Journal of Energy Chemistry ›› 2023, Vol. 86 ›› Issue (11): 180-196.DOI: 10.1016/j.jechem.2023.07.005
Previous Articles Next Articles
Bart Wantena,*, Rani Vertongena, Robin De Meyera,b, Annemie Bogaertsa,*
Received:
2023-04-28
Revised:
2023-06-16
Accepted:
2023-07-02
Online:
2023-11-15
Published:
2023-11-07
Contact:
*E-mail addresses: bart.wanten@uantwerpen.be (B. Wanten), annemie.bogaerts@uantwerpen.be (A. Bogaerts).
About author:
1These authors contributed equally to this work.
Bart Wanten, Rani Vertongen, Robin De Meyer, Annemie Bogaerts. Plasma-based CO2 conversion: How to correctly analyze the performance?[J]. Journal of Energy Chemistry, 2023, 86(11): 180-196.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2023.07.005
[1] S. Valluri, V. Claremboux, S. Kawatra, J. Environ. Sci. 113(2022) 322-344. [2] C. Hepburn, E. Adlen, J. Beddington, E.A. Carter, S. Fuss, N. Mac Dowell, J.C. Minx, P. Smith, C.K. Williams, Nature 575 (2019) 87-97. [3] A. Al-Mamoori, A. Krishnamurthy, A.A. Rownaghi, F. Rezaei, Energy Technol. 5(2017) 834-849. [4] H. Mikulčić, I. Ridjan Skov, D.F. Dominković, S.R. Wan Alwi, Z.A. Manan, R. Tan, N. Duić, S.N. Hidayah Mohamad, X. Wang, Renewable Sustainable Energy Rev. 114 (2019). [5] E.I. Koytsoumpa, C. Bergins, E. Kakaras, J. Supercrit. Fluids 132 (2018) 3-16. [6] S.M. Jarvis, S. Samsatli, Renewable Sustainable Energy Rev. 85(2018) 46-68. [7] M.A. Sabri, S. Al Jitan, D. Bahamon, L.F. Vega, G. Palmisano, Sci. Total Environ. 790 (2021). [8] T.A. Saleh, RSC Adv. 12(2022) 23869-23888. [9] R. Snoeckx, A. Bogaerts, Chem. Soc. Rev. 46(2017) 5805-5863. [10] G. Chen, R. Snyders, N. Britun, J. CO2 Util. 49 (2021). [11] F. Jardali, S. Van Alphen, J. Creel, H.A. Eshtehardi, M. Axelsson, R. Ingels, R. Snyders, A. Bogaerts, Green Chemistry 23 (2021) 1748-1757. [12] S. Kelly, A. Bogaerts, Joule 5 (2021) 3006-3030. [13] K.H. Rouwenhorst, Y. Engelmann, K. van‘t Veer, R.S. Postma, A. Bogaerts, L. Lefferts, Green chemistry 22 (2020) 6258-6287. [14] K.H. Rouwenhorst, F. Jardali, A. Bogaerts, L. Lefferts, Energy Environ. Sci. 14(2021) 2520-2534. [15] E. Delikonstantis, F. Cameli, M. Scapinello, V. Rosa, K.M.Van Geem, G.D. Stefanidis, Curr. Opin. Chem. Eng. 38(2022). [16] A. George, B. Shen, M. Craven, Y. Wang, D. Kang, C. Wu, X. Tu, Renewable Sustainable Energy Rev. 135 (2021). [17] M.Y. Ong, S. Nomanbhay, F. Kusumo, P.L. Show, J. Clean. Prod. 336(2022). [18] J.-L. Liu, X. Wang, X.-S. Li, B. Likozar, A.