Journal of Energy Chemistry ›› 2023, Vol. 86 ›› Issue (11): 318-342.DOI: 10.1016/j.jechem.2023.07.022
Previous Articles Next Articles
Antoine Saldena,b,*, Maik Buddeb,c, Carolina A. Garcia-Sotod,e, Omar Biondof,g, Jairo Baraunae,h, Marzia Faeddaa,i, Beatrice Musigh, Chloé Fromentinc, Minh Nguyen-Quangi, Harry Philpottb,d, Golshid Hasrack, Domenico Aceto, Yuxiang Caif, Federico Azzolina Jury, Annemie Bogaertsf, Patrick Da Costa, Richard Engelnb, María Elena Gálvez, Timo Gans, Tomas Garciah, Vasco Guerrac, Carlos Henriques, Monika Motaki, Maria Victoria Navarroh, Vasile I. Parvulescue, Gerard Van Rooijg, Bogdan Samojedeni, Ana Sobotab, Paolo Tosia, Xin Tu, Olivier Guaitellad,*
Received:
2023-05-21
Revised:
2023-06-28
Accepted:
2023-07-04
Online:
2023-11-15
Published:
2023-11-07
Contact:
*E-mail addresses: t.p.w.salden@tue.nl (A. Salden), olivier.guaitella@lpp.polytechnique.fr (O. Guaitella).
About author:
Antoine Salden currently is a doctoral candidate, involved with the University of Trento (Italy) and the Eindhoven University of Technology (The Netherlands) as part of an MSCA-ITN double doctorate programme. His focus in research is time- and space-resolved diagnostics for nanosecond repetitively pulsed discharges for CO2 conversion.Antoine Salden, Maik Budde, Carolina A. Garcia-Soto, Omar Biondo, Jairo Barauna, Marzia Faedda, Beatrice Musig, Chloé Fromentin, Minh Nguyen-Quang, Harry Philpott, Golshid Hasrack, Domenico Aceto, Yuxiang Cai, Federico Azzolina Jury, Annemie Bogaerts, Patrick Da Costa, Richard Engeln, María Elena Gálvez, Timo Gans, Tomas Garcia, Vasco Guerra, Carlos Henriques, Monika Motak, Maria Victoria Navarro, Vasile I. Parvulescu, Gerard Van Rooij, Bogdan Samojeden, Ana Sobota, Paolo Tosi, Xin Tu, Olivier Guaitella. Meta-analysis of CO2 conversion, energy efficiency, and other performance data of plasma-catalysis reactors with the open access PIONEER database[J]. Journal of Energy Chemistry, 2023, 86(11): 318-342.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jenergychem.com/EN/10.1016/j.jechem.2023.07.022
[1] A.B. Ray, F.O. Anderegg, J. Am. Chem. Soc. 43 (1921) 967-978, https://doi.org/10.1021/ja01438a001. [2] J.C. Whitehead, Front. Chem. Sci. Eng. 13 (2019) 264-273, https://doi.org/10.1007/s11705-019-1794-3. [3] E.C. Neyts, A. Bogaerts, J. Phys.D: Appl. Phys. 47(2014) 224010. [4] S. Zhang, G.S. Oehrlein, J. Phys. D: Appl. Phys. 54 (2021), https://doi.org/10.1088/1361-6463/abe572. [5] J. Van Durme, J. Dewulf, C. Leys, H. Van Langenhove,Appl. Catal., B 78 (2008) 324-333, https://doi.org/10.1016/j.apcatb.2007.09.035. [6] H.L. Chen, H.M. Lee, S.H. Chen, Y. Chao, M.B. Chang,Appl. Catal., B 85 (2008) 1-9, https://doi.org/10.1016/j.apcatb.2008.06.021. [7] J.C. Whitehead, J. Phys. D: Appl. Phys. 49 (2016), https://doi.org/10.1088/0022-3727/49/24/243001. [8] L. Liu, G. Shao, C. Ma, A. Nikiforov, N. De Geyter, R. Morent, J. Hazard. Mater.451 (2023), https://doi.org/10.1016/j.jhazmat.2023.131100. [9] Y.T. Shah, J. Verma, S.S. Katti, J. Indian Chem.Soc. 98 (2021), https://doi.org/10.1016/j.jics.2021.100152. [10] A. Bogaerts, E.C. Neyts, O. Guaitella, A.B. Murphy, Plasma Sources Sci. Technol. 