [21] W. Liu, N. Meng, X.M. Huo, L. Yao, X.F. Huang, Z.Q. Liang, S.L. Zhao, B. Qiao, Z.Q. Liang, B. Qiao, Z.Q. Liang, Z. Xu, D.D. Song, J. Energy Chem. 83(2023) 128-137. [22] P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, A.J. Norquist, Nature 533 (2016) 73-76. [23] W.S. Yan, Y.M. Liu, Y. Zang, J.H. Cheng, Y. Wang, L. Chu, X.Y. Tan, L. Liu, P. Zhou, W.N. Li, Z.C. Zhong, Nano Energy 99 (2022). [24] K.A. Brown, S. Brittman, N. Maccaferri, D. Jariwala, U. Ceano, Nano Lett. 20(2020) 2-10. [25] S.R. Kalidindi, M. De Graef, Annu. Rev. Mater. Res. 45(2015) 171-193. [26] Y.M. Liu, X.Y. Tan, J. Liang, H.W. Han, P. Xiang, W.S. Yan, Adv. Funct. Mater. 33(2023) 2214271. [27] J.X. Li, B. Pradhan, S. Gaur, J. Thomas, Adv. Energy. Mater. 4(2018) 29. [28] T. Zhou, S. Jhamb, X.D. Liang, K. Sundmacher, R. Gani, Chem. Eng. Sci. 183(2018) 95-105. [29] Y.M. Liu, W.S. Yan, S.C. Han, H. Zhu, Y.T. Tu, L. Guan, X.Y. Tan, Sol. RRL 6 (2022) 2101100. [30] Y.J. Hu, X.B. Hu, L. Zhang, T. Zheng, J.X. You, B.X. Jia, Y.B. Ma, X.Y. Du, L. Zhang, J. C. Wang, B. Che, T. Chen, S.Z. Liu, Adv. Energy. Mater. 12(2022) 2201463. [31] M. del Cueto, C. Rawski-Furman, J. Aragó, E. Orti, A. Troisi, J. Phys. Chem. C 126 (2022) 13053-13061. [32] Y.Q. Kang, L.J. Li, B.H. Li, J. Energy Chem. 54(2021) 72-88. [33] S. Karthick, O.M. Nwakanma, B. Mercyrani, J. Boucle, S. Velumani, Adv. Theor. Simul. 4(2021) 2100121. [34] Z.H. Bakr, Q. Wali, A. Fakharuddin, L. Schmidt-Mende, T.M. Brown, R. Jose, Nano Energy 34 (2017) 271-305. [35] J.M. Foster, H.J. Snaith, T. Leijtens, T. Leijtens, G. Richardson, Siam J. Appl. Math. 74(2014) 1935. [36] R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, NPJ Comput. Mater. 3(2017) 54. [37] Y.M. Liu, W.S. Yan, H. Zhu, Y.T. Tu, L. Guan, X.Y. Tan,Org. Electron. 101(2022). [38] T.J. Jacobsson, A. Hultqvist, A. Garcia-Fernandez, A. Anand, A. Al-Ashouri, A. Hagfeldt, A. Crovetto, A. Abate, A.G. Ricciardulli, A. Vijayan, A. Kulkarni, A.Y. Anderson, B.P. Darwich, B.W. Yang, B.L. Coles, C.A.R. Perini, C. Rehermann, D. Ramirez, D. Fairen-Jimenez, D. Di Girolamo, D.L. Jia, E. Avila, E.J. Juarez-Perez, F. Baumann, F. Mathies, G.S.A. Gonzalez, G. Boschloo, G. Nasti, G. Paramasivam, G. Martinez-Denegri, H. Nasstrom, H. Michaels, H. Kobler, H. Wu, I. Benesperi, M.I. Dar, I.B. Pehlivan, I.E. Gould, J.N. Vagott, J. Dagar, J. Kettle, J. Yang, J.Z. Li, J.A. Smith, J. Pascual, J.J. Jeronimo-Rendon, J.F. Montoya, J.P. Correa-Baena, J.M. Qiu, J.X. Wang, K. Sveinbjornsson, K. Hirselandt, K. Dey, K. Frohna, L. Mathies, L.A. Castriotta, M.H. Aldamasy, M. Vasquez-Montoya, M.A. Ruiz-Preciado, M.A. Flatken, M.V. Khenkin, M. Grischek, M. Kedia, M. Saliba, M. Anaya, M. Veldhoen, N. Arora, O. Shargaieva, O. Maus, O.S. Game, O. Yudilevich, P. Fassl, Q.S. Zhou, R. Betancur, R. Munir, R. Patidar, S.D. Stranks, S. Alam, S. Kar, T. Unold, T. Abzieher, T. Edvinsson, T.W. David, U.W. Paetzold, W. Zia, W.F. Fu, W. W. Zuo, V.R.F. Schroder, W. Tress, X.L. Zhang, Y.H. Chiang, Z. Iqbal, Z.Q. Xie, E. Unger, Nat. Energy 7 (2022) 107-115. [39] Numpy. https://numpy.org/, 2023 (accessed 6 Fabray 2023). [40] SKlearn. https://scikit-learn.org/stable/, 2023 (accessed 7 Fabray 2023). [41] H.K. Tin, IEEE Trans. Pattern Anal. Mach. Intell. 