-M. Zhu, J. Phys. D: Appl. Phys. 53(2020). [19] Y. Vadikkeettil, Y. Subramaniam, R. Murugan, P.V. Ananthapadmanabhan, J. Mostaghimi, L. Pershin, C. Batiot-Dupeyrat, Y. Kobayashi, Renewable Sustainable Energy Rev. 161 (2022). [20] N. Pinhão, A. Moura, J.B. Branco, J. Neves, Int. J. Hydrogen Energy 41 (2016) 9245-9255. [21] F. Peeters, T. Butterworth, Electrical Diagnostics of Dielectric Barrier Discharges, in: N. Anton, C. Zhiqiang (Eds.), Atmospheric Pressure Plasma, IntechOpen, Rijeka, 2018, p. Ch. 2. [22] M. Ramakers, G. Trenchev, S. Heijkers, W. Wang, A. Bogaerts, ChemSusChem 10 (2017) 2642-2652. [23] S. Kelly, C. Verheyen, A. Cowley, A. Bogaerts, Chem 8 (2022) 2797-2816. [24] J.G. Calvert, Pure Appl. Chem. 62(1990) 2167-2219. [25] ISO, (1994) https://www.iso.org/standard/18855.html (Accessed 06 July 2023). [26] M.J. Berger, J.S. Coursey, M.A. Zucker, J. Chang, NIST (2017) https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-heliumions (Accessed 06 July 2023). [27] J.D. Wright, A.N. Johnson, M.R. Moldover, J. Res. Natl.Inst. Stand. Technol. 108(2003) 21-47. [28] P. Wu, X. Li, N. Ullah, Z. Li,Mol. Catal. 499(2021). [29] K. Wiegers, A. Schulz, M. Walker, G.E.M.Tovar, Chem. Ing. Tech. 94(2022) 299-308. [30] R. Snoeckx, S. Heijkers, K. Van Wesenbeeck, S. Lenaerts, A. Bogaerts, Energy Environ. Sci. 9(2016) 999-1011. [31] G. Trenchev, A. Bogaerts, J. CO2 Util. 39 (2020). [32] Y. Uytdenhouwen, S. Van Alphen, I. Michielsen, V. Meynen, P. Cool, A. Bogaerts, Chem. Eng. J. 348(2018) 557-568. [33] V. Ivanov, T. Paunska, S. Lazarova, A. Bogaerts, S. Kolev, J. CO2 Util. 67 (2023). [34] G. Niu, Y. Qin, W. Li, Y. Duan, Plasma Chem. Plasma Process. 39(2019) 809-824. [35] B. Raja, R. Sarathi, R. Vinu, Energy Technol. 8(2020) 2000535. [36] A.J. Wolf, F.J.J. Peeters, P.W.C. Groen, W.A. Bongers, M.C.M. van de Sanden, J. Phys. Chem. C 124 (2020) 16806-16819. [37] H. Sun, Z. Chen, J. Chen, H. Long, Y. Wu, W. Zhou, J. Phys.D: Appl. Phys. 54(2021). [38] S. Renninger, M. Lambarth, K.P. Birke, J. CO2 Util. 42 (2020). [39] F. D'Isa, E. Carbone, A. Hecimovic, U. Fantz,Plasma Sources Sci. Technol. 29(2020). [40] F. Girard-Sahun, O. Biondo, G. Trenchev, G.J. van Rooij, A. Bogaerts, Chem. Eng. J. 442(2022). [41] A. Hecimovic, F.A. D'Isa, E. Carbone, U. Fantz, J. CO2 Util. 57 (2022). [42] J. Huang, H. Zhang, Q. Tan, L. Li, R. Xu, Z. Xu, X. Li, J. CO2 Util. 45 (2021). [43] D.C.M. van den Bekerom, J.M.P. Linares, T. Verreycken, E.M. van Veldhuizen, S. Nijdam, G. Berden, W.A. Bongers, M.C.M. van de Sanden, G.J. van Rooij, Plasma Sources Sci. Technol. 