31 (2022) 053002, https://doi.org/10.1088/1361-6595/ac5f8e. [11] S. Li, R. Ahmed, Y. Yi, A. Bogaerts, Catalysts 11 (2021), https://doi.org/10.3390/catal11050590. [12] H. Guo, Y. Su, X. Yang, Y. Wang, Z. Li, Y. Wu, J. Ren, Catalysts 13 (2023), https://doi.org/10.3390/catal13010010. [13] J. Li, C. Ma, S. Zhu, F. Yu, B. Dai, D. Yang, Nanomaterials 9 (2019), https://doi.org/10.3390/nano9101428. [14] W. Chung, D. Mei, X. Tu, M. Chang,Catal. Rev.: Sci. Eng. 61 (2019) 270-331, https://doi.org/10.1080/01614940.2018.1541814. [15] Q.H. Trinh, Y.S. Mok, Korean J. Chem. Eng. 33 (2016) 735-748, https://doi.org/10.1007/s11814-015-0300-y. [16] N. Anoop, S. Sundaramurthy, J.M. Jha, S. Chandrabalan, N. Singh, J. Verma, D. Parvatalu, S. Katti, Clean Technol. Environ. Policy 23 (2021) 2789-2811, https://doi.org/10.1007/s10098-021-02203-y. [17] S.K.P. Veerapandian, N. De Geyter, J.-M. Giraudon, J.-F. Lamonier, R. Morent, Catalysts 9 (2019), https://doi.org/10.3390/catal9010098. [18] J. Fu, Y. Xu, E.J. Arts, Z. Bai, Z. Chen, Y. Zheng,Chemosphere 309 (2022), https://doi.org/10.1016/j.chemosphere.2022.136655. [19] W. Chung, M. Chang,Renew. Sustain. Energy Rev. 62 (2016) 13-31, https://doi.org/10.1016/j.rser.2016.04.007. [20] B. Wang, X. Xu, W. Xu, N. Wang, H. Xiao, Y. Sun, H. Huang, L. Yu, M. Fu, J. Wu, L. Chen, D. Ye, Catal. Surv. Asia 22 (2018) 73-94, https://doi.org/10.1007/s10563-018-9241-x. [21] L. Liu, Z. Zhang, S. Das, S. Kawi,Appl. Catal., B 250 (2019) 250-272, https://doi.org/10.1016/j.apcatb.2019.03.039. [22] A.-W. Harzing, Tarma Software Research Pty Limited Melbourne, 2010. [23] E.C. Neyts, K.K. Ostrikov, M.K. Sunkara, A. Bogaerts, Chem. Rev. 115 (2015) 13408-13446, https://doi.org/10.1021/acs.chemrev.5b00362. [24] A. Bogaerts, X. Tu, J.C. Whitehead, G. Centi, L. Lefferts, O. Guaitella, F. Azzolina-Jury, H.-H. Kim, A.B. Murphy, W.F. Schneider, T. Nozaki, J.C. Hicks, A. Rousseau, F. Thevenet, A. Khacef, M. Carreon, J. Phys. D: Appl. Phys. 53 (2020) 443001, https://doi.org/10.1088/1361-6463/ab9048. [25] T. Bligaard, R.M. Bullock, C.T. Campbell, J.G. Chen, B.C. Gates, R.J. Gorte, C.W. Jones, W.D. Jones, J.R. Kitchin, S.L. Scott, ACS Catal. 6 (2016) 2590-2602, https://doi.org/10.1021/acscatal.6b00183. [26] Pioneer, ITN-EJD H2020 Pioneer project dedicated to Plasma-Catalysis for CO2 Conversion and Green Chem., 2019. Accessed: 2023-02-08. [27] T.A. Saleh, RSC Adv. 12 (2022) 23869-23888, https://doi.org/10.1039/d2ra03242b. [28] L.D. Pietanza, O. Guaitella, V. Aquilanti, I. Armenise, A. Bogaerts, M. Capitelli, G. Colonna, V. Guerra, R. Engeln, E. Kustova, A. Lombardi, F. Palazzetti, T. Silva, Eur. Phys. J. D 75 (2021), https://doi.org/10.1140/epjd/s10053-021-00226-0. [29] V. Guerra, D. Marinov, O. Guaitella, A. Rousseau, J. Phys. D: Appl. Phys. 47 (2014) 224012, https://doi.org/10.1088/0022-3727/47/22/224012. [30] A. Mills, S.L. Hunte, J. Photochem. Photobiol., A 108 (1997) 1-35, https://doi.org/10.1016/S1010-6030(97)00118-4. [31] G. Fadillah, T.A. Saleh,Sustainable Chem. Pharm. 