20(1998) 832-844. [42] K.M. He, X.Y. Zhang, S.Q. Ren, J. Sun, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778. [43] D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Hoerantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, H.J. Snaith, Science 351 (2016) 151-155. [44] R.X. Lin, K. Xiao, Z.Y. Qin, Q.L. Han, C.F. Zhang, M.Y. Wei, M.I. Saidaminov, Y. Gao, J. Xun, M. Xiao, A.D. Lin, J. Zhu, E.H. Sargent, H.R. Tan, Nat. Energy 4 (2019) 864-873. [45] D. Godovsky, Org. Electron. 12(2011) 190-194. [46] B. Yilmaz, C. Odabasi, R. Yildirim, Energ. Technol. 10(2022) 2100948. [47] J. Diekmann, P. Caprioglio, M.H. Futscher, V.M. Le Corre, S. Reichert, F. Jaiser, M. Arvind, L.P. Toro, E. Gutierrez-Partida, F. Pena-Camargo, C. Deibel, B. Ehrler, T. Unold, T. Kirchartz, D. Neher, M. Stolterfoht, Sol. RRL 5 (2021) 2100219. [48] M. Burgelman, P. Nollet, S. Degrave, Thin Solid Films 361 (2000) 527-532. [49] N. Fakhri, M.S. Naderi, S.G. Farkoush, S. SaeidNahaei, S.N. Park, S.B. Rhee, Energies 14 (2021) 5944. [50] S. Zandi, P. Saxena, N.E. Gorji, Sol. Energy 197 (2020) 105-110. [51] S. He, A.B. Sproul, Thin Solid Films 519 (2010) 351-356. [52] K.W. Kemp, A.J. Labelle, S.M. Thon, A.H. Ip, I.J. Kramer, S. Hoogland, E.H. Sargent, Adv. Energy. Mater. 3(2013) 917-922. [53] X.X. Yin, C.L. Wang, D.W. Zhao, N. Shrestha, C.R. Grice, L. Guan, Z.N. Song, C. Chen, C.W. Li, G.L. Chi, B.J. Zhou, J.S. Yu, Z.H. Zhang, R.J. Ellingson, J. Zhou, Y.F. Yan, W.H. Tang, Nano Energy 51 (2018) 680-687. [54] H. Zhou, Q. Cheng, G. Li, S. Luo, T. Song, H. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 345 (2014) 542-546. [55] L.Y. Lin, L. Jiang, P. Li, H. Xiong, Z.J. Kang, B.D. Fan, Y. Qiu, Sol. Energy 198 (2020) 454-460. [56] Q.Y. Chen, Y. Huang, P.R. Huang, M. Tai, C. Chao, H. Yao,Chinese Phys. B 25(2016). [57] T. Minemoto, M. Murata, J. Appl. Phys. 116(2014). [58] Z.L. Zhu, J.N. Ma, Z.L. Wang, C. Mu, Z.T. Fan, L.L. Du, Y. Bai, L.Z. Fan, H. Yan, D.L. Phillips, S.H. Yang, J. Am. Chem.Soc. 136(2014) 3760-3763. [59] L. Jia, P.Y. Zhao, C.X. Wang, Y.R. Wang, Y. Hu, G.Y. Zhu, L.B. Ma, J. Liu, Z. Jin, J. Am. Chem.Soc. 139(2017) 14009-14012. [60] Z.B. Yang, C.C. Chueh, P.W. Liang, M. Crump, F. Lin, Z.L. Zhu, A.K.Y. Jen, Nano Energy 22 (2016) 328-337. [61] N. Li, Z.L. Zhu, J.W. Li, A.K.Y.Jen, L.D. Wang, Adv. Energy Mater. 8(2018) 1800525. [62] Q.K. Wang, R.B. Wang, P.F. Shen, C. Li, Y.Q. Li, L.J. Liu, S. Duhm, J.X. Tang, Adv. Mater. Interfaces. 2(2015) 1400528. [63] Y. Kim, E.H. Jung, G. Kim, D. Kim, B.J. Kim, J. Seo, Adv. Energy. Mater. 8(2018) 1801668. [64] H. Zhang, Q.W. Tian, W.C. Xiang, Y.C. Du, Z.T. Wang, Y.L. Liu, L.D. Liu, T.T. Yang, H.F. Wu, T. Nie, W.L. Huang, A. Najar, S.Z. Frank Liu, Adv. Mater. (2023) e2301140. [65] Q.F. Ye, F. Ma, Y. Zhao, S.Q. Y, Z.M. Chu, P.Q. Gao, X.W. Zhang, J.B. You, Small 16 (2020) 2005246. |
[1] | Jingyuan Zhao, Andrew F. Burke. Battery prognostics and health management for electric vehicles under industry 4.0 [J]. Journal of Energy Chemistry, 2023, 84(9): 30-33. |
[2] | Cheng He, Jianglong Ma, Yibo Wu, Wenxue Zhang. Design of novel transition-metal-doped C4N4 as highly effective electrocatalysts for nitrogen fixation with a new intrinsic descriptor [J]. Journal of Energy Chemistry, 2023, 84(9): 131-139. |