28(2019). [44] H. Zhang, L. Li, R. Xu, J. Huang, N. Wang, X. Li, X. Tu, Waste Dispos. Sustain. Energy 2 (2020) 139-150. [45] J. Li, X. Zhang, J. Shen, T. Ran, P. Chen, Y. Yin, J. CO2 Util. 21(2017) 72-76. [46] M. Zhu, S. Hu, F. Wu, H. Ma, S. Xie, C. Zhang, J. Phys.D: Appl. Phys. 55(2022). [47] I. Belov, V. Vermeiren, S. Paulussen, A. Bogaerts, J. CO2 Util. 24(2018) 386-397. [48] A. Barkhordari, S. Karimian, A. Rodero, D.A. Krawczyk, S.I. Mirzaei, A. Falahat, Appl. Sci. 11(2021) 10047. [49] J.O. Pou, E. Estopañán, J. Fernandez-Garcia, R. Gonzalez-Olmos, Processes 10 (2022) 1851. [50] G. Trenchev, A. Nikiforov, W. Wang, S. Kolev, A. Bogaerts, Chem. Eng. J. 362(2019) 830-841. [51] N. Britun, T. Silva, G. Chen, T. Godfroid, J. van der Mullen, R. Snyders, J. Phys. D: Appl. Phys. 51(2018). [52] S.C.L.Vervloedt, M. Budde, R. Engeln, Plasma Sources Sci. Technol. 32(2023). [53] H. Kim, S. Song, C.P. Tom, F. Xie, J. CO2 Util. 37(2020) 240-247. [54] D. Zhang, Q. Huang, E.J. Devid, E. Schuler, N.R. Shiju, G. Rothenberg, G. van Rooij, R. Yang, K. Liu, A.W. Kleyn, J. Phys. Chem. C 122 (2018) 19338-19347. [55] O. Taylan, H. Berberoglu,Plasma Sources Sci. Technol. 24(2015). [56] D. Mei, X. Tu, ChemPhysChem 18 (2017) 3253-3259. [57] C. Guoxing, B. Nikolay, G. Thomas, D.O.Marie-Paule, S. Rony, Role of Plasma Catalysis in the Microwave Plasma-Assisted Conversion of CO2, IntechOpen, Rijeka, 2017. [58] W. Bongers, H. Bouwmeester, B. Wolf, F. Peeters, S. Welzel, D. van den Bekerom, N.den Harder, A. Goede, M. Graswinckel, P.W. Groen, Plasma Process. Polym. 14(2017) 1600126. [59] M. Umamaheswara Rao, K.V.S.S. Bhargavi, P. Chawdhury, D. Ray, S.R.K.Vanjari, C. Subrahmanyam, Chem. Eng. Sci. 267(2023). [60] M.R. Jahanbakhsh, H. Taghvaei, O. Khalifeh, M. Ghanbari, M.R. Rahimpour, Energy & Fuels 34 (2020) 14321-14332. [61] A.M. Banerjee, J. Billinger, K.J. Nordheden, F.J.J. Peeters, Journal of Vacuum Science & Technology A 36 (2018) 04F403. [62] L. Wang, X. Du, Y. Yi, H. Wang, M. Gul, Y. Zhu, X. Tu, Chem. Commun. 56(2020) 14801-14804. [63] B. Wang, X. Li, X. Wang, B. Zhang, J. Environ. Chem. Eng. 9(2021). [64] Y. Qin, G. Niu, X. Wang, D. Luo, Y. Duan,Chem. Phys. 538(2020). [65] K. Zhang, A.P. Harvey,Chem. Eng. J. 405(2021). [66] C. Montesano, S. Quercetti, L.M. Martini, G. Dilecce, P. Tosi, J. CO2 Util. 39 (2020). [67] K. Zhang, G. Zhang, X. Liu, A.N. Phan, K. Luo, Ind. Eng. Chem. Res. 56(2017) 3204-3216. [68] P. Liu, X. Liu, J. Shen, Y. Yin, T. Yang, Q. Huang, D. Auerbach, A.W. Kleiyn,Plasma Sci. Technol. 21(2019). [69] Y. Wu, S.-Z. Li, Y.-L. Niu, H. Yan, D. Yang, J. Zhang, J. Phys. D: Appl. Phys. 56(2022). [70] H. Zhang, Q. Tan, Q. Huang, K. Wang, X. Tu, X. Zhao, C. Wu, J. Yan, X. Li, ACS Sustain. Chem. Eng. 10(2022) 7712-7725. [71] H. Taghvaei, E. Pirzadeh, M. Jahanbakhsh, O. Khalifeh, M.R. Rahimpour, J. CO2 Util. 44 (2021). [72] S. Xu, J.C. Whitehead, P.A. Martin, Chem. Eng. J. 327(2017) 764-773. [73] D. Ray, R. Saha, S. Ch, Catalysts 7 (2017) 244. [74] T. Wang, H. Liu, X. Xiong, X. Feng, IOP Conf. Ser.: Earth Environ 52 (2017). [75] M. Ramakers, I. Michielsen, R. Aerts, V. Meynen, A. Bogaerts, Plasma Process. Polym. 