29 (2022) 100812, https://doi.org/10.1016/j.scp.2022.100812. [32] X.L. Hao, M.H. Zhou, et al., J. Hazard. Mater. 141 (2007) 475-482, https://doi.org/10.1016/j.jhazmat.2006.07.012. [33] T. Sano, N. Negishi, E. Sakai, S. Matsuzawa, J. Mol. Catal.A: Chem. 245 (2006) 235-241, https://doi.org/10.1016/j.molcata.2005.10.002. [34] A.A. Assadi, J. Palau, A. Bouzaza, J. Penya-Roja, V. Martinez-Soriac, D. Wolbert, J. Photochem. Photobiol.,A 282 (2014) 1-8, https://doi.org/10.1016/j.jphotochem.2014.03.001. [35] J.C. Whitehead, Pure Appl. Chem. 82 (2010) 1329-1336, https://doi.org/10.1351/PAC-CON-10-02-39. [36] D. Mei, X. Zhu, C. Wu, B. Ashford, P.T. Williams, X. Tu,Appl. Catal., B 182 (2016) 525-532, https://doi.org/10.1016/j.apcatb.2015.09.052. [37] K.M. Bal, S. Huygh, A. Bogaerts, E.C. Neyts, Plasma Sources Sci. Technol. 27 (2018) 024001, https://doi.org/10.1088/1361-6595/aaa868. [38] R. Snoeckx, A. Ozkan, F. Reniers, A. Bogaerts, ChemSusChem 10 (2016) 409-424, https://doi.org/10.1002/cssc.201601234. [39] J. Albo, M. Alvarez-Guerra, P. Castaño, A. Irabien, Green Chem. 17 (2015) 2304-2324, https://doi.org/10.1039/C4GC02453B. [40] M.M. Khan, S.F. Adil, A. Al-Mayouf, J. Saudi Chem.Soc. 19 (2015) 462-464, https://doi.org/10.1016/j.jscs.2015.04.003. [41] H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo, X. Li, Chin. J. Catal. 43 (2022) 178-214, https://doi.org/10.1016/s1872-2067(21)63910-4. [42] R. Armiento, Open materials database, 2023.(accessed January 31, 2023). [43] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1 (2013) 011002, https://doi.org/10.1063/1.4812323. [44] S. Curtarolo, W. Setyawan, G.L.W.Hart, M. Jahnatek, R.V. Chepulskii, R.H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M.J. Mehl, H.T. Stokes, D.O. Demchenko, D. Morgan, Comput. Mater. Sci. 58 (2012) 218-226, https://doi.org/10.1016/j.commatsci.2012.02.005. [45] S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl,C. Wolverton, npj Comput. Mater. 1 (2015), https://doi.org/10.1038/npjcompumats.2015.10. [46] G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, B. Kozinsky,Comput. Mater. Sci. 111 (2016) 218-230, https://doi.org/10.1016/j.commatsci.2015.09.013. [47] K.T. Winther, M.J. Hoffmann, J.R. Boes, O. Mamun, M. Bajdich, T. Bligaard, Sci. Data 6 (2019), https://doi.org/10.1038/s41597-019-0081-y. [48] S. Gražulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A.L. Bail, J. Appl. Crystallogr. 42 (2009) 726-729, https://doi.org/10.1107/s0021889809016690. [49] L. Sbailò, A. Fekete, L.M. Ghiringhelli, M. Scheffler, npj Comput. Mater. 8 (2022) 250, https://doi.org/10.1038/s41524-022-00935-z. [50] D.D. Landis, J.S. Hummelshoj, S. Nestorov, J. Greeley, M. Dulak, T. Bligaard, J.K. Norskov, K.W. Jacobsen,Comput. Sci. Eng. 14 (2012) 51-57, https://doi.org/10.1109/mcse.2012.16. [51] E. Carbone, W. Graef, G. Hagelaar, D. Boer, M.M. Hopkins, J.C. Stephens, B.T. Yee, S. Pancheshnyi, J. van Dijk, L. Pitchford, Atoms 9 (2021) 16, https://doi.org/10.3390/atoms9010016. [52] J.-H. Park, H. Choi, W.-S. Chang, S.Y. Chung, D.