[3] | Wenbo Li, Yuheng Li, Zilong Zhang, Peng Gao. Alternative lead-free mixed-valence double perovskites for high-efficiency photovoltaic applications [J]. Journal of Energy Chemistry, 2023, 84(9): 347-353. |
[4] | Zhongheng Fu, Dawei Zhang. Universal machine learning potential accelerates atomistic modeling of materials [J]. Journal of Energy Chemistry, 2023, 83(8): 1-2. |
[5] | Wu Liu, Ning Meng, Xiaomin Huo, Yao Lu, Yu Zhang, Xiaofeng Huang, Zhenqun Liang, Suling Zhao, Bo Qiao, Zhiqin Liang, Zheng Xu, Dandan Song. Machine learning enables intelligent screening of interface materials towards minimizing voltage losses for p-i-n type perovskite solar cells [J]. Journal of Energy Chemistry, 2023, 83(8): 128-137. |
[6] | Xingjun Li, Dan Yu, Vilsen Søren Byg, Store Daniel Ioan. The development of machine learning-based remaining useful life prediction for lithium-ion batteries [J]. Journal of Energy Chemistry, 2023, 82(7): 103-121. |
[7] | Qiming Zhao, Yuqing Shan, Chongchen Xiang, Jinglun Wang, Yingping Zou, Guangjun Zhang, Wanqiang Liu. Predicting power conversion efficiency of binary organic solar cells based on Y6 acceptor by machine learning [J]. Journal of Energy Chemistry, 2023, 82(7): 139-147. |
[8] | Xue-Ting Fan, Xiao-Jian Wen, Yong-Bin Zhuang, Jun Cheng. Molecular insight into the GaP(110)-water interface using machine learning accelerated molecular dynamics [J]. Journal of Energy Chemistry, 2023, 82(7): 239-247. |
[9] | Praveen Kumar Kanti, Prabhakar Sharma, K.V. Sharma, M.P. Maiya. The effect of pH on stability and thermal performance of graphene oxide and copper oxide hybrid nanofluids for heat transfer applications: Application of novel machine learning technique [J]. Journal of Energy Chemistry, 2023, 82(7): 359-374. |
[10] | Xinxin Niu, Yanfeng Dang, Yajing Sun, Wenping Hu. Judicious training pattern for superior molecular reorganization energy prediction model [J]. Journal of Energy Chemistry, 2023, 81(6): 143-148. |
[11] | Hao Sun, Yizhe Li, Liyao Gao, Mengyao Chang, Xiangrong Jin, Boyuan Li, Qingzhen Xu, Wen Liu, Mingyue Zhou, Xiaoming Sun. High throughput screening of single atomic catalysts with optimized local structures for the electrochemical oxygen reduction by machine [J]. Journal of Energy Chemistry, 2023, 81(6): 349-357. |
[12] | Lin Yang, Peng Li, Jiangang Ma, Xintong Zhang, Xiao-Feng Wang, Yichun Liu. MXenes for perovskite solar cells: Progress and prospects [J]. Journal of Energy Chemistry, 2023, 81(6): 443-461. |
[13] | Aditya Velidandi, Pradeep Kumar Gandam, Madhavi Latha Chinta, Srilekha Konakanchi, Anji reddy Bhavanam, Rama Raju Baadhe, Minaxi Sharma, James Gaffey, Quang D. Nguyen, Vijai Kumar Gupta. State-of-the-art and future directions of machine learning for biomass characterization and for sustainable biorefinery [J]. Journal of Energy Chemistry, 2023, 81(6): 42-63. |
[14] | Siwen Wang, Honghong Lin, Yui Wakabayashi, Li Qin Zhou, Charles A. Roberts, Debasish Banerjee, Hongfei Jia, Chen Ling. Transfer learning aided high-throughput computational design of oxygen evolution reaction catalysts in acid conditions [J]. Journal of Energy Chemistry, 2023, 80(5): 744-757. |
[15] | Zhi Wei Seh. Interpretable hybrid machine learning demystifies the degradation of practical lithium-sulfur batteries [J]. Journal of Energy Chemistry, 2023, 79(4): 54-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||