12(2015) 755-763. [76] Wang T., in: Wang T., Stiegel G. (Eds.), Integrated Gasification Combined Cycle (IGCC) Technologies, Woodhead Publishing, Cambridge, 2017, pp. 497-640 [77] L.R. Winter, J.G. Chen, Joule 5 (2021) 300-315. [78] V. Hessel, A. Anastasopoulou, Q. Wang, G. Kolb, J. Lang, Catal. Today 211 (2013) 9-28. [79] B. Wanten, S. Maerivoet, C. Vantomme, J. Slaets, G. Trenchev, A. Bogaerts, J. CO2 Util. 56 (2022). [80] E. Cleiren, S. Heijkers, M. Ramakers, A. Bogaerts, ChemSusChem 10 (2017) 4025-4036. [81] J. Slaets, M. Aghaei, S. Ceulemans, S. Van Alphen, A. Bogaerts, Green Chemistry 22 (2020) 1366-1377. [82] R. Snoeckx, W. Wang, X. Zhang, M.S. Cha, A. Bogaerts, Sci. Rep. 8(2018) 15929. [83] B. Zhu, X.-S.Li, J.-L. Liu, X. Zhu, A.-M. Zhu, Chem. Eng. J. 264(2015) 445-452. [84] K. Li, J.-L. Liu, X.-S. Li, X.-B. Zhu, A.-M. Zhu, Catal. Today 256 (2015) 96-101. [85] W.-C.Chung, M.-B. Chang, Energy Convers. Manag. 124(2016) 305-314. [86] J.A. Andersen, J.M. Christensen, M. Østberg, A. Bogaerts, A.D. Jensen,Chem. Eng. J. 397(2020). [87] C. Montesano, M. Faedda, L.M. Martini, G. Dilecce, P. Tosi, J. CO2 Util. 49 (2021). [88] D. Lašič Jurković, J.-L. Liu, A. Pohar, B. Likozar, Catal. Today 362 (2021) 11-21. [89] H. Kwon, T. Kim, S. Song, J. CO2 Util. 70 (2023). [90] F. Zhang, X. Zhang, Z. Song, X. Li, X. Zhao, J. Sun, Y. Mao, X. Wang, W. Wang, Fuel 331(2023). [91] V. Shapoval, E. Marotta, Plasma Process. Polym. 12(2015) 808-816. [92] S.M. Chun, Y.C. Hong, D.H. Choi, J. CO2 Util. 19(2017) 221-229. [93] M. Biset-Peiró, R. Mey, J. Guilera, T. Andreu,Chem. Eng. J. 393(2020). [94] R.B. Raja, A.C. Halageri, R. Sankar, R. Sarathi, R. Vinu, Energies 16 (2023) 1823. [95] M. Ronda-Lloret, Y. Wang, P. Oulego, G. Rothenberg, X. Tu, N.R. Shiju, ACS Sustain. Chem. Eng. 8(2020) 17397-17407. [96] L. Wang, Y. Yi, H. Guo, X. Tu, ACS Catal. 8(2018) 90-100. [97] H. Sun, J. Lee, M.S. Bak, J. CO2 Util. 46 (2021). [98] X. Tu, H.J. Gallon, M.V. Twigg, P.A. Gorry, J.C. Whitehead, J. Phys.D: Appl. Phys. 44(2011). [99] N. Lu, D. Sun, Y. Xia, K. Shang, B. Wang, N. Jiang, J. Li, Y. Wu, Int. J. Hydrogen Energy 43 (2018) 13098-13109. [100] R. De˛bek, F. Azzolina-Jury, A. Travert, F. Maugé, F. Thibault-Starzyk, Catal. Today 337 (2019) 182-194. [101] Y. Zeng, G. Chen, Q. Bai, L. Wang, R. Wu, X. Tu, Int. J. Hydrogen Energy 48 (2023) 6192-6203. [102] J.F. de la Fuente, S.H. Moreno, A.I. Stankiewicz, G.D. Stefanidis, Int. J. Hydrogen Energy 41 (2016) 21067-21077. [103] Y. Diao, H. Wang, B. Chen, X. Zhang, C. Shi,Appl. Catal., B 330(2023). [104] H. Wang, Y. Yang, Z. Li, X. Kong, P. Martin, G. Cui, R. Wang, Int. J. Hydrogen Energy 48 (2023) 8921-8931. [105] K. Li, J.