-C. Kwon, M.-Y. Song, J.-S. Yoon, ASCT 29 (2020) 5-9, https://doi.org/10.5757/asct.2020.29.1.005. [53] H. Mai, T.C. Le, D. Chen, D.A. Winkler, R.A. Caruso, Adv. Sci. (2022) 2203899, https://doi.org/10.1002/advs.202203899. [54] Z. Wang, J. Gao, K. Tao, Y. Han, A. Chen, J. Li,Energy Storage Mater. 59 (2023) 102781, https://doi.org/10.1016/j.ensm.2023.102781. [55] H. Mai, T.C. Le, D. Chen, D.A. Winkler, R.A. Caruso, Chem. Rev. 122 (2022) 13478-13515, https://doi.org/10.1021/acs.chemrev.2c00061. [56] Q. Tao, P. Xu, M. Li, W. Lu, npj Comput. Mater. 7 (2021) 23, https://doi.org/10.1038/s41524-021-00495-8. [57] B.L.M. Klarenaar, R. Engeln, D.C.M. van den Bekerom, M.C.M. van de Sanden, A.S. Morillo-Candas, O. Guaitella, Plasma Sources Sci. Technol. 26 (2017) 115008, https://doi.org/10.1088/1361-6595/aa902e. [58] S. Mori, L.L. Tun, Plasma Processes Polym. 14 (2016) 1600153, https://doi.org/10.1002/ppap.201600153. [59] F. Buck, K. Wiegers, A. Schulz, T. Schiestel, J. Ind. Eng.Chem. 104 (2021) 1-7, https://doi.org/10.1016/j.jiec.2021.08.044. [60] R. Snoeckx, A. Bogaerts, Chem. Soc. Rev. 46 (2017) 5805-5863, https://doi.org/10.1039/c6cs00066e. [61] G. Chen, R. Snyders, N. Britun,J. CO2 Util. 49 (2021) 101557, https://doi.org/10.1016/j.jcou.2021.101557. [62] S. Mahammadunnisa, E.L. Reddy, D. Ray, C. Subrahmanyam, J.C. Whitehead,Int. J. Greenhouse Gas Control 16 (2013) 361-363, https://doi.org/10.1016/j.ijggc.2013.04.008. [63] D. Ray, C. Subrahmanyam, RSC Adv. 6 (2016) 39492-39499, https://doi.org/10.1039/c5ra27085e. [64] D. Mei, X. Tu,J. CO2 Util. 19 (2017) 68-78, https://doi.org/10.1016/j.jcou.2017.02.015. [65] N. Lu, C. Zhang, K. Shang, N. Jiang, J. Li, Y. Wu, J. Phys. D: Appl. Phys. 52 (2019) 224003, https://doi.org/10.1088/1361-6463/ab0ebb. [66] K. Zhang, A.P. Harvey,Chem. Eng. J. 405 (2021) 126625, https://doi.org/10.1016/j.cej.2020.126625. [67] X. Yao, Y. Zhang, Z. Wei, M. Chen, W. Shangguan, Ind. Eng. Chem. Res. 59 (2020) 19133-19144, https://doi.org/10.1021/acs.iecr.0c01764. [68] D. Mei, X. Zhu, Y.-L. He, J.D. Yan, X. Tu, Plasma Sources Sci. Technol. 24 (2014) 015011, https://doi.org/10.1088/0963-0252/24/1/015011. [69] Z. Cui, S. Meng, Y. Yi, A. Jafarzadeh, S. Li, E.C. Neyts, Y. Hao, L. Li, X. Zhang, X. Wang, A. Bogaerts, ACS Catal. 12 (2022) 1326-1337, https://doi.org/10.1021/acscatal.1c04678. [70] F. Brehmer, S. Welzel, M.C.M. van de Sanden, R. Engeln, J. Appl. Phys. 116 (2014) 123303, https://doi.org/10.1063/1.4896132. [71] D. Li, V. Rohani, F. Fabry, A.P. Ramaswamy, M. Sennour, L. Fulcheri,Appl. Catal., B 261 (2020) 118228, https://doi.org/10.1016/j.apcatb.2019.118228. [72] X. Duan, Z. Hu, Y. Li, B. Wang, AIChE J. 61 (2014) 898-903, https://doi.org/10.1002/aic.14682. [73] B. Ashford, Y. Wang,C.-K. Poh, L. Chen, X. Tu, Appl. Catal., B 276 (2020) 119110, https://doi.org/10.1016/j.apcatb.2020.119110. [74] S. Paulussen, B. Verheyde, X. Tu, C.D. Bie, T. Martens, D. Petrovic, A. Bogaerts, B. Sels, Plasma Sources Sci. Technol. 