|
A crosslinked polymer as dopant-free hole-transport material for efficient n-i-p type perovskite solar cells
Linqin Wang, Fuguo Zhang, Tianqi Liu, Wei Zhang, Yuanyuan Li, Bin Cai, Lanlan He, Yu Guo, Xichuan Yang, Bo Xu, James M. Gardner, Lars Kloo, Licheng Sun
2021, 55(4):
211-218.
DOI: 10.1016/j.jechem.2020.06.062
A new crosslinked polymer, called P65, with appropriate photo-electrochemical, opto-electronic, and thermal properties, has been designed and synthesized as an efficient, dopant-free, hole-transport material (HTM) for n-i-p type planar perovskite solar cells (PSCs). P65 is obtained from a low-cost and easily synthesized spiro[fluorene-9,9′-xanthene]-3′,6′-diol (SFX-OH)-based monomer X65 through a free-radical polymerization reaction. The combination of a three-dimensional (3D) SFX core unit, hole-transport methoxydiphenylamine group, and crosslinked polyvinyl network provides P65 with good solubility and excellent film-forming properties. By employing P65 as a dopant-free hole-transport layer in conventional n-i-p type PSCs, a power conversion efficiency (PCE) of up to 17.7% is achieved. To the best of our knowledge, this is the first time a 3D, crosslinked, polymeric dopant-free HTM has been reported for use in conventional n-i-p type PSCs. This study provides a new strategy for the future development of a 3D crosslinked polymeric dopant-free HTM with a simple synthetic route and low-cost for commercial, large-scale applications in future PSCs.
|