-L.Liu, X.-S. Li, X. Zhu, A.-M. Zhu, Chem. Eng. J. 288(2016) 671-679. [106] L.L. Alves, M.M. Becker, J. van Dijk, T. Gans, D.B. Go, K. Stapelmann, J. Tennyson, M.M. Turner, M.J. Kushner, Plasma Sources Sci. Technol. 32(2023). [107] I. Tsonev, C. O'Modhrain, A. Bogaerts, Y. Gorbanev, ACS Sustain. Chem. Eng. 11(2023) 1888-1897. [108] E. Vervloessem, Y. Gorbanev, A. Nikiforov, N. De Geyter, A. Bogaerts, Green Chemistry 24 (2022) 916-929. [109] M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L.B. da Silva Santos, P.E. Bourne, J. Bouwman, A.J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C.T. Evelo, R. Finkers, A. Gonzalez-Beltran, A.J.G. Gray, P. Groth, C. Goble, J.S. Grethe, J. Heringa, P.A.C. 't Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S.J. Lusher, M.E. Martone, A. Mons, A.L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M.A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, B. Mons, Sci. Data 3 (2016) 160018. |
[1] | Panpan Liu, Yang Li, Zhaodi Tang, Junjun Lv, Piao Cheng, Xuemei Diao, Yu Jiang, Xiao Chen, Ge Wang. Integrating thermal energy storage and microwave absorption in phase change material-encapsulated core-sheath MoS2@CNTs [J]. Journal of Energy Chemistry, 2023, 84(9): 41-49. |
[2] | Mengxia Li, Tianxi Zheng, Dongfei Lu, Shiwei Dai, Xin Chen, Xinchen Pan, Dibo Dong, Rengui Weng, Gang Xu, Fanan Wang. Facet effect on the reconstructed Cu-catalyzed electrochemical hydrogenation of 5-hydroxymethylfurfural (HMF) towards 2,5-bis (hydroxymethy)furan (BHMF) [J]. Journal of Energy Chemistry, 2023, 84(9): 101-111. |
[3] | Ziyu Zhou, Shuyu Liang, Jiewen Xiao, Tianyu Zhang, Min Li, Wenfu Xie, Qiang Wang. Surface modification of Cu2O with stabilized Cu+ for highly efficient and stable CO2 electroreduction to C2+ chemicals [J]. Journal of Energy Chemistry, 2023, 84(9): 277-285. |
[4] | Qiang Zhang, Jianlin Wang, Fang Guo, Ge He, Xiaohui Yang, Wei Li, Junqiang Xu, Zongyou Yin. Nitrogen cold plasma treatment stabilizes Cu0/Cu+ electrocatalysts to enhance CO2 to C2 conversion [J]. Journal of Energy Chemistry, 2023, 84(9): 321-328. |
[5] | Wenbo Li, Yuheng Li, Zilong Zhang, Peng Gao. Alternative lead-free mixed-valence double perovskites for high-efficiency photovoltaic applications [J]. Journal of Energy Chemistry, 2023, 84(9): 347-353. |