19 (2010) 034015, https://doi.org/10.1088/0963-0252/19/3/034015. [75] D. Ray, P. Chawdhury, K.V.S.S. Bhargavi, S. Thatikonda, N. Lingaiah, C. Subrahmanyam,J. CO2 Util. 44 (2021) 101400, https://doi.org/10.1016/j.jcou.2020.101400. [76] A. Ozkan, T. Dufour, T. Silva, N. Britun, R. Snyders, A. Bogaerts, F. Reniers, Plasma Sources Sci. Technol. 25 (2016) 025013, https://doi.org/10.1088/0963-0252/25/2/025013. [77] X. Duan, Y. Li, W. Ge, B. Wang, Sci. Technol. 5 (2014) 131-140, https://doi.org/10.1002/ghg.1425. [78] A. Ozkan, T. Dufour, A. Bogaerts, F. Reniers, Plasma Sources Sci. Technol. 25 (2016) 045016, https://doi.org/10.1088/0963-0252/25/4/045016. [79] A. Zhou, D. Chen, C. Ma, F. Yu, B. Dai, Catalysts 8 (2018) 256, https://doi.org/10.3390/catal8070256. [80] D. Mei, X. Tu, ChemPhysChem 18 (2017) 3253-3259, https://doi.org/10.1002/cphc.201700752. [81] K. Zhang, G. Zhang, X. Liu, A.N. Phan, K. Luo, Ind. Eng. Chem. Res. 56 (2017) 3204-3216, https://doi.org/10.1021/acs.iecr.6b04570. [82] J.-Y. Wang, G.-G. Xia, A. Huang, S.L. Suib, Y. Hayashi, H. Matsumoto, J. Catal. 185 (1999) 152-159, https://doi.org/10.1006/jcat.1999.2499. [83] A.M. Banerjee, J. Billinger, K.J. Nordheden, F.J.J. Peeters, J. Vac. Sci. Technol., A 36 (2018) 04F403, https://doi.org/10.1116/1.5024400. [84] T. Butterworth, R. Elder, R. Allen,Chem. Eng. J. 293 (2016) 55-67, https://doi.org/10.1016/j.cej.2016.02.047. [85] W. Ding, M. Xia, C. Shen, Y. Wang, Z. Zhang, X. Tu,C.j. Liu, J. CO2 Util. 61 (2022) 102045, https://doi.org/10.1016/j.jcou.2022.102045. [86] R. Li, Q. Tang, S. Yin, T. Sato, Appl. Phys. Lett. 90 (2007) 131502, https://doi.org/10.1063/1.2716848. [87] N. Lu, D. Sun, C. Zhang, N. Jiang, K. Shang, X. Bao, J. Li, Y. Wu, J. Phys. D: Appl. Phys. 51 (2018) 094001, https://doi.org/10.1088/1361-6463/aaa919. [88] N. Lu, N. Liu, C. Zhang, Y. Su, K. Shang, N. Jiang, J. Li, Y. Wu,Chem. Eng. J. 417 (2021) 129283, https://doi.org/10.1016/j.cej.2021.129283. [89] S. Wang, Y. Zhang, X. Liu, X. Wang, Plasma Chem. Plasma Process. 32 (2012) 979-989, https://doi.org/10.1007/s11090-012-9386-8. [90] N. Britun, T. Silva, G. Chen, T. Godfroid, J. van der Mullen, R. Snyders, J. Phys. D: Appl. Phys. 51 (2018) 144002, https://doi.org/10.1088/1361-6463/aab1ad. [91] G. Chen, N. Britun, T. Godfroid, V. Georgieva, R. Snyders, M.-P. Delplancke-Ogletree, J. Phys. D: Appl. Phys. 50 (2017) 084001, https://doi.org/10.1088/1361-6463/aa5616. [92] M.S. Bak,S.-K. Im, M. Cappelli, IEEE Trans. Plasma Sci. 43 (2015) 1002-1007, https://doi.org/10.1109/tps.2015.2408344. [93] J.F. de la Fuente, S.H. Moreno, A.I. Stankiewicz, G.D. Stefanidis, Int. J. Hydrogen Energy 41 (2016) 21067-21077, https://doi.org/10.1016/j.ijhydene.2016.08.032. [94] S. López-Rodríguez, A. Davó-Quiñonero, E. Bailón-García, D. Lozano-Castelló, F. C. Herrera, E. Pellegrin, C. Escudero, M. García-Melchor, A. Bueno-López, J. Phys. Chem. C 125 (2021) 25533-25544, https://doi.org/10.1021/acs.jpcc.1c07537. [95] S. Xu, S. Chansai, Y. Shao, S. Xu,Y.-C. Wang, S. Haigh, Y. Mu, Y. Jiao, C.E. Stere, H. Chen, X. Fan, C. Hardacre, Appl. Catal. B 268 (2020) 118752, https://doi.org/10.1016/j.apcatb.2020.118752. [96] M. Mikhail, P.D. Costa, J. Amouroux, S. Cavadias, M. Tatoulian, M.E. Gálvez, S. Ognier,Appl. Catal. B 294 (2021) 120233, https://doi.org/10.1016/j.apcatb.2021.120233. [97] M.C. Bacariza, M. Biset-Peiró, I. Graça, J. Guilera, J. Morante, J.M. Lopes, T. Andreu, C. Henriques,J. CO2 Util. 26 (2018) 202-211, https://doi.org/10.1016/j.jcou.2018.05.013. [98] B. Zhu, X.S. Li, C. Shi, J.L. Liu, T.L. Zhao, A.M. Zhu,Int. J. Hydrogen Energy 37 (2012) 4945-4954, https://doi.org/10.1016/j.ijhydene.2011.12.062. [99] M.-W. Li, C.-P. Liu, Y.-L. Tian, G.-H. Xu, F.-C. Zhang, Y.-Q. Wang, Energy Fuels 20 (2006) 1033-1038, https://doi.org/10.1021/ef050207j. [100] M. Scapinello, L.M. Martini, G. Dilecce, P. Tosi, J. Phys. D: Appl. Phys. 49 (2016) 075602, https://doi.org/10.1088/0022-3727/49/7/075602. [101] J.A. Dumesic, G.W. Huber, M. Boudart, Handb. Heterog. Catal. (2008), https://doi.org/10.1002/9783527610044.hetcat0001. [102] L.M. Martini, S. Lovascio, G. Dilecce, P. Tosi, Plasma Chem. Plasma Process. 38 (2018) 707-718, https://doi.org/10.1007/s11090-018-9893-3. [103] F. Azzolina-Jury, D. Bento, C. Henriques, F. Thibault-Starzyk,J. CO2 Util. 22 (2017) 97-109, https://doi.org/10.1016/j.jcou.2017.09.017. [104] S. Wang, Z.H. Zhu, Energy Fuels 18 (2004) 1126-1139, https://doi.org/10.1021/ef0340716. [105] A.M. Arinaga, M.C. Ziegelski, T.J. Marks, Angew. Chem., Int. Ed. 60 (2021) 10502-10515, https://doi.org/10.1002/anie.202012862. [106] H. Li, Y. Tan, M. Ditaranto, J. Yan, Z. Yu,Energy Procedia 114 (2017) 6030-6035, https://doi.org/10.1016/j.egypro.2017.03.1738. [107] A. Galadima, O. Muraza, J. Ind. Eng.Chem. 37 (2016) 1-13, https://doi.org/10.1016/j.jiec.2016.03.027. [108] G. Centi, E.A. Quadrelli, S. Perathoner, Energy Environ. Sci. 6 (2013) 1711, https://doi.org/10.1039/c3ee00056g. [109] M. Heintze, M. Magureanu, J. Appl. Phys. 92 (2002) 2276-2283, https://doi.org/10.1063/1.1497457. [110] V. Vermeiren, A. Bogaerts, J. Phys. Chem. C 124 (2020) 18401-18415, https://doi.org/10.1021/acs.jpcc.0c04257. [111] O. Biondo, A. Hughes, A. van de Steeg, S. Maerivoet, B. Loenders, G. van Rooij, A. Bogaerts, Plasma Sources Sci. Technol. 32 (2023) 045001, https://doi.org/10.1088/1361-6595/acc6ec. [112] S. Heijkers, M. Aghaei, A. Bogaerts, J. Phys. Chem. C 124 (2020) 7016-7030, https://doi.org/10.1021/acs.jpcc.0c00082. [113] B. Huang, C. Zhang, I. Adamovich, Y. Akishev, T. Shao, Plasma Sources Sci. Technol. 29 (2020) 044001, https://doi.org/10.1088/1361-6595/ab7854. [114] T.L. Chng, D.Z. Pai, O. Guaitella, S.M. Starikovskaia, A. Bourdon, Plasma Sources Sci. Technol. 31 (2022) 015010, https://doi.org/10.1088/1361-6595/ac4592. [115] E. Slikboer, A. Sobota, O. Guaitella, E. Garcia-Caurel, J. Phys. D: Appl. Phys. 51 (2017) 025204, https://doi.org/10.1088/1361-6463/aa9b17. [116] G.J. van Rooij, D.C.M. van den Bekerom, N. den Harder, T. Minea, G. Berden, W. A. Bongers, R. Engeln, M.F. Graswinckel, E. Zoethout, M.C.M. van de Sanden, Faraday Discuss. 183 (2015) 233-248, https://doi.org/10.1039/c5fd00045a. [117] W. Wang,H.-H. Kim, K. Van Laer, A. Bogaerts, Chem. Eng. J. 334 (2018) 2467-2479, https://doi.org/10.1016/j.cej.2017.11.139. [118] O. Biondo, C. Fromentin, T. Silva, V. Guerra, G. van Rooij, A. Bogaerts, Plasma Sources Sci. Technol. 31 (2022) 074003, https://doi.org/10.1088/1361-6595/ac8019. [119] A. Parastaev, N. Kosinov, E.J.M. Hensen, J. Phys. D: Appl. Phys. 54 (2021) 264004, https://doi.org/10.1088/1361-6463/abeb96. [120] J. Van Turnhout, D. Aceto, A. Travert, P. Bazin, F. Thibault-Starzyk, A. Bogaerts, F. Azzolina-Jury, Sci. Technol. 12 (2022) 6676-6686, https://doi.org/10.1039/d2cy00311b. [121] B. Eliasson, M. Hirth, U. Kogelschatz, J. Phys. D: Appl. Phys. 20 (1987) 1421-1437, https://doi.org/10.1088/0022-3727/20/11/010. [122] B. Eliasson, U. Kogelschatz, B. Xue, L.-M. Zhou, Ind. Eng. Chem. Res. 37 (1998) 3350-3357, https://doi.org/10.1021/ie9709401. [123] N. Pinhão, A. Moura, J.B. Branco, J. Neves,Int. J. Hydrogen Energy 41 (2016) 9245-9255, https://doi.org/10.1016/j.ijhydene.2016.04.148. [124] S. Futamura, H. Kabashima, in: S.-E. Park, J.-S. Chang, K.-W. Lee (Eds.), Carbon Dioxide Utilization for Global Sustainability, Proceedings of the 7th International Conference on Carbon Dioxide Utilization, Elsevier, 2004, pp. 119-124, https://doi.org/10.1016/s0167-2991(04)80229-5. [125] G. Neretti, M. Ricco, Electronics 8 (2019) 1137, https://doi.org/10.3390/electronics8101137. [126] P. Synek, Y. Akishev, A. Petryakov, N. Trushkin, J. Voráč, T. Hoder, Plasma Sources Sci. Technol. 28 (2019) 095018, https://doi.org/10.1088/1361-6595/ab25d8. [127] T.C. Manley, Trans. Electrochem. Soc. 84 (1943) 83, https://doi.org/10.1149/1.3071556. [128] F.J.J. Peeters, M.C.M. van de Sanden, Plasma Sources Sci. Technol. 24 (2014) 015016, https://doi.org/10.1088/0963-0252/24/1/015016. [129] R. Brandenburg, M. Schiorlin, M. Schmidt, H. Höft, A.V. Pipa, V. Brüser, Plasma 6 (2023) 162-180, https://doi.org/10.3390/plasma6010013. [130] O. Guaitella, F. Thevenet, C. Guillard, A. Rousseau, J. Phys. D: Appl. Phys. 39 (2006) 2964-2972, https://doi.org/10.1088/0022-3727/39/14/015. [131] Q.-Z. Zhang, A. Bogaerts, Plasma Sources Sci. Technol. 27 (2018) 035009, https://doi.org/10.1088/1361-6595/aab47a. |
[1] | Xuexia Lan, Xingyu Xiong, Jie Cui, Renzong Hu. Reducing voltage hysteresis of metal oxide anodes to achieve high energy efficiency for Li-ion batteries [J]. Journal of Energy Chemistry, 2023, 83(8): 433-444. |
[2] | Jie Ren, Hao Lou, Nuo Xu, Feng Zeng, Gang Pei, Zhandong Wang. Methanation of CO/CO2 for power to methane process: Fundamentals, status, and perspectives [J]. Journal of Energy Chemistry, 2023, 80(5): 182-206. |
[3] | Bart Wanten, Rani Vertongen, Robin De Meyer, Annemie Bogaerts. Plasma-based CO2 conversion: How to correctly analyze the performance? [J]. Journal of Energy Chemistry, 2023, 86(11): 180-196. |
[4] | Eswaravara Prasadarao Komarala, Ayesha A. Alkhoori, Xiaolong Zhang, Hui-Ming Cheng, Kyriaki Polychronopoulou. Design and synthesis of thermally stable single atom catalysts for thermochemical CO2 reduction [J]. Journal of Energy Chemistry, 2023, 86(11): 246-262. |