[6] | Hua-Qing Yin, Zuo-Shu Sun, Qiu-Ping Zhao, Lu-Lu Yang, Tong-Bu Lu, Zhi-Ming Zhang. Electrochemical urea synthesis by co-reduction of CO2 and nitrate with FeII-FeIIIOOH@BiVO4 heterostructures [J]. Journal of Energy Chemistry, 2023, 84(9): 385-393. |
[7] | Anki Reddy Mule, Bhimanaboina Ramulu, Shaik Junied Arbaz, Jae Su Yu. Multicomponent mixed metallic hierarchical ZnNi@Ni@PEDOT arrayed structures as advanced electrode for high-performance hybrid electrochemical cells [J]. Journal of Energy Chemistry, 2023, 84(9): 448-458. |
[8] | Xiang Li, Dezhong Liu, Ziyi Cao, Yaqi Liao, Zexiao Cheng, Jie Chen, Kai Yuan, Xing Lin, Zhen Li, Yunhui Huang, Lixia Yuan. Uncovering the solid-phase conversion mechanism via a new range of organosulfur polymer composite cathodes for lithium-sulfur batteries [J]. Journal of Energy Chemistry, 2023, 84(9): 459-466. |
[9] | Tongtao Wan, Yusen He, Zongke He, Wenjia Han, Yongguang Zhang, Guihua Liu. Integrated host configuration of flexibly fibrous skeleton towards efficient polysulfide conversion and dendrite-free behavior in stable lithium-sulfur pouch cells [J]. Journal of Energy Chemistry, 2023, 83(8): 43-52. |
[10] | Wa Gao, Yinwen Li, Dequan Xiao, Ding Ma. Advances in photothermal conversion of carbon dioxide to solar fuels [J]. Journal of Energy Chemistry, 2023, 83(8): 62-78. |
[11] | Zi-Yang Zhang, Hao Tian, Lei Bian, Shi-Ze Liu, Yuan Liu, Zhong-Li Wang. Cu-Zn-based alloy/oxide interfaces for enhanced electroreduction of CO2 to C2+ products [J]. Journal of Energy Chemistry, 2023, 83(8): 90-97. |
[12] | Tingting Li, Ruisong Guo, Yang Li, Leichao Meng, Xiaohong Sun, Fuyun Li, Xinqi Zhao, Zhongkai Xu, Jianhong Peng, Lingyun An. Long cycle performance of NC@VN/MnO cathode for AZIBs based on Mn/V relay type collaboration [J]. Journal of Energy Chemistry, 2023, 83(8): 106-118. |
[13] | Wu Liu, Ning Meng, Xiaomin Huo, Yao Lu, Yu Zhang, Xiaofeng Huang, Zhenqun Liang, Suling Zhao, Bo Qiao, Zhiqin Liang, Zheng Xu, Dandan Song. Machine learning enables intelligent screening of interface materials towards minimizing voltage losses for p-i-n type perovskite solar cells [J]. Journal of Energy Chemistry, 2023, 83(8): 128-137. |
[14] | Xian Shi, Weidong Dai, Xing'an Dong, Qin Ren, Ping Yan, Fan Dong. Tensile stress enhanced dynamic oxygen vacancies on interlayer stretched Bi2O2CO3 as pivotal knobs to promote sustainable selective CO2 photoreduction [J]. Journal of Energy Chemistry, 2023, 83(8): 173-179. |
[15] | Runze Ye, Jiaye Zhu, Yun Tong, Dongmei Feng, Pengzuo Chen. Metal oxides heterojunction derived Bi-In hybrid electrocatalyst for robust electroreduction of CO2 to formate [J]. Journal of Energy Chemistry, 2023, 83(8): 180-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||