[5] | Jie Ren, Feng Zeng, Chalachew Mebrahtu, Zhandong Wang, Regina Palkovits. Promotional effects of Ru and Fe on Ni/ZrO2 catalyst during CO2 methanation: A comparative evaluation of the mechanism [J]. Journal of Energy Chemistry, 2023, 86(11): 351-361. |
[6] | Haoyu Zheng, Feng Han, Noriko Sata, Rémi Costa. Hydrogen production at intermediate temperatures with proton conducting ceramic cells: Electrocatalytic activity, durability and energy efficiency [J]. Journal of Energy Chemistry, 2023, 86(11): 437-446. |
[7] | Lai Truong-Phuoc, Jean-Mario Nhut, Loïc Vidal, Cuong Duong-Viet, Sécou Sall, Corinne Petit, Christophe Sutter, Mehdi Arab, Alex Jourdan, Cuong Pham-Huu. Depleted uranium oxide supported nickel catalyst for autothermal CO2 methanation in non-adiabatic reactor under induction heating [J]. Journal of Energy Chemistry, 2023, 85(10): 310-323. |
[8] | Björn Loenders, Roel Michiels, Annemie Bogaerts. Is a catalyst always beneficial in plasma catalysis? Insights from the many physical and chemical interactions [J]. Journal of Energy Chemistry, 2023, 85(10): 501-533. |
[9] | Yan Liu, Tao Zhang, Chao Deng, Shixiu Cao, Xin Dai, Shengwu Guo, Yuanzhen Chen, Qiang Tan, Haiyan Zhu, Sheng Zhang, Yongning Liu. Ordered mesoporous carbon spheres assisted Ru nanoclusters/RuO2 with redistribution of charge density for efficient CO2 methanation in a novel H2/CO2 fuel cell [J]. Journal of Energy Chemistry, 2022, 72(9): 116-124. |
[10] | Xiaoyu Han, Maoshuai Li, Xiao Chang, Ziwen Hao, Jiyi Chen, Yutong Pan, Sibudjing Kawi, Xinbin Ma. Hollow structured Cu@ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol [J]. Journal of Energy Chemistry, 2022, 71(8): 277-287. |
[11] | Anastasios I. Tsiotsias, Nikolaos D. Charisiou, Ayesha Al Khoori, Safa Gaber, Vlad Stolojan, Victor Sebastian, Bartvan der Linden, Atul Bansode, Steven J. Hinder, Mark A. Baker, Kyriaki Polychronopoulou, Maria A. Goula. Optimizing the oxide support composition in Pr-doped CeO2 towards highly active and selective Ni-based CO2 methanation catalysts [J]. Journal of Energy Chemistry, 2022, 71(8): 547-561. |
[12] | Masaru Kushida,Akira Yamaguchi, Masahiro Miyauchi. Photocatalytic dry reforming of methane by rhodium supported monoclinic TiO2-B nanobelts [J]. Journal of Energy Chemistry, 2022, 71(8): 562-571. |
[13] | Jaylin Sasson Bitters, Tina He, Elizabeth Nestler, Sanjaya D. Senanayake, Jingguang G.Chen, Cheng Zhang. Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane [J]. Journal of Energy Chemistry, 2022, 68(5): 124-142. |
[14] | Qi Zhang, Laura Pastor-Pérez, Qiang Wang, Tomas Ramirez Reina. Conversion of CO2 to added value products via rWGS using Fe-promoted catalysts: Carbide, metallic Fe or a mixture? [J]. Journal of Energy Chemistry, 2022, 66(3): 635-646. |
[15] | Qiaojuan Wang, Yating Gao, Chantsalmaa Tumurbaatar, Tungalagtamir Bold, Fei Wei, Yihu Dai, Yanhui Yang. Tuned selectivity and enhanced activity of CO2 methanation over Ru catalysts by modified metal-carbonate interfaces [J]. Journal of Energy Chemistry, 2022, 